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Abstract: The Arabian-Nubian Shield (ANS) includes Middle Cryogenian-Ediacaran 

(790–560 Ma) sedimentary and volcanic terrestrial and shallow-marine successions 

unconformable on juvenile Cryogenian crust. The oldest were deposited after 780–760 Ma 

shearing and suturing in the central ANS. Middle Cryogenian basins are associated with 

~700 Ma suturing in the northern ANS. Late Cryogenian basins overlapped with and 

followed 680–640 Ma Nabitah orogenesis in the eastern ANS. Ediacaran successions are 

found in pull-apart and other types of basins formed in a transpressive setting associated 

with E-W shortening, NW-trending shearing, and northerly extension during final 

amalgamation of the ANS. Erosion surfaces truncating metamorphosed arc rocks at the 

base of these successions are evidence of periodic exhumation and erosion of the evolving 

ANS crust. The basins are evidence of subsequent subsidence to the base level of alluvial 

systems or below sea level. Mountains were dissected by valley systems, yet relief was 
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locally low enough to allow for seaways connected to the surrounding Mozambique Ocean. 

The volcanosedimentary basins of the ANS are excellently exposed and preserved, and 

form a world-class natural laboratory for testing concepts about crustal growth during the 

Neoproterozoic and for the acquisition of data to calibrate chemical and isotopic changes, 

at a time in geologic history that included some of the most important, rapid, and enigmatic 

changes to Earth’s environment and biota. 

Keywords: Arabian-Nubian Shield; marine sediments; terrestrial sediments; post-amalgamation 

basins; transpressional basins; exhumation; erosion; subsidence; Cryogenian; Ediacaran 

 

1. Introduction 

The Arabian-Nubian Shield (ANS) is in the northern part (present-day coordinates) of the East 

African Orogen (EAO) [1], an accretionary orogen that extends from Arabia to East Africa and into 

Antarctica. The orogen resulted from multiphase convergence and amalgamation of crustal blocks 

during the late Neoproterozoic-early Cambrian. It was the product of a supercontinental cycle, initiated 

at the end of Grenvillian orogenesis (~950 Ma) by the break-up of Rodinia and ended by Ediacaran 

Brasiliano-Pan-African orogenesis during final assembly of eastern and western Gondwana [2]. 

Whereas orogenesis continued until about 530 Ma in the southern EAO, it was complete in the ANS 

by about 550 Ma.  

The bulk of the ANS consists of Tonian to Ediacaran arcs that originated in the Mozambique 

Ocean, the ocean basin that opened during the middle Neoproterozoic break-up of Rodinia. The arc 

assemblages comprise juvenile suites of tholeiitic and calc-alkaline volcanic rocks, large amounts of 

volcaniclastic sedimentary rocks, and voluminous epizonal TTG-type intrusions. The arcs were active 

about 870 to 600 Ma [3]; they have Nd model ages close to their crystallization ages, positive εNd(t) 

values, and are typical juvenile crust [4]. In the eastern and southern ANS, arc assemblages are 

structurally intercalated with or overlie gneiss that has model ages as old as 3.0 Ga, moderately to 

strongly negative εNd values, and crystallization ages as old as 1.8 Ga [5,6]. These old units possibly 

represent fragments of Rodinia that were preserved as microplates in the Mozambique Ocean and were 

subsequently incorporated in the otherwise juvenile Neoproterozoic rocks of the shield. Assembly of 

the ANS entailed the amalgamation of the arc systems to form tectonostratigraphic terranes, suturing 

of the terranes, and the emplacement of a vast array of syntectonic to posttectonic granitoids. 

Cryogenian-Ediacaran sedimentary and volcanic strata were variously deposited unconformably atop 

actively deforming or newly amalgamated arcs and sutured terranes. Arc amalgamation began about 

780–760 Ma and continued periodically to about 620 Ma [7]. Overall, shield assembly terminated at 

about 560 Ma, by which time the ANS had been accreted to the Saharan Metacraton [8] and had 

evolved as part of the southern margin of Paleotethys.  

The many sedimentary and volcanic successions unconformable on arc sequences in the ANS are 

an under-reported aspect of ANS geology. They occupy basins developed on crust being created or 

newly created by the amalgamation and suturing of the arcs. They were contemporary with or followed 

episodes of metamorphism, deformation, and syntectonic intrusion. Exhumation and uplift of basement 
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rocks led to the development of unconformities of local to regional extent, on top of which the 

sedimentary and volcanic assemblages were deposited (Figure 1). At least one volcanosedimentary 

sequence overlies a forearc accretional prism; others overlie plutonic rocks from deep in the magmatic 

core of the arc systems; and some overlap suture zones between amalgamated terranes. Comprehensive 

detailed information about the tectonic settings of many of the ANS basins is lacking and not all can 

yet be described in terms of standard basin types. Several basins in the ANS are informally referred to 

as “post-amalgamation basins” [9] where it can be demonstrated that they overlie newly amalgamated 

components of composite terranes (Table 1). Basins suspected of being located on the upper overriding 

plate during terrane collision and suturing are referred to as retroforeland basins [10]. Other basins 

developed during transtensional extension at releasing bends or transpressional extension at 

constraining bends in strike-slip fault systems, or during normal faulting associated with orogen-parallel 

extension and gneiss doming.  

Figure 1. Volcanosedimentary basins in the Arabian-Nubian Shield unconformable on 

basement composed of older arc rocks and amalgamated terranes (terrane names in red 

italics). (After [11]). 
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Table 1. Volcanosedimentary successions unconformable on older arc terranes in the 

Arabian-Nubian Shield (ANS). 

Basin 
Age, age 

range (Ma) 
Lithology Thickness Metamorphism 

Tectonic 

setting/basin type 

Hali 795–780 Quartz-biotite schist, actinolite-

biotite schist, quartzofeldspathic 

granofels, amphibolite, minor 

marble. Protoliths: quartz-rich to 

arkosic sandstone, mafic volcanic 

rocks, minor polymict 

conglomerate, minor limestone 

Unknown Amphibolite 

facies 

Close to convergent 

margin; 

unconformable on 

exhumed core of 

Shwas volcanic arc; 

retroforeland basin? 

Ghamr ~745 Felsic tuff, pebbly sandstone, 

rhyodacitic ash-flow tuff, polymict 

conglomerate, matrix-supported 

pebble conglomerate, sandstone, 

siltstone, subordinate limestone 

~6000 m Greenschist facies Close to convergent 

margin; suspected 

location on upper 

plate; retroforeland 

basin? 

Amudan 755–745 Basaltic andesite to rhyolite flows 

and tuffs, polymict conglomerate, 

tuffaceous siltstone or chert, 

sandstone and siltstone 

~8000 m Greenschist facies Close to convergent 

margin; suspected 

location on upper 

plate; retroforeland 

basin? 

Hadiyah ~695 Pillow basaltic-andesite flows, 

basaltic-andesite breccia, rhyolitic 

ash-flow tuffs, sandstone, polymict 

pebble to cobble conglomerate, 

matrix-supported pebble to boulder 

conglomerate, red and green 

siltstone and mudstone, limestone 

~7000 m Low greenschist 

facies 

Close to convergent 

margin; suspected 

location on upper 

plate; retroforeland 

basin? 

Furayh ~660–630  Pillow basalt, basalt and andesite 

flows and breccia, rhyolite, 

rhyodacite, and dacite flows and 

tuffs, polymict conglomerate, 

sandstone, arkose, siltstone, green 

and purple shale and siltstone, 

mudstone, carbonate (limestone, 

dolomitic marble, magnesite), 

locally stromatolitic. 

~6000 m Low greenschist 

facies 

Close to triple 

junction between Bi’r 

Umq and Afif suture 

zones; basin type 

uncertain; possibly 

flexural basin 

reflecting tectonic 

loading by the  

Afif terrane. 

Murdama 650–625 Bimodal rhyolite, dacite, andesite, 

and basalt flows and breccia; 

polymict conglomerate, sandstone 

(wacke), carbonate (dolomitic 

marble), locally stromatolitic, 

subordinate siltstone.  

8000 m or 

more 

Greenschist facies Type  

“post-amalgamation 

basin” overlying 

newly amalgamated 

Afif composite 

terrane; possibly 

caused by flexure due 

to tectonic loading of 

the Halaban 

ophiolite. 
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Table 1. Cont. 

Basin 
Age, age 

range (Ma) 
Lithology Thickness Metamorphism Tectonic setting/basin type 

Dokhan, 

Hammamat, 

Thalbah 

630–585  Dokhan—dacitic and 

rhyolitic welded and  

non-welded ignimbrite. 

Hammamat and  

Thalbah—Cobble and 

boulder polymict 

conglomerate, pebbly 

sandstone, purple 

sandstone (litharenite), 

siltstone, and mudstone 

~4000 m Low greenschist 

facies; locally, 

in shear zone, 

mylonite 

Close to shear zones and 

gneiss complexes and belts; 

variously associated with 

active margins, 

transpression, and extension. 

Variously termed 

intramontane basin, foreland 

basin, extensional pull-apart 

basin, rift, graben, piggy 

back basin, flexural basin. 

Jibalah 600–650  Polymict conglomerate, 

sandstone, siltstone, 

carbonate (limestone and 

dolomite) locally 

stromatolitic, bimodal 

basalt, andesite, rhyodacite 

As much 

as 3000 m 

Very low-grade 

metamorphism 

to none 

Close to shear zones; 

original basin form debated; 

one or more large basins 

now preserved in fault 

basins or many separate 

pull-apart/extensional 

basins. 

Volcanosedimentary basins have been studied in the ANS for more than 30 years [12]. Recent  

U-Pb ion-probe zircon dating constrains depositional ages for some basins more precisely than 

heretofore. A growing body of geologic mapping better constrains the structural settings of several 

basins, and a small number of 40Ar/39Ar cooling ages provide constraints on the timing of late 

Cryogenian and Ediacaran exhumation. Our improved understanding of the time-space distribution, 

lithologic character, and depositional environments, structural controls, and shallow marine to 

terrestrial settings of the ANS basins provides new insights about where and when exhumation and 

erosion occurred during ANS orogeny. These insights inform our understanding of the complexity of 

Neoproterozoic orogeny at the northern end of the EAO and allow for the development of an orogenic 

model that takes into account periodic crustal subsidence as well as mountain building. The objective 

of this review is to make information about these basins more widely known, and we present data 

compiled from standard international geologic journals as well as from maps and reports in the 

archives of national geological surveys and universities less readily available to an international 

audience. The basins of the ANS are important geologic phenomena; they record important stages in 

evolution of what is one of the largest expanses of juvenile crust worldwide; they have a tremendous 

potential to refine aspects of EAO tectonic development; and, more globally, they help elucidate 

problems in Neoproterozoic Earth history, including calibration of the Ediacaran time scale and timing 

of final Gondwana assembly. 

For the purposes of this paper, selected basins are discussed, chosen because they provide 

information about some of the main orogenic events in the ANS, because they illustrate a variety of 

structural controls on basin development and exhumation and erosional features of basin margins, and 

because they contain a variety of basin fill reflecting varied depositional environments. The locations 

of basins discussed in this contribution are indicated in Figure 2; they are listed in Table 1. 
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Figure 2. Index of regions discussed in the text. 

 

2. Geologic Character 

Volcanosedimentary basins are widespread in the ANS (Figure 1). They occur throughout the 

Arabian Shield and in the northern Nubian Shield, but are absent from the southern Nubian Shield 

apart from one relatively small location in Sudan. It is not known whether this distribution was an 

original distribution, results from differential erosion during Cretaceous tectonics (e.g., Sudan and 

Yemen basins), or reflects Neogene uplift related to the Afar hotspot and separation of the African and 

Arabian plates. The defining feature of the basins is that they have basal unconformities—that is, they 

are in situ–in depositional contact with basement composed of amalgamated arc systems and terranes. 

A variety of other Tonian to Ediacaran sedimentary and volcanosedimentary assemblages are also 

known in the ANS but differ from the basins considered here in that they lack any observable base. 

These assemblages are intercalated with the volcanic strata as part of the supracrustal rocks that make 

up the juvenile arcs of the shield and are not a focus of this paper. 

The arc rocks beneath the basins are mostly metamorphosed to greenschist facies. The relatively 

low metamorphic grade and presence of layered and plutonic rocks representing both the supracrust 

and epizonal magmatic core of the arcs are evidence of only moderate exhumation and erosion of the 

sutured arcs in most parts of the ANS prior to basin development. In some locations, however, the 
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basement beneath the basins is almost entirely plutonic or contains high-grade metamorphic rocks, 

indicating virtual complete removal of the volcanic supracrustal rocks and implying significant 

amounts of exhumation and erosion prior to basin formation. 

All of the volcanosedimentary basin deposits are deformed to some extent. Their strata are gently to 

vertically dipping in open-to-tight folds, and commonly show pervasive cleavage and lineations. 

Brittle faults internally disrupt the basins and commonly bound the basins; in places, shear zones 

transform basin fill into mylonite. Metamorphism is mostly weak to moderate, but in ductile shear 

zones may reach amphibolite grade and on the flanks of granitoid intrusions basin rocks may  

be hornfelsed. 

The basin assemblages are Cryogenian to Ediacaran, ranging from about 785 Ma (Hali group) to 

about 560 Ma (Jibalah and Saramuj groups). They vary in size from aggregates of basins extending 

over as much as 72,000 km2 to small isolated basins of 200 km2 and make up about 18 percent of the 

shield in terms of surface area [3]. The largest basin is in the northeastern Arabian Shield, filled by the 

Murdama group and Afif and Hibshi formations. Smaller basins are filled by the Atura formation in 

the far southern Arabian Shield, the Amaki formation in the south-central Nubian Shield [13], and the 

Hammamat Group, Dokhan Volcanics, and Jibalah group in the northern ANS. Depositional units 

within the basins may be entirely or largely volcanic or volcaniclastic in origin and contain basalt, 

andesite, or rhyolite flows, agglomerates, ignimbrites, and tuffs. Other basins are filled dominantly or 

entirely by sedimentary rocks such as sandstone, siltstone, and limestone. Some post-amalgamation 

basins are terrestrial whereas others are terrestrial to shallow marine. It should be noted that in this 

paper we use “Group” and “Formation” if the stratigraphic units are formally defined, that is if 

measured type sections of the units are well known or have been described in the international 

literature. Otherwise we use “group” and “formation”. In practice, most units in the Nubian Shield are 

referred to as Groups or Formations; most units in the Arabian Shield are treated as informal. 

Exceptions in the Arabian Shield are the Shammar Group and formations in the group [14,15]. 

3. Hali Group Basin 

The Hali group, the oldest succession considered in this report, crops out in the west-central part of 

the Asir composite terrane in the southern Arabian Shield (Figures 1 and 3). It rests unconformably on 

a deeply eroded diorite-tonalite batholith that originated in the arc rocks of the Shwas-Tayyah 

structural belt. Its basal contact is one of the oldest unconformities in the ANS. The name of the group 

was introduced by the US Geological Survey during 1:100,000-scale geologic mapping in the southern 

shield [16] for a sequence of high-grade quartz-biotite-garnet schist interlayered with amphibolite and 

subordinate layers of marble, pebble-conglomerate schist, and rhyolitic schist. In later map 

compilations, the rocks were incorrectly reassigned to the Ablah group [17], which is considerably 

younger and of lower metamorphic grade. In its type area the Ablah group comprises relatively 

unmetamorphosed polymict conglomerate, sandstone, siltstone, limestone and rhyolite dated between 

640 and 613 Ma [18,19]. The Hali group, in contrast, is metamorphosed to amphibolite facies, and is 

early Cryogenian. 

The Hali group is situated in a key part of the Asir composite terrane, adjacent to the boundary 

between arc rocks of the Al Lith-Bidah structural belt (L-B) in the west and the Shwas-Tayyah belt  
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(S-T) in the east (Figure 3 inset). It is underlain by the An Nimas batholith (816–797 Ma) [20], the 

largest arc-related plutonic complex in the southern Arabian Shield and is intruded by syntectonic 

tonalite and granodiorite of the Baqarah complex (780–760 Ma) [20] (Figure 3). The Al Lith-Bidah 

belt contains early Cryogenian arc rocks (~855–815 Ma); the Shwas-Tayyah belt is older than  

>795 Ma, but possibly younger than the Al Lith-Bidah belt [3]. The join between the two belts is a 

long-lived zone of structural weakness in the southern Arabian Shield that probably originated by 

convergence of the two structural belts during 780 and 765 Ma shearing [21] within and on the margin 

of the An Nimas batholith, emplacement of syntectonic tonalite gneiss in the Baqarah complex  

(780–765 Ma) (Figure 3) [20], and metamorphism. The dextral Tarj shear zone on the margin of the 

An Nimas batholith, which partly defines the zone of weakness, is a north-trending shear zone more 

than 400 km long (Figure 3). The zone of structural weakness was reactivated some 120 million years 

later as a control on development of the north-south narrow basin of the Ediacaran Ablah group, at 

which time it became the site of transpressive thrusting and shearing associated with east-west 

shortening in the southern ANS [3,22,23]. The Hali group itself is not dated, but is constrained 

between about 795 and 780 Ma by the ages of the An Nimas batholith and the Baqarah complex. 

The Hali group is well-bedded (Figure 4A,B) quartz-biotite schist, actinolite-biotite schist, 

actinolite-biotite-quartz-feldspar schist, quartzofeldspathic granofels, amphibolite, hornblende schist, 

and white, gray, and brown marble. Its outcrop defines a broad northeast-plunging antiform around the 

Baqarah complex (Figure 3). The antiform rotates the basal unconformity, with the result that the 

contact between the Hali group and the stratigraphically underlying An Nimas batholith is overturned 

and dips northwest (Figure 4A,B), placing the Hali group structurally beneath the batholith. The group 

has pervasive cleavage and schistosity, tight folding of the foliation, and locally developed  

intrafolial folds and shear fabric (Figure 4C). Flecks of malachite are present in the quartzofeldspathic  

rocks and kyanite is present on the flanks of and in roof pendants in the Baqarah complex as  

kyanite-quartz-muscovite and kyanite-quartz-biotite schists. The Hali group is locally migmatized 

close to contacts with the Baqarah complex, and in places it is difficult to distinguish from gneissose 

plutonic rock. Overall, the Hali group protoliths are inferred to be quartz-rich to arkosic sandstone, 

mafic volcanic rocks, and limestone. 

The Hali group basal unconformity is not everywhere apparent because of overprinting by  

high-grade metamorphism and recrystallization that altered quartzofeldspathic clastic rocks at the base 

of the Hali to resemble plutonic rocks in the An Nimas batholith. Nevertheless, the unconformity is 

locally well exposed (for example, at lat 18°58.73' N, long 42°03.16' E) and is evident as a change 

from massive leucocratic biotite-hornblende tonalite of the batholith to layered granofels of the Hali 

group. The granofels is composed of quartz, feldspar, biotite, and hornblende and contains rounded 

tonalite clasts. The unconformity itself is evidence of significant exhumation, uplift, and erosion of the 

An Nimas batholith and the arc of which the batholith is part. The depth of crystallization of the 

batholith is not known, but it appears to be a typical mid-level intrusion and exhumation was therefore 

probably on the order of 10 or more km. The cause of exhumation has not been established but may be 

related to orogenic uplift resulting from accretion between the Al Lith-Bidah and Shwas-Tayyah belts. 
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Figure 3. Geologic setting of the Hali group, unconformable on the exhumed and eroded 

An Nimas batholith (~815–795 Ma) and intruded by ~775–765 Ma syntectonic Baqarah 

complex tonalite and granodiorite (after [17]). Inset shows the location of the Hali group 

and younger Ediacaran Ablah group close to and at the junction between the Al Lith-Bidah 

(L-B) and Shwas-Tayyah structural belts (S-T) in the Asir composite terrane. The Khadra 

structural belt (K) is a separate belt in the eastern part of the Asir terrane. The Tathlith, 

Jiddah, and Afif are other terranes east and north of the Asir terrane. 

 



Geosciences 2013, 3 398 
 

Figure 4. Lithologic and structural features of the Hali group. (A) View, looking west, of a 

narrow zone of well-bedded Hali group rocks in contact with the An Nimas batholith to the 

north (slopes on the right hand side of the photo) and the Baqarah pluton to the south (on 

the left). The Hali group unconformably overlies the An Nimas batholith but, as seen in 

this view, the group dips steeply north beneath the batholith and the unconformity is 

overturned; (B) Another view of overturned, north-dipping Hali group rocks, showing the 

flaggy character of psammitic schist; (C) Close up of psammitic rocks in the Hali group 

showing their strongly deformed character with transposed, discontinuous layering, 

sheared-out intrafolial folds, and stretched epidote-rich lenses. 

 

(B) 

(A) (C) 

The association of arc convergence, metamorphism, folding, shearing, and syntectonic intrusion in 

the vicinity of the Hali group is evidence for the oldest recognized Cryogenian orogenic event in the 

Asir terrane. Exhumation, uplift, and erosion of the underlying 816–797 Ma An Nimas tonalite and 

diorite was followed by subsidence and the deposition of epiclastic, volcanic, and carbonate rocks of 

the Hali group. The structural control and depositional environment of the Hali group basin has not 

been studied and it is not known whether carbonate in the group represents a lacustrine or shallow 

marine environment. Soon after its deposition, the Hali group was caught up in a major orogenic event 

that inverted the basin and overturned the unconformity; the rocks were folded and metamorphosed, 

and intruded by a syntectonic pluton. As a consequence, the Hali basin was relatively short lived, but 

its strata reveal that stages in early Cryogenian orogeny associated with arc amalgamation in the Asir 

composite terrane included not only deformation but also exhumation, uplift, erosion, and subsidence. 
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The basin clearly developed close to an active convergent margin (the join between the Al Lith-Bidah 

and Shwas-Tayyah structural belts) and may be a type of retroforeland basin.  

4. Ghamr and Amudan Basins 

These basins, named after the Ghamr group [24] and Amudan formation [25] (Figure 5), contain 

coeval middle Cryogenian volcanosedimentary assemblages as much as 4000–6000 m thick. The 

basins unconformably overlie early Cryogenian arc sequences and are discontinuously exposed over an 

area of about 200 km × 120 km, adjacent to and south of the Bi’r Umq suture zone in the west-central 

Arabian Shield. The suture joins the Jiddah and Hijaz terranes and resulted from possible  

~780–750 Ma southeast-directed convergence between the terranes and amalgamation [26], placing 

the Ghamr and Amudan rocks on the overriding plate. The suture zone continues southwest into the 

Nubian Shield as the Nakasib suture between the Haya and Gebeit terranes. The combined suture is 

nearly 600 km long, extending from the core of the Arabian Shield, at its eastern end, almost to the 

contact between the Nubian Shield and Saharan Metacraton along the Keraf suture in the west  

(Figure 1). Deposition of the Ghamr group and Amudan formation overlapped with and immediately 

followed suturing. The Jiddah terrane is a composite structure comprising a Tonian arc in the south  

(870–850 Ma), represented by deeply eroded plutonic rocks of the Makkah batholith and flanking 

amphibolite-grade volcanic strata, and early to middle Cryogenian arc rocks in the north, represented 

by the Arj, Mahd, and Samran groups and intrusive TTG suites (825–745 Ma) [27]. These rocks are 

shown in Figure 5 as “Arc rocks of the Jiddah terrane”.  

The Ghamr group rests on a basement composed of the Dhukhr complex, Arj group, and Mahd 

group (all shown in Figure 5 as “Arc rocks of the Jiddah terrane”) and crops out in three areas 

separated by intervening basement rocks or Cenozoic alluvium. It is not known whether this 

distribution represents three original basins or is the effect of post-Ghamr structural and erosional 

segmentation of a single basin. The Ghamr group is moderately folded with dips varying between 20° 

and 80° and is metamorphosed in the greenschist facies. The Amudan formation crops out to the 

southwest. It overlies the Shayban formation (part of an arc assemblage assigned to the Samran group) 

and is more strongly deformed than the Ghamr group, with moderate to tight folding and extensive 

shearing, although only metamorphosed in the greenschist facies [25]. The formation is extensively 

intruded by younger plutonic rocks and only retains its depositional contact with older arc rocks along 

its northwestern margin, so that its original basin geometry is unknown. 

Subvolcanic rhyolite from the Ghamr group yields a Rb-Sr whole-rock isochron age of 748 ± 22 Ma  

(n = 5; MSWD = 0.98) [28]. Dacite lava and two samples of andesite lava from the Amudan formation 

yield U-Pb zircon ion-probe concordia ages of 753 ± 6 Ma (MSWD = 0.95), 752 ± 4 Ma (MSWD = 0.016), 

and 746 ± 6 Ma (MSWD = 0.105), respectively [27]. The arc rocks of the Jiddah terrane that underlie 

the Ghamr group and Amudan formation are dated between 816 and 775 Ma [27,28]. The contact between 

the Ghamr group and basement is an angular unconformity, where it rests on eroded volcanic rocks, 

and nonconformity where it rests on plutonic rocks. The contact between the Amudan formation and 

underlying arc rocks is structurally conformable and in previous mapping [25] the Amudan was 

incorporated within the Samran group. However, radiometric dating indicates that the two are 

separated by a hiatus of about 15 million years [27].  
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Figure 5. Geologic map of the Ghamr group and Amudan formation and Furayh group 

(after [24,25]) showing their locations in basins unconformable on arc rocks of the Jiddah 

and Hijaz terranes, south and north of the Bi’r Umq suture, respectively. Inset 

schematically shows the tectonic settings of the basins in relationship to the Bi’r Umq and 

Afif suture zones. Arrows suggest sites of influx of coarse conglomeratic material. 
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The Ghamr group has a pervasive reddish color and its stratigraphic units abruptly thicken, thin, and 

change facies along strike. These changes are interpreted as reflecting deposition on a paleosurface of 

high relief in a fault-controlled basin. The environment is believed to have been subaerial to near-shore 

marine [24]. The basin was unstable and the group contains internal unconformities so that its upper 

part oversteps the lower part and rests directly on the Mahd group. In its northern part, the Ghamr 

group is divided into two formations: the lower Kharzah (800–4000 m thick) and upper Gharmati  

(as much as 2000 m thick). The Kharzah formation (Figure 6) comprises reddish-gray felsic tuff 

coarsening upward to pebbly sandstone, and mauve-gray, rhyodacite ash-flow tuff over a thickness  

of about 300 m. This is followed, in varying amounts in different parts of the Ghamr basin, by 

polymict conglomerate containing clasts derived from the underlying volcanic and plutonic basement,  

matrix-supported pebble conglomerate and pebbly sandstone, epiclastic volcanic breccia, and a 

sequence of reddish-gray sandstone, overlain by siltstone and several tens of meters of basalt flows. 

Bedding is commonly poorly defined and sedimentary structures sparse, but cross lamination, mud 

cracks, ripple marks, and mud pebble conglomerates are locally observed indicating shallow water to 

subaerial conditions. Beds of gray to white limestone are locally present. The Gharmati formation 

(Figure 6) has a lower member composed of tuffaceous red to gray sandstone, siltstone, and mudstones 

overlain by an upper sandstone member with intervals of boulder conglomerate containing rhyolitic, 

basaltic, and plutonic clasts. Laminated calcareous sandstone and limestone crop out at the transition 

between the lower and upper members. The limestone is dark gray, fetid, and microbially laminated. In 

its southern areas, the Ghamr group contains a larger proportion of felsic volcanic rocks and is as much 

as 6000 m thick. Sedimentary rocks in the south include yellow and purple flaggy, laminated siltstone, 

wacke, and conglomerate containing boulders of sedimentary rocks, diorite, and granite. A rare 

carbonate is exposed in the south in one small lens of recrystallized calcarenite 30 m thick [29]. The 

Ghamr group was deposited during the Kaigas glacial event (~755 Ma) but whether the group contains 

reliable evidence of glaciation, such as diamictic glaciogenic conglomerate, has not been determined. 

The Amudan formation (Figure 6) is estimated to be as much as 8000 m thick [25]. It contains a 

greater proportion of volcanic rocks than the Ghamr group. It is largely basaltic andesite to rhyolite 

flows and tuffs, interbedded at the base and in its upper part with polymict cobble-boulder 

conglomerate and breccia and well-bedded tuffaceous siltstone or chert, normally graded pebble 

conglomerate, laminated sandstone and siltstone. Conglomerate clasts are typically rounded and 

consist of granite, diorite, rhyolite, laminated ash tuff or siltstone and crystal tuff [27]. Welding and 

flow-banding are well preserved in the volcanic rocks and grading is present in the epiclastic rocks. 

The formation is interpreted to represent alluvial fans deposited on the flanks of an emergent volcanic 

edifice in a maturing arc or rift [27].  

The Dhukhr plutonic complex in the basement beneath the Ghamr group is also nonconformably 

overlain by the Mahd group. The complex was therefore possibly exhumed and eroded at least  

twice in its history. The first time occurred between about 810 and 775 Ma, resulting in an erosion 

surface overlain by the Mahd group that in part may reflect erosion by local continental ~780 Ma  

glaciation [30,31], perhaps as an early part of the Kaigas event. The second episode of exhumation, 

which caused erosion of the Mahd group and further erosion of the Dhukhr complex, predated the 

Ghamr group. The depth of crystallization of the Dhukhr complex is not known, but it appears to be a 

typical mid-level intrusion, and exhumation was therefore probably on the order of 10 or more km. The 
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angular unconformity between the Ghamr and Mahd groups betokens deformation between ~775 Ma and 

750 Ma followed by exhumation and erosion of the Mahd group. The occurrence of basement clasts in 

the Amudan conglomerate indicate a partial change in depositional environment from submarine to 

largely subaerial during the 15 million-year hiatus between the underlying Shayban formation and 

Amudan formation. 

Figure 6. Representative stratigraphic columns for the Ghamr group and Amudan 

formation. Ghamr column after [24]; Amudan column after [25,27]. The thickness of 

neither column has been accurately measured. Arrows indicate the results of age dating 

although the exact stratigraphic positions of the dated samples are unknown; they are 

arbitrarily plotted here for descriptive purposes only. 

 

This pre-Ghamr/Amudan period of exhumation, uplift, and erosion overlapped deformation, 

metamorphism, and two periods of syntectonic intrusive activity along the Bi’r Umq suture. The 

syntectonic intrusions consist of tonalitic orthogneiss emplaced about 782 ± 7 Ma and 751 ± 5 Ma  

(U-Pb ion-probe dating) [27]. The gneisses intrude the Samran group with sharp to lit-par-lit 

transitional contacts. The syntectonic character of tonalite emplacement is evidenced by an increase in 

metamorphic grade to amphibolite facies in the Samran group toward the gneisses, the development of 

mylonite, and the presence of syntectonic hornblende aggregates, kinematic markers including 

sigmoidal tails on felsic porphyroclasts and S-C fabrics, and parallelism of foliation in gneiss and 

Samran group rocks.  
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The gneiss is regarded as the most reliable indication of the timing of deformation and amphibolite 

metamorphism along the Bi’r Umq suture, and by implication of the timing of suturing between the 

Jiddah and Hijaz terranes sometime between 780 and 750 Ma [27]. The syntectonic intrusions were 

emplaced during active dextral shear on the suture zone and were deformed while at or very close to 

solidus temperature in a zone affected by high heat flux [27]. The Bi’r Umq ophiolite at the 

northeastern end of the Bi’r Umq suture was probably emplaced during the early part of this suturing 

episode. The ophiolite has a crystallization age of ~838 Ma, but plagiogranite intrusions in peridotite 

yield single-point zircon U-Pb ages between 782 and 764 Ma [32]. Because the plagiogranite intruded 

already serpentinized and carbonated peridotite, it is believed to post date ophiolite obduction [32], 

suggesting that the ophiolite was in place by 780 Ma. 

The placement of the Ghamr-Amudan basins close to and inboard into the Jiddah terrane from the 

Bi’r Umq suture (Figure 5) on what may have been the upper overriding plate of a convergent margin, 

suggests that they are a type of retroforeland basin. We envisage that suturing resulted in exhumation 

and uplift of rocks in the Jiddah terrane in the hanging wall of the suture zone, followed by 

development of a regional erosion surface. Alluvial channels or fault-scarp fronts shed supracrustal 

and plutonic clasts into fault-controlled basins and the concomitant growth of volcanic edifices gave 

rise to lava flows, pyroclastic deposits, and volcaniclastic sediments. Local intra-Ghamr unconformities 

demonstrate basin instability and Ghamr group limestone implies local lacustrine environments or 

ephemeral marine connections. 

5. Hadiyah Group Basins 

The Hadiyah group basins (Figure 7), named after the Hadiyah group [33,34], overlie arc rocks 

assigned to the Al Ays group (735–705 Ma) on the northwestern flank of the Hijaz terrane. The basins 

parallel the ophiolite-decorated Yanbu suture at the northwestern margin of the terrane, some 25–50 km 

inboard of the suture. Convergence and suturing along the Yanbu suture, which joins the Hijaz and 

Midyan terranes and continues into the Nubian Shield as the Sol Hamid-Allaqi suture (Figure 1), was 

completed by about 700 Ma. Ophiolites along the suture, originating about 780 Ma [32], were in place 

by about 705 Ma, a time constrained by a U-Pb conventional zircon age of 706 ± 11 Ma obtained from 

trondhjemite that intrudes already serpentinized and sheared gabbro. The suture is cut by ~695 Ma 

trondhjemite and tonalite of the Jar-Salajah batholith [32]. The Al Ays group is an assemblage of 

volcanic and sedimentary rocks forming a middle Cryogenian arc that extends as much as 250 km 

across strike, east of the Yanbu suture and well east of the area shown in Figure 7. Volcanic rocks 

representing the magmatic axis of the arc are concentrated more than 100 km east of the suture. The 

Hadiyah group basins overlie mostly Al Ays group sedimentary rocks located in part of the arc 

between the arc trench, represented by the suture zone, and the magmatic axis. The sedimentary rocks 

possibly represent a fore-arc accretionary prism.  
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Figure 7. Geologic setting of the Hadiyah group showing its location in three basins 

unconformable on arc rocks of the Hijaz terrane and 25–50 km inboard into the Hijaz 

terrane from the Yanbu suture (after [33,34]). Inset schematically shows the inferred 

tectonic setting of the basin. 

 

The Hadiyah group basins are three elongate structures exposed over a strike distance of about 300 km 

(Figure 7). They are individually about 30 to 125 km long and as much as 50 km wide. The largest As 
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Sard basin is extensively folded as the Yaqni-As Sard synclinorium. The Yanbu an Nakhl basin is a 

small basin to the south. An unnamed basin to the northwest is largely covered by Cenozoic basalt. It 

is reasonable to consider that the basins were originally continuous, forming a relatively narrow 

depositional trough on the northwestern flank of the Hijaz terrane, parallel to the Yanbu suture. 

Northwest-trending sinistral strike-slip Najd faults associated with en-echelon belts of orthogneiss and 

paragneiss are part of a shear system extending across the entire Arabian Shield and into the Nubian 

shield belonging to the largest pre-Mesozoic shear zone on Earth [35]. They deform the Al Ays and 

Hadiyah groups, and offset the Yanbu suture. Folds in the As Sard and Yanbu an Nakhl basins trend 

north-south to northeast-southwest. Farther north, the folds veer to the northwest, a result of rotation 

by sinistral shear along the Najd faults. Folds are mostly upright and open, with wavelengths of several 

kilometers, subhorizontal plunges and moderately to steeply dipping limbs (Figure 8A,C). Axial-planar 

cleavage is well developed and, on steep limbs, is parallel to bedding (Figure 8B). Despite deformation 

however, the Hadiyah group is only slightly metamorphosed and the rocks have assemblages of 

prehnite, chlorite, clinozoisite and epidote [34]. Folds in the Hadiyah group extend into the Al Ays 

group (Figure 7) suggesting that the two groups were folded by the same deformation event. Because 

folds in the Al Ays group are cut by the 695 Ma stitching batholith of the Jar-Salajah complex, it is 

inferred that the Hadiyah group was also deformed prior to 695 Ma.  

Rhyolite from the Siqam formation in the lower part of the Hadiyah group yields an  

ion-probe U-Pb zircon crystallization age of 697 ± 5 Ma [36]. Zircon grains of 872 ± 23 Ma,  

1051 ± 17 Ma, 1089 ± 17 Ma, and 1845 ± 29 Ma indicate inheritance in the rhyolite of material from 

early Cryogenian, Mesoproterozoic, and Paleoproterozoic sources. The underlying Al Ays group has 

U-Pb ion-probe ages of 708 ± 4 Ma, 711 ± 10 Ma, and 736 ± 5 Ma [36,37]. The contact between the 

Hadiyah and Al Ays groups is conventionally described as an unconformity [34] but the nature of the 

unconformity is debated [38]. In any given exposure, the Hadiyah group appears to be structurally 

conformable with the Al Ays group and in places the Hadiyah group also appears to be interlayered 

with the Al Ays group [39]. Nevertheless, some workers argued that the Hadiyah rests on an erosional 

surface that in places truncates as much as 4000 m of Al Ays group rocks [34]. Undoubtedly, the 

contact between the Hadiyah and Al Ays groups represents a significant change in depositional 

environment; we note that the basal contact of the Hadiyah is locally marked by regolith formed by 

weathering of Al Ays group rocks, hence indicating a period of uplift and erosion between depositions 

of the two groups. Overall, the geochronology suggests that the Hadiyah group was deposited 

contemporaneously with or immediately after suturing on the Yanbu suture, and together with the Al 

Ays group, was folded at about 695 Ma. It was evidently deposited close to an active margin during 

convergence between the Hijaz and Midyan terranes and was affected by ongoing deformation and 

intrusion. Similar to the Ghamr group and Amudan formation in the Jiddah terrane, the Hadiyah group 

was likely located on an overriding plate and is probably a type of retroforeland basin.  

The Hadiyah group, divided into three formations, is as much as 7000 m thick (Figure 9). The 

Siqam formation (~2000 m thick), at the base of the group, is mostly volcanic; the upper formations 

are entirely sedimentary. The Siqam formation comprises a bimodal assemblage of locally pillowed 

basaltic to andesitic lava, basaltic and andesitic breccia, and rhyolitic ash-flow tuff. The Tura’ah 

formation (~3400 m thick) comprises two members differentiated by a lithologic and color change  

at ~1800 m. The lower Jammazin member mostly contains thin-bedded light green to dark green 
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sandstone or wacke, interbedded with cross-bedded sandstone and diamictite comprising  

matrix-supported pebble to boulder sized quartz keratophyre clasts. Limestone occurs at or near the 

base in several localities and includes several meters of microbial laminite. The upper Qaraqah 

member is a conspicuous red-bed facies composed of thin-bedded, medium-grained sandstone to 

mudstone. Abundant ripple marks, cross bedding, current scours, and mud cracks indicate a  

shallow-water environment. Polymict conglomerate and conglomeratic sandstone with small,  

well-rounded pebbles are present at the base of the member and as interbeds in the sandstone, siltstone, 

and mudstone higher in the member. 

Figure 8. Features of the Hadiyah group, As Sard basin. (A) General view of steeply 

dipping well-bedded Tura’ah formation sandstone and siltstone; (B) Close up of  

fine-grained sandstone (to left) and siltstone (to right) showing prominent bedding-parallel 

cleavage in the siltstone; (C) Well-bedded sandstone and siltstone in the Qaraqah member 

of the Tura’ah formation, showing its characteristic purple-red color; (D) Aghrad 

formation clast-supported polymict pebble-cobble conglomerate with well-rounded clasts, 

which in this exposure include abundant granite and lesser amounts of feldspar porphyry, 

purple chert, siltstone, and dark green rhyolite. 
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Figure 9. Stratigraphic column of the Hadiyah group. Siqam formation thickness 

estimated; Tura’ah and Aghrad formations measured. Simplified after [34]. Arrow shows 

approximate stratigraphic position of dated sample. 

 

The upper Aghrad formation, estimated at 1000–2000 m thick, begins with 100–150 m of pebble to 

cobble conglomerate with clasts up to 20 cm in diameter. The clasts are well rounded and include 

felsic and basalt to andesite volcanic rocks, granite, feldspar porphyry, chert, and siltstone (Figure 8D). 

Above are 450 m of broadly upward-thinning and fining, red-gray to red shallow-water siliciclastics 

grading from thick beds of sandstone to thin-bedded siltstone and mudstone. The upper part of the 

formation comprises gray to red-gray, poorly bedded, planar cross-bedded sandstone with a few thin 

pebbly to conglomeratic beds and rare carbonate beds. Mineralogically, the Tura’ah and Aghrad 

formation sandstones are similar. They tend to be immature and contain abundant volcanic (rhyolitic, 

granophyric, and lesser basaltic) rock fragments, quartz, feldspar, chlorite, epidote and abundant 
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opaque minerals. The Aghrad formation rocks probably represent an upward continuation of the 

shallow-water environment of the upper part of the Tura’ah formation.  

The Hadiyah group was earlier identified as molasse, peripheral to uprising gneiss domes along the 

Najd faults [40]. However, because Najd faulting in the Arabian-Nubian Shield is <~630 Ma, such a 

genetic relationship is unlikely. Alternatively, the elongate geometry of the Hadiyah basins, their 

parallelism to the Yanbu suture, and their putative retroforeland setting suggest that the Hadiyah group 

was deposited in response to ongoing deformation and uplift along the Yanbu suture. The character of 

volcanic clasts in sandstone and conglomerate and rare granitoid clasts is consistent with sources from 

the underlying Al Ays group and arc-associated intrusions. The putative 4-km depth of erosion into the 

Al Ays group implies considerable exhumation, uplift, and erosion prior to Hadiyah group deposition, 

although this is controversial as noted above. Pillow basalt in the Siqam formation and turbidites in the 

lower member of the Tura’ah formation indicate submerged conditions in the Hadiyah basins during 

its early history, and the bimodality of volcanic rocks in the Siqam formation is consistent with an 

episode of extension inboard of the Yanbu suture. The abrupt change to red-bed facies with mud 

cracks and current scours in the Qaraqah member suggests a rapid shallowing of the basin as 

deposition continued. The thick conglomerate at the base of the Aghrad formation is evidence of an 

abrupt influx of coarse detritus into the basin and may reflect a particular episode of uplift and erosion 

of the basin margins. Carbonate is nowhere significant in the Hadiyah group, and the thin unit of 

microbial carbonate at the base of the Tura’ah formation could be a lake deposit. We note that the 

Hadiyah group was deposited during the Sturtian glacial event (~717–680 Ma) [41,42]. Glaciation 

could have served both as a source of clasts in matrix-supported conglomeratic beds and as a 

mechanism to enhance deep incision into the Al Ays group, although such a scenario is  

currently speculative.  

6. Furayh Group Basin 

The Furayh basin, named after the Furayh group [43], crops out in the west-central part of the 

Arabian Shield where it unconformably overlies the southern Hijaz terrane and oversteps parts of the 

Bi’r Umq and Afif sutures (Figure 5). The basin is mostly north of the Bi’r Umq suture and west of the 

Afif suture, and evidently developed following suturing between the Hijaz and Jiddah terranes and the 

beginning of the docking between the Afif terrane and the Jiddah and Hijaz terranes. A depositional 

contact is reported [43] between the Furayh group and mafic-ultramafic rocks in the Bi’r Umq 

ophiolite along the suture zone, although mylonite at the contact suggests local faulting [44] with 

thrusting of the ophiolite over the Furayh. In the southeast, the Furayh group transgresses the suture 

zone, and rests unconformably on arc rocks in the Jiddah terrane over a short distance south of the 

suture. Along its northeastern margin, the basin oversteps the Afif suture and is in depositional contact 

with the rocks in the Afif terrane. Along its northern and western margins, the basin appears to have an 

unconformable contact with the underlying arc rocks of the Hijaz terrane. However, this contact is not 

well exposed and, east of Al Madinah, the Furayh group appears to be structurally conformable, and 

lithologically gradational, with the underlying Al Ays group [44]. The basin is partly concealed by 

Cenozoic basalt of Harrat Rahat, but assuming continuity of the Furayh group beneath the harrats, has 

an overall size of about 200 km east-west and 150 km north-south. Rhyodacitic tuffs and flows yield 
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Rb-Sr whole-rock isochrons of 633 ± 15 Ma and 663 ± 44 Ma, respectively [45]. These results are 

imprecise but indicate an approximate late Cryogenian age, consistent with the wider geologic 

relationships of the Furayh basin. 

The Furayh group comprises mafic to felsic flows and tuffs, sandstone, siltstone, conglomerate, and 

subordinate carbonate. The rocks are deformed into broadly north-trending folds, displaced by 

northwest-trending faults of the Najd fault system, and metamorphosed to greenschist facies.  

Volcanic rocks dominate west of Harrat Rahat; sedimentary rocks are more abundant in the east. 

Lithologic units thicken and thin across the basin. The stratigraphic columns shown in Figure 10 are 

generalizations based on published descriptions of the group. East of Harrat Rahat, the group is 

divided into three formations. These comprise the mainly sedimentary Naslah and Shaqran formations 

at the base and top, respectively, and the intermediate volcanic Ghuwayt formation. West of Harrat 

Rahat the Naslah and Shaqran formations are absent, and the group is represented by a thick sequence 

of volcanic and subordinate sedimentary rocks of the Ghuwayt formation.  

The Ghuwayt formation west of Harrat Rahat overlies arc rocks of the Birak and Al Ays groups, 

and arc-associated plutonic rocks. The immediate contact is marked by a unit of volcanic-rich 

conglomerate, sandstone, and tuff up to 400 m thick (Figure 10). This is followed by a low-K  

calc-alkaline assemblage of basalt and andesite several thousand meters thick [46]. Amygdaloidal, 

locally pillowed, lavas are prominent and intercalated with lesser amounts of andesitic and basaltic 

volcanic breccia, basaltic lapilli and water-lain tuffs. Rhyolite and rhyodacite flows and tuffs and 

dacitic lapilli tuff dominate the upper part of the formation. Sedimentary units intercalated with 

volcanic rocks west of Harrat Rahat include polymict boulder conglomerate, coarse-grained sandstone, 

arkose, wacke, siltstone, and mudstone. Conglomerate clasts are sub-rounded and poorly sorted. They 

are commonly volcanic, possibly derived in part from volcanic units in the Furayh group itself as well 

as the underlying arc rocks; diorite clasts were sourced most likely from plutonic rocks in the 

basement. Sandstone is green or purple, well bedded, and medium grained with ripple marks and  

well-developed graded bedding. 

East of Harrat Rahat, the Naslah formation contains abundant polymict conglomerate, dark-green 

sandstone and wacke, massive to poorly bedded green and purple shale and siltstone, and minor 

carbonate. Conglomerate is prominent immediately north of the Bi’r Umq suture where the formation 

is about 2000 m thick (Figure 10) and west of the Afif terrane. Conglomerate has cobbles and boulders 

of rhyolite, marble, red jasper, amygdaloidal andesite-basalt, pink granophyre, and rare magnesite. 

Along the northeastern margin of the Furayh basin, in the vicinity of Jabal Abd (Figure 5), the Naslah 

formation oversteps the Afif suture and unconformably overlies volcanic and intrusive arc-related 

rocks of the Afif terrane, along with ultramafic rocks entrained along the Afif suture. Here the basal 

conglomerate contains cobbles and boulders as much as 80 cm in size of greenstone,  

talc-chlorite-actinolite rocks, red rhyolite, ignimbrite, fine- to coarse-grained granite with biotite 

and(or) amphibole, diabase, siltstone, meta (biotite-bearing) rhyolite, and white quartz. Carbonate units 

in the Naslah formation crop out over a strike distance of 7 km.  They comprise beds of gray to light 

pink dolomitic marble with lenses of white magnesite and beds of carbonate conglomerate composed 

of angular to rounded cobbles of gray and red marble and magnesite. Similar rocks crop out at Jabal 

Rukham (Figure 5) in the tongue of Furayh group in the southeastern part of the Furayh basin, where 

the Furayh group oversteps the Bi’r Umq suture and rests on Mahd group arc rocks of the Jiddah 
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terrane. The Ghuwayt formation east of Harrat Rahat is 2000 m thick, thinner than west of the harrat, 

but as in the west, it contains locally pillowed basaltic and andesitic flows, tuffs, and breccia, 

interbedded with subordinate green to purple shale, siltstone, and sandstone. The upper Shaqran 

formation contains green to purple ripple-marked lithic sandstone and wacke, polymict conglomerate, 

shale, siltstone, carbonate, and rhyolite. The Shaqran formation carbonate consists of gray 

calcdolomitic marble with domal and tabular stromatolite bioherms in beds 10–20 m thick. 

Conglomerate has cobbles and pebbles of purple porphyry, pink granophyre, green siltstone, red, 

beige, and black chert, porphyritic andesite, rhyolite, and white quartz. 

The Furayh basin west of Harrat Rahat is interpreted as a high-energy, shallow-water to subaerial 

environment characterized by rapid emergence and erosion of an active volcanic domain resulting in 

deposition of poorly sorted, immature material in proximal basins [45]. Ripple marks, microslumping, 

and cross-bedding are evidence of shallow-water deposition. Mud-cracks, mud-chip intraformational 

conglomerate, and local unconformities indicate periodic emergence. Color variations from green to 

purple are consistent with alternating submerged and emerged conditions. 

East of Harrat Rahat, the abundance and thickness of conglomerate along the southern and 

northeastern margins of the basin adjacent to the Bi’r Umq and Afif suture zones suggests proximity to 

elevated source regions. Depositional contacts between the Furayh group and Bi’r Umq ophiolite and 

Mahd group bear witness to exhumation and erosion of the arc rocks of the Jiddah terrane and the Bi’r 

Umq suture between the Jiddah and Hijaz terranes prior to and during Furayh deposition. Depositional 

contacts between the Furayh group and arc and ultramafic rocks in the Afif terrane and the increase in 

conglomerate toward the Afif suture suggest that the Hijaz terrane was in place adjacent to the Afif 

terrane at the time of Furayh deposition and that the Afif terrane had undergone exhumation, uplift, 

and erosion. The Jiddah and Hijaz terranes were in contact by 750 Ma; the Afif terrane amalgamated 

with the Jiddah and Hijaz terranes during the Nabitah orogeny or mobile belt (680–640 Ma) [47], an 

episode of deformation and syntectonic intrusion widely recognized in a north–south zone the central 

Arabian Shield (Figure 1). As described above, the early Cryogenian Ghamr and Amudan basins 

reflect volcanism and sedimentation coincident with development of the Bi’r Umq suture zone; the 

Furayh group reflects volcanism and sedimentation some 100 million years later in an actively 

evolving depocenter at the triple junction between the Jiddah, Hijaz, and Afif terranes. The type of 

basin represented by the Furayh group is uncertain. Perhaps it reflects tectonic loading at the  

Jiddah-Hijaz-Afif triple junction associated with some extension in the west accounting for the 

bimodal character of the volcanic Ghuwayt formation.  
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Figure 10. Representative stratigraphic columns for the Furayh group in the Furayh basin. 

Column west of Harrat Rahat after [45]; column east of Harrat Rahat after [43]. Arrows 

show approximate stratigraphic positions of dated samples. 
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7. Murdama Basin 

The Murdama basin, the largest volcanosedimentary basin in the ANS, is filled by a thick 

succession of late Cryogenian–early Ediacaran sedimentary and volcanic rocks deposited 

unconformably on middle Cryogenian arc rocks of the Afif composite terrane (Figure 11). It is 

exposed over an area about 570 km NW-SE and 120 km wide SW-NE and is shown by aeromagnetic 

data to extend a further 200 km southeast beneath Phanerozoic sediments beyond the edge of the 

exposed Arabian Shield [48]. The Afif terrane is a collage of pre-Murdama Cryogenian arcs and a 

fragment of Paleoproterozoic crust (the Khida terrane) that was assembled by or soon after 685 Ma. 

The basin overlies the inferred joins within the terrane between rocks of the Nuqrah arc (~840 Ma), the 

Siham arc (750–685 Ma) and the Suwaj arc (695–685 Ma) (Figure 12) and is the type  

“post-amalgamation basin” in the Arabian Shield. Assembly of the Afif terrane was concurrent with 

suturing of the Afif terrane with other terranes to the west (Afif suture) during the Nabitah orogeny 

(680–640 Ma). The Afif terrane is bounded to the east by the Ad Dawadimi terrane, with the two 

separated by the Halaban suture and the eponymous 695–675 Ma Halaban ophiolite. As evidenced by 

deepwater sedimentation in the Ad Dawadimi terrane until after ~620 Ma, and metamorphism and 

deformation of some of the sedimentary rocks at ~620 Ma, the margin was active into the  

Ediacaran [7]. Soon after its assembly, the Afif terrane was exhumed, uplifted, and eroded, allowing 

development of the regional unconformity beneath the Murdama basin. The terranes together with the 

Murdama basin were stitched by granites between about 650 and 565 Ma, and the entire region was 

subsequently affected by transcurrent strike-slip faults of the Najd fault system (~630–530 Ma), which 

disrupted the terranes and reworked some of the suture zones (see [11] for further details of tectonic 

events in the ANS in this time period). 

The Murdama basin is named after the Murdama group, a thick succession of sandstone, siltstone, 

conglomerate, subordinate carbonate, and minor volcanic rocks. The basin rocks also include the 

volcanic Afif formation, conformably beneath the Murdama group on the west, and the volcanic 

Hibshi formation, separating the Murdama group from the Ha’il terrane on the north (Figure 11). 

Superposition of younger volcanic rocks (the Jurdhawiyah group; 612 ± 12 Ma; [36]), intrusions of 

granite, and disruption by faulting interrupt continuity of exposure and divide the Murdama basin into 

the Maraghan and Maslum sub-basins (Figure 11). Volcanic and sedimentary rocks lithologically 

similar to and broadly coeval with the Murdama group crop out west and south of the Murdama basin, 

where they are known as the Bani Ghayy group [49]. Some authors (e.g., [50]) regard the Murdama 

and Bani Ghayy groups as the same lithostratigraphic unit, merely deposited in different environments: 

a large basin in the case of the Murdama group and in narrow fault-controlled basins in the case of the 

Bani Ghayy.  

The thickness of the Murdama group is not known, but individual measured sections are as much as 

8000–10,000 m thick [50,51]. The group is moderately to strongly folded [9], and along its southern 

margin, in the vicinity of the Ar Rika fault, has been affected by brittle-ductile shearing and 

amphibolite-grade metamorphism with the result that conglomerate clasts have been stretched from 

their original equant shape into prolate spheroids up to 2 m long and 40 cm wide [52]. The long axes 

of the stretched clasts align with mineral lineations and mesoscale fold axes along the shear zone. Most 

rocks in the Murdama basin are otherwise only weakly metamorphosed in the greenschist facies. 
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Figure 11. Simplified map of post-amalgamation basins in the northeastern Arabian  

Shield (after [9]). The largest basin, filled by the Murdama group, is located toward the 

eastern margin of the Afif composite terrane overlying the Khida subterrane, and Nuqrah, 

Siham, and Suwaj arcs. The Jurdhawiyah group occupies basins unconformable on the 

Murdama group. 
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Figure 12. Schematic diagram showing the post-amalgamation setting of the Murdama 

basin composed of the Murdama group and volcanic units (Afif formation, Hibshi 

formation) unconformably overlying the Afif composite terrane. Following Murdama 

deposition, the Murdama basin was unconformably overlain by the Jurdhawiyah group  

and the entire region was intruded by 650–565 Ma stitching granites and disrupted by  

Najd faulting. 

 

Rhyolitic crystal tuff of the Afif formation yields U-Pb SIMS zircon ages of 649 ± 6 and  

639 ± 4 Ma [53], and rhyolitic tuff in the Murdama group yields U-Pb SIMS zircon ages of  

630 ± 5 Ma, 629 ± 7 Ma, and 624 ± 6 Ma [53]. The Hibshi formation has a conventional U-Pb zircon 

concordia age of 632 ± 5 Ma [54]. It is evident from these dates that Murdama basin deposition 

occurred during and immediately after the Nabitah orogeny (680–640 Ma) and during docking 

between the Afif and Ad Dawadimi terranes. Murdama basin deposition also spanned the Marinoan 

glaciation (~645–635 Ma), although neither glacial deposits nor cap carbonates have been reported.  

The basement west of the Murdama basin comprises greenschist- and amphibolite-grade 

metavolcanic, metasedimentary, and plutonic rocks belonging variously to the Khida terrane and 

Nuqrah and Siham arcs (Figure 12). The rocks include amphibole gneiss, leucocratic gneiss,  

chlorite-sericite-biotite schist and calc-silicate (diopside, scapolite, and andradite garnet) schist and 

gneiss [55]. The metamorphic grade of these rocks implies a significant amount of exhumation and 

erosion prior to Murdama basin deposition. The youngest basement rocks belong to the Siham arc 

(750–685 Ma) [3]. Along its northeastern margin, the Murdama basin overlies plutonic and volcanic 
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rocks of the Suwaj arc (~695–685 Ma) [3]. These rocks are metamorphosed in the greenschist and 

amphibolite facies, and are commonly cataclasized, foliated, and schistose [51,56]. The Suwaj arc is 

mainly represented by exposures of gabbro, diorite, quartz diorite, trondhjemite, granodiorite, and 

biotite-amphibolite granite, a predominance of rock types that denotes exposure of the magmatic core 

of the arc and implies major exhumation and erosion of the basement prior to Murdama deposition. 

Remnant metamorphic supracrustal layered rocks of the Suwaj arc include meta-andesite, meta-dacite, 

and metasedimentary schists containing mixtures of chlorite, sericite, muscovite, biotite, hornblende, 

epidote, diopside, minor scapolite, and locally wollastonite and tourmaline. They also include mica-rich 

and quartzofeldspathic schist, rare calcareous beds, amphibolite, and fine- to medium-grained, banded, 

and equigranular mafic granulite. The mafic granulite crops out as roof pendants in post-Murdama 

granite intrusions. It has a bulk composition of basalt and mafic calcareous rocks and contains 

assemblages of andesine-diopside-sphene-calcite ± quartz ± scapolite ± garnet or diopside ± 

vesuvianite ± quartz ± sphene ± scapolite and reportedly has textures typical of granulite-grade 

metamorphism [56]. If the mafic granulite xenoliths derive from protoliths that were metamorphosed 

prior to Murdama deposition, their presence may indicate exhumation of basement rocks from 

considerable depth prior to deposition. However, because the mafic granulite only occurs as roof 

pendants in post-Murdama granite, correlation with the pre-Murdama basement is not fully established 

and the high-grade metamorphism and texture could be the result of metamorphism during 

emplacement of the host batholith [56]. In such a case, the high-grade metamorphism would have no 

bearing on the amount of exhumation that may be inferred for the pre-Murdama basement, although 

significant erosion is implied by the limited extent of layered supracrustal rocks belonging to the arc. 

The Afif formation consists of rhyolite, andesite, local marble, chert, and conglomerate, overlain by 

interbedded rhyolite, rhyolite breccia, ignimbrite, dacite, andesite, basalt, and volcaniclastic 

sedimentary rocks. The rocks have a fairly mature calc-alkalic and high-K calc-alkalic geochemical 

signature similar to present-day volcanic-arc sequences [57]. Their bimodal character is noteworthy 

and may be evidence for extension and rifting during the initiation of the Murdama basin. The Afif 

formation and Murdama group are structurally concordant, with similar inclination of dips and 

orientation of strikes. In some locations the contact between the two is transitional, with intercalations 

over a few hundred meters between Afif formation volcanic rocks and Murdama group conglomerate 

and sandstone [58]. However, the marked change at the contact between the two, from a volcanic 

environment for the Afif formation to a conglomerate-sandstone sedimentary environment for the 

Murdama group, the presence of volcanic clasts derived from the Afif formation in basal Murdama 

conglomerate, and along-strike variability in lithologies of the Afif formation beneath the Murdama 

group imply a diastrophic contact between the Afif and Murdama. These features suggest erosion of 

the Afif formation prior to Murdama group deposition, possibly followed by uplift of the wider basin 

margins leading to an influx of coarse epiclastic sediment. 

The volcanic rocks of the Hibshi formation are also bimodal in character. They crop out in a  

fault-bounded northeast-trending syncline 2–30 km wide and more than 100 km long and constitute a 

succession more than 5000 m thick [59]. A felsic volcanic center in the central part of the Hibshi 

formation is marked by basal polymict conglomerate as much as 100 m thick in local channels, fine- to 

medium-grained, poorly to moderately sorted arkose, lithic (volcanic) wacke, maroon to green 

siltstone, dacitic and rhyolitic welded and ash-fall tuffs, and dacite and andesite flow rocks and 
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breccia. The conglomerate is crudely bedded and composed of locally derived clasts of diorite, 

andesite, dacite, as well as Murdama sandstone. A second center to the northeast consists of rhyolite 

flows and tuffs and massive basalt flows. 

The Murdama group, the main fill of the Murdama basin, is a succession of sandstone, subsidiary 

conglomerate and limestone, and minor volcanic rocks. Representative stratigraphic columns of the 

lower 5000 m of the group are shown in Figure 13. Where predominantly composed of sand-sized and 

coarser fragments, the rocks are referred to as the Zaydi formation. Sections with significant carbonate 

are referred to as the Farida formation (see below). Conglomerate is abundant, occurring at the base 

and interbedded with sandstone higher in the section. The conglomerate forms units up to 400 m thick 

but these thicken and thin along strike. The conglomerate is polymict, poorly sorted, and composed of 

clast-supported well-rounded pebbles, cobbles, and boulders up to 50 cm in diameter (Figure 14A,B).  

Clast lithologies include felsic and mafic lavas, tuff, aplite, siltstone, sandstone, and chert, rhyolitic 

ignimbrite, rhyolitic lapilli tuff, and andesite derived from the underlying Afif formation or volcanic 

units elsewhere in the basement. Basement-derived plutonic and metamorphic clasts include quartz 

microgranite, granodiorite, hornblende and biotite granite, diorite, metavolcanic rocks, and mica schist. 

The conglomerate is massive, resembling debris mass flow, or moderately well bedded, denoting 

transportation and deposition by water (Figure 14A). Bedding is accentuated by thin interbeds of 

cross-bedded sandstone, siltstone, and black marble. 

The amount of sandstone in the Zaydi formation increases upsection and above 1500 m is the 

dominant lithology. The sandstone is remarkably monotonous: a sequence of well-bedded lithic 

(volcanic) arenite and wacke that does not discernibly change in character over 100 s of kilometers 

along and across strike. It is typically fine to medium grained, locally coarse grained, and contains 

subangular fragments of mafic and felsic volcanic rocks, quartz, feldspar, volcanic rocks, and 

microgranular quartz-feldspar aggregates. The matrix contains chlorite, muscovite, epidote, and 

carbonate. On a QFL diagram, the sandstone plots in the fields of undissected, transitional, and 

dissected arcs (Figure 15) consistent with the lithology of the sub-Murdama basement. Individual 

sandstone beds are decimeters to meters thick and may persist on strike for kilometers. Some are 

massive, others are laminated, and many are cross-bedded and channelized (Figure 14C,D). In places, 

the rocks form upward-fining cycles of sandstone, siltstone, and shale less than 1 to several meters 

thick. Interlayers of siltstone are common (Figure 14E), and in many localities the siltstone is disrupted 

and redeposited as rip-up conglomerate (Figure 16). Clasts in the rip-up conglomerate are commonly 

imbricated and together with cross bedding present an opportunity to analyze current directions in the 

Murdama basin. Other primary sedimentary structures include planar cross bedding, ripple cross 

lamination, planar lamination, grading, scour-and-fill features, and mud cracks on desiccation surfaces.  
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Figure 13. Stratigraphic columns of two sections in the lower part of the Murdama group, 

simplified after [50]. See Figure 11 for locations of sections. 
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Figure 14. Sedimentary features of the Zaydi formation, Murdama group close to the base 

of the group at the northern margin of the Maslum basin at Umrah. (A) Cobble to boulder, 

clast-supported polymict conglomerate in beds 1–1.5 m thick; (B) Close-up of 

conglomerate outlined by the box in A, showing the well rounded character of the clasts; 

(C) Planar, tabular set of curved foreset cross beds, ~10 cm thick, interbedded with 

medium-bedded sandstone below and thin-bedded sandstone above. The cross-bed set is 

immediately underlain by a bed of fine-grained sandstone to siltstone; (D) Slightly 

channeled sets of cross beds in medium-grained sandstone; (E) Thin bed (~5 cm thick) of 

siltstone interbedded with pebble conglomerate. This type of siltstone is the source  

for intraformational clasts observed in rip-up conglomerate in the Zaydi formation  

(see Figure 16). 
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Figure 15. Quartz-feldspar-lithics diagram showing the provenance and plate tectonic 

setting for sandstone in the Murdama group. Sandstone data (dark gray field) after [50]; 

provenance fields after [60,61].  

 

Figure 16. Examples of intraformational conglomerate, Zaydi formation. (A) Three beds 

of upward-fining conglomerate to sandstone; (B) Bed of conglomerate interbedded with 

laminated sandstone. In both examples, the conglomerate comprises rip-up clasts of 

siltstone. The clasts are conspicuously imbricated, denoting deposition in a high-energy 

aqueous environment and indicative of current direction (to the left, in these examples; to 

the east, in the field). Hand lens for scale-2.5 cm diameter. 

 

In parts of the Murdama basin, sandstone has a variable amount of carbonate cement and grades 

into beds and lenses of carbonate several tens of meters to 300 m thick (Figure 17). Where the 

carbonate rocks are particularly thick and persistent, they are referred to as the Farida formation. The 

formation characterizes the eastern flank of the Maslum sub-basin. At Jabal Farida, the formation is 

about 700 m thick (Figure 13), overlying a 200–300 m thick unit of breccia, conglomerate, and 

sandstone. The Farida formation typically consists of a few meters of black marble, followed upward 
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by thick beds of well-bedded gray, beige weathering carbonate of probable dolomitic composition with 

lenticular intercalations of black, carbonaceous marble. In some locations these two carbonate facies 

are thinly interlayered, resembling varves. Locally, the Farida formation contains columnar 

stromatolites, and in places the stromatolites contain fresh volcanic fragments, feldspar laths, and 

shards indicating contemporary volcanism and carbonate sedimentation [56]. The Farida formation 

also contains pisolites, breccia with angular beige dolomite blocks up to 80 cm across within a black 

marble matrix, and intercalations of arenitic to conglomeratic marble with well-rounded cobbles of 

rhyolite, granite, aplite, and marble in a carbonate or locally pelitic cement. 

Figure 17. Farida formation, Murdama group, Jabal Farida. View of well-bedded 

dolomitic limestone in the lower part of the carbonate succession at the eastern margin of 

the Murdama group in the Maslum basin. Geologists from the Saudi Geological Survey, 

the Polish Geological Survey, and Adelaide University for scale. 

 

Important depositional features of the Murdama group are (1) its size, making it comparable to 

orogenic depositional basins elsewhere such as the Mesozoic Pannonian basin in the northern 

Carpathian foreland and the Himalayan collisional successor basins in northwestern China;  

(2) deposition above a regional unconformity that developed during or soon after the Nabitah orogeny 

(680–640 Ma); (3) a remarkable uniformity of sandstone facies, and well developed and persistent 

bedding suggesting relative structural stability within the basin; (4) the presence of polymict 

conglomerate of local derivation at the base and to lesser extent higher in the section of the Murdama 

group; (5) the presence of great thicknesses of locally stromatolitic carbonate; (6) a pervasive 

distribution of sedimentary structures indicative of shallow water to subaerial environments; and  
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(7) the presence of bimodal volcanic rocks at the base of the basin in the west (Afif formation) and in 

the north (Hibshi formation), and andesitic and rhyolitic lavas and tuffs interbeds elsewhere.  

Overall, the basin passes from a volcanic-plutonic domain in the west to a marine and shallow-marine 

basin in the east [62]. Because of the predominance of planar-bedded, poorly sorted sandstone,  

it is proposed [50] that the Murdama group was deposited in an alluvial to deltaic environment. The 

thick, locally stromatolitic Farida carbonate suggests a dominantly marine setting in the eastern 

Maslum sub-basin, whereas lagoonal, lacustrine, or shallow-marine conditions are inferred for the 

Maraghan sub-basin on the basis of sandstone, siltstone, and shale that are interpreted as deposits in 

near-shore mud-flat and broad-channel environments with carbonate mud and microbial buildups [63].  

No modern basin analysis has been done of the Murdama basin. It has been referred to as a foreland 

basin [40]. It is located between two active margins—the Afif suture on the west and the Halaban 

suture on the east—and may be a type of flexural basin developed in response to tectonic loading of 

new amalgamated crust by obduction of the Halaban ophiolite along the Halaban suture. Alternatively, 

the basin may reflect subsidence induced by mantle-lithospheric thickening caused by cooling 

following orogeny or asthenospheric flow reflecting delamination of subducted lithosphere during and 

soon after the Nabitah orogeny (680–640 Ma) [47]. Bimodal volcanism in the Afif and Hibshi 

formations additionally suggests an element of crustal extension. The Murdama basin overlies a late 

Cryogenian unconformity of regional extent that developed on the newly assembled Afif terrane. 

Exposure of mafic granulite, if the granulite truly reflects Nabitah orogeny metamorphism, and the 

large extent of plutonic rock in the basement beneath the unconformity implies as much as 15–20 km 

exhumation and contemporary erosion of parts of the Afif terrane prior to Murdama deposition. The 

pervasive presence of primary sedimentary structures indicative of a shallow-water environment, along 

and across strike and up through the stratigraphic column, implies that the rates of subsidence and 

infill were largely balanced over much of the extent of the basin. Conglomerate in the Murdama group 

is evidence of sufficient relief of the basin margins to generate cobbles and boulders, perhaps deposited 

in fan deltas and channels [56]. Yet the sedimentary character of Murdama sandstone and the presence 

of stromatolitic carbonate in the east is evidence that during the late Cryogenian-Early Ediacaran a vast 

area in the ANS between the Nabitah mobile belt and the Halaban suture subsided below base level. 

The thickness of sediment in the Murdama group implies that erosion of the basin margins was intense 

but the marine carbonates indicate that despite mountain building during Nabitah orogenesis, the basin 

was at least intermittently connected to an ocean within a relatively short period after orogeny.  

8. Ediacaran Basins 

Ediacaran post-amalgamation basins are widespread in the ANS (Figure 18) deposited atop regional 

and local unconformities developed on arc assemblages in the basement. The basins are filled by 

volcanic and sedimentary rocks of the Dokhan Volcanics, Hammamat Group, Thalbah group, and Elat 

and Saramuj Conglomerates in the northwest. Somewhat younger rocks of the Jibalah group were 

deposited close to or immediately along strike-slip faults of the Najd system in the north and northeast, 

and other Ediacaran sedimentary and volcanic successions fill small basins along north-south shear 

zones in the southern ANS associated with orogen-normal shortening and suturing. The basins are the 

result of sedimentation and volcanism in a range of structural and depositional environments that 
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developed during the final stages of assembly of the ANS, its accretion to the Saharan Metacraton, 

closure of the Mozambique Ocean, and assembly of eastern and western Gondwana.  

Figure 18. Ediacaran sedimentary and volcanic basins in the Arabian-Nubian Shield, 

showing their common juxtaposition to shear zones, gneiss belts, and core complexes 

(gneiss domes) (after [11]).  

  
Notes: Identified successions and basins: Al—Ablah; Am—Amaki; An—Antaq; E—Elat Conglomerate; 

Ee—Esh El Mellaha; Em—El Miyah; Dk—Gebel Dokhan; Dq—Dhaiqa; Fa—Fatima; Fh—Fatirah area; 

Ha—Wadi Hammamat; Hm—Hamir; Hn—Hadn; Ig—Wadi Igla; J—unnamed Jibalah group basins;  

Jb—Jibalah; Jf—Jifn; Jn—Junaynah; Ju—Jurdahiway; Ka—Wadi Kareim; QN—Wadi Quieh, Nuqara, and 

Wassif; Rb—Rubtayn; S—Saramuj Conglomerate; Th—Thalbah; Ur-Sd—Gebel Urf-Wadi Um Sidra;  

Z—Zeidun. Saramuj Conglomerate is also identified in deep boreholes beneath the Golan Heights, north of 

the northern margin of this figure. 

On the basis of their lithology and depositional character, the basins are divisible into terrestrial and 

mixed terrestrial to shallow-marine basins (Figure 18). Terrestrial assemblages include the Dokhan 
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Volcanics and sedimentary rocks of the Hammamat and Thalbah groups (Figure 19). The Ediacaran 

Elat Conglomerate (~580 Ma) [64] and coeval Saramuj Conglomerate crop out in southern Israel and 

Jordan and the Saramuj is geophysically inferred to be present over a thickness of ~1000 m at depth 

beneath the Golan Heights [65]. Other terrestrial Ediacaran basins include volcanic and sedimentary 

rocks of the Shammar group in the northeast and the small Amaki and Junaynah basins adjacent to the 

Nile in the southwest and N-trending shears in the southeast. Sedimentary and volcanic rocks of the 

Jibalah, Fatima, and Ablah groups occupy mixed terrestrial and shallow-marine basins along  

NW-trending Najd faults in the north-central Arabian Shield, along a NE-trending shear zone 

immediately east of Jiddah, and along the north-south axis of the zone of weakness at the contact 

between the Al Lith-Bidah belt and Shwas-Tayyah belt in the south (Figures 3 and 18).  

Figure 19. Representative stratigraphic columns for terrestrial Ediacaran successions in the 

Arabian-Nubian Shield. Zeidun basin after [66]; Gebel Urf succession after [67]; Thalbah 

group after [68]. See Figures 1 and 18 for locations of these basins. Arrows indicate 

approximate stratigraphic positions of dated samples discussed in the text. 
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8.1. Terrestrial Basins 

The Dokhan Volcanics and Hammamat Group are the names given to Ediacaran volcanic and 

sedimentary rocks in terrestrial basins in the Nubian Shield. They unconformably overlie eroded, 

accreted Cryogenian volcanic and plutonic arc rocks of the ANS north of the Yanbu-Sol Hamed-Allaqi 

suture (Figure 1). Dominantly volcanic sequences are assigned to the Dokhan Volcanics and 

sedimentary successions are assigned to the Hammamat Group, but there is no consensus about the 

origins or stratigraphic relationships of the rocks. In some basins, the Hammamat Group underlies the 

Dokhan Volcanics; in others the Hammamat overlies the Dokhan; and in places the two interfinger. 

Whole-rock Rb-Sr ages [69], conventional TIMS zircon U-Pb ages [70], and SIMS zircon U-Pb 

ages [67,71] indicate that the Dokhan volcanics range in age from 630 to 592 Ma and may have been 

erupted in two pulses at 630–623 Ma and 618–592 Ma. Detrital zircons yield a U-Pb SHRIMP 

maximum depositional age of about 585 Ma for the base of the Hammamat succession in the Gebel 

Um Tawat area, northern Eastern Desert, Egypt, [72], although it is inferred that the group in general 

was deposited between about 615 to 585 Ma [66,72,73]. Both Hammamat and Dokhan units were 

affected by rapid hinterland uplift at about 595–588 Ma [74,75]. Equivalent rocks in the Arabian 

Shield include the Jurdhawiyah (~612–595 Ma) and Thalbah (620–595 Ma) groups. All these groups 

were deposited in the period between the Marinoan (~635 Ma) and Gaskiers (~582 Ma) glaciations; as 

such, glaciogenic diamictite and wacke are not expected in these basins.  

The Hammamat Group is commonly referred to as molasse [66,72], and was deposited in fluvial 

systems of continental proportions [72] or in isolated basins [76,77]. The Hammamat basins are 

variously classified as foreland basins, in the case of the type Hammamat basin [74], intramontane 

basins in the cases of the Kareim, Quieh, and Igla basins [78], a strike-slip pull-apart basin, in the case 

of the El Mayah basin [79], and fault-bounded basins [66,77]. The range of inferred structural controls 

include thrusting, normal faulting, strike-slip faulting, N–S to NW–SE extension, and magmatic 

doming. In the type Hammamat basin, the Hammamat Group was deformed, metamorphosed, and 

thrust over younger Dokhan Volcanics, perhaps as a result of deposition in a piggy-back basin in front 

of a SW-propagating thrust front [80], and was intruded, after folding, by the 596 Ma Um Had  

granite [80], indicating a minimum deposition age of the Hammamat group in this basin of 596 Ma. 

Initial subsidence of the Hammamat Group in the Kareim basin was associated with the formation of 

strike-slip faults around the Sibai gneiss dome as this was beginning to be emplaced and exhumed 

(~650 Ma) [81] and terminal fanglomerate deposition was associated with the intrusion of young granite at 

about 580 Ma [82]. The El Mayah basin [79] was initiated as a half-graben and later evolved into a  

pull-apart basin at a prominent bend in a sinistral shear system of the Najd fault. The Zeidun basin [66] was 

initiated by subsidence controlled by marginal normal faults during an episode of N-S regional extension in 

the northwestern ANS. Basin subsidence and sediment delivery rates were linked with exhumation of 

adjacent core complexes. The basin was subsequently deformed and inverted by folding, E- to  

ENE-trending steep reverse faulting, and NE- and NW-trending conjugate strike-slip faulting. 

The Hammamat succession in the Zeidun basin is as much as ~4000 m thick [66] (Figure 19). The 

section begins with reddish to purple cobble and boulder clast-supported conglomerate containing 

volcanic, metavolcanic, and granitic clasts. The conglomerate contains thin, gray, cross-bedded and 

graded sandstone interbeds, and is overlain by tuffs. The middle part of the section is dominated by 
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sandy beds with dispersed pebbles that grade up into cm-thick red mudstone. The mudstone is locally 

disrupted and forms rip-up conglomerate. Interbedded conglomerate and sandstone follows upward, 

overlain by more pebbly sandstone and conglomerate. The sedimentary rocks in the Zeidun basin  

are interpreted as molasse deposited in alluvial fan and(or) braided stream environments. Locally  

cross-bedded sands with pebble horizons possibly represent braided stream reworking of debris flows. 

Sandstone may result from sheet flood transport of sediment, and red mudstone could be mudflows or 

lacustrine deposits [66].  

The Gebel El Urf basin is an example of a basin containing both Hammamat Group and Dokhan 

Volcanics. The basin is elongate and folded into an ENE-trending syncline. Hammamat-type 

sedimentary rocks, about 1000 m thick, occur in its lower part (Figure 19) [83]; Dokhan Volcanic-type 

rocks, also about 1000 m thick, are above. The Hammamat sequence includes a clast-supported and 

generally unstratified conglomerate at the base, containing cobbles and boulders 10–30 cm and rarely 

1 m in diameter of granitoids, volcanic rocks, and metapelite derived from the underlying arc rocks. 

The conglomerate is overlain by laminated siltstone with intercalations of fine-grained sandstone and 

some calcareous concretions. The siltstone shows desiccation cracks and some rip-up clasts. Sandstone 

is fine to coarse grained and forms laterally continuous beds and lenses. It is generally massive, but 

locally is laminated and upward fining with cross-bedding and mudstone layers, flame structure and 

rip-up clasts. The Dokhan Volcanics include dacitic and rhyolitic welded and non-welded ignimbrite 

containing crystals and crystal fragments of K-feldspar, plagioclase, quartz, biotite, pumice and glass 

shards, and lithic fragments of metavolcanics, granite, and preexisting ignimbrite. 

The origin of Dokhan Volcanics basins is debated. The bimodal character of the unit has been used 

as evidence for a continental rift environment [84,85]. An alternative proposal is that volcanism was 

related to the subduction of a hot oceanic ridge before collision and later melting of a hot oceanic  

slab [86]. In the Gebel Urf basin, the Dokhan Volcanics are modeled as felsic volcanic centers that 

developed in a structurally controlled intramontane basin with the Hammamat facies representing 

alluvial fans, fluvial braided rivers, and lakes [83]. Deposition in the Gebel Urf basin began with 

alluvial-fan and mass-flow conglomerates and sandstone eroded from flanking mountains, followed by 

development of sandy braided river systems. This was followed by the development of a deep lake, 

perhaps as a result of continued normal faulting. High-energy arenaceous and rudaceous sedimentation 

in the middle of the stratigraphic section marked shrinkage of the lake, concurrent with the onset of 

silica-rich and silica-poor volcanic centers leading to the formation of volcanogenic mass-flow 

deposits, hyaloclastic deposits, and lavas. The terminal history of the basin included at least two large 

ignimbrite-forming caldera eruptions. 

The Thalbah group [68] resembles the Hammamat group. It crops out in a basin measuring about 

100 km NW–SE and 40 km SW–NE unconformably overlying arc rocks of the Midyan terrane in the 

western Arabian Shield. The group is between 3000 and 4000 m thick, and divided into three 

overstepping formations (Hashim, Ridam, Zhulfar) separated by internal unconformities (Figure 19). 

The age of the group is constrained by the arc-related Imdan complex below, dated by U-Pb TIMS at 

660 ± 4 Ma [87], and intrusions of diorite and microgranite of the Liban complex, dated at 634 ± 5 by 

U-Pb SHRIMP [50] and at 621 ± 7 Ma by U-Pb TIMS [87]. An andesite dike intruding the lower 

Thalbah (Hashim formation) yields a broadly consistent U-Pb zircon SHRIMP age of ~618 Ma [88]. A 

recent program of detrital zircon dating indicates a sedimentation age consistent with these earlier 
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results [89], and the data overall suggest that the Thalbah group is ~620 to ~595 Ma, coeval with the 

Hammamat Group. Given the close lithologic similarity of the two groups, it seems likely that they are 

counterparts that now crop out on opposite sides of the Red Sea. 

The Thalbah group is moderately folded with beds dipping <10° and 70° and well-developed 

cleavage. The rocks are barely metamorphosed except in the northeast adjacent to the Qazaz shear 

zone (Figure 18), where conglomerate clasts are stretched and the rocks are metamorphosed to 

paragneiss. Foliation and mineral/stretching lineations in the Thalbah are coaxial with foliations and 

lineations in orthogneiss and schist in the shear zone. 

The basal Hashim formation begins with massive to weakly bedded clast-supported polymict 

conglomerate; clasts comprise pebbles and cobbles (5–10 cm) of sandstone, andesite, rhyolite, quartz 

diorite, and granodiorite. The overlying beds include well-bedded brown and purple litharenite, 

subordinate siltstone, and intraformational conglomerate. The Ridam formation includes poorly sorted, 

crudely bedded, pebble-to-boulder polymict conglomerate intercalated with pebbly sandstone and 

shale. Conglomerate clasts are mostly granite, granodiorite, and diorite; lesser lithologies are rhyolite 

porphyry, andesite, sandstone, and quartz. The matrix includes feldspar and quartz crystals and grains 

of volcaniclastic rock. Contemporaneous volcanic rocks are not known in the Thalbah basin and the 

volcanic material possibly derives from what, prior to Red Sea opening, would have been nearby 

Dokhan Volcanic centers. The topmost Zhulfar formation consists of well-bedded litharenite, pebble 

conglomerate, and abundant siltstone. 

The geochronological data indicate that the Thalbah group was deposited after amalgamation of the 

Midyan and Hijaz terranes (~700 Ma) and contemporary with active shearing and gneiss formation on 

the Qazaz shear zone (635–573 Ma). Its lithology suggests rapid deposition of rudaceous and arenaceous 

sediments close to an emerging and strongly eroded mountainous hinterland interrupted by quieter intervals 

of fine-grained sedimentation. The pervasive red coloration and sedimentary structures such as rain 

prints and mud cracks indicate shallow water to subaerial deposition. Conglomerate units are commonly 

massive to poorly bedded, indicating mass-flow deposition. Its age and setting are evidence that the 

group constitutes molasse deposited in a flexural basin along the flank of the Qazaz shear zone [40].  

As illustrated in Figure 18, all the ANS Ediacaran volcanosedimentary basins have a close spatial 

relationship with shear zones, gneiss belts, and core complexes. In most discussions on the origins of 

these basins, the spatial relationship is also interpreted as implying a genetic relationship, although the 

precise nature of the genetic relationship is debated. A recent summary of Nubian Shield basins [66], 

refers to three structural/tectonic types of controls on basin formation: (1) basins associated with active 

continental margins; (2) basins developing in a transpressional orogen; and (3) basins associated with 

rifting and extension. In control 1, it is envisaged that sedimentary deposition was associated with 

continental arc volcanics that provided a significant source of clastic debris. The second control model 

situates Hammamat basins in areas of subsidence and(or) pull apart contemporary with magmatism, 

the exhumation and uplift of core complexes, gneiss domes and gneiss belts, and normal and strike-slip 

fault activity during gravity sliding and transpressional orogeny. Control 3 associates Hammamat 

Group molasse deposition and Dokhan Volcanic bimodal magmatism with graben formation in an 

extensional tectonic regime. The basin types have various names such as volcanosedimentary 

intramontane basins, rim synclines, foreland basins, orthogonal extension and pull-apart basins,  

piggy-back basins, and rifts and grabens. 
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8.2. Mixed Terrestrial and Shallow-Marine Basins 

Mixed terrestrial and shallow-marine Ediacaran post-amalgamation basins in the ANS are typified 

by the Jibalah group (Figure 20). Other mixed terrestrial and shallow-marine Ediacaran basins include 

the Fatimah group [90,91] and Ablah group [22,23]. The Jibalah Group was formally recognized and 

defined during the 1960s [92,93]. It is widely distributed (Figure 18) [94] although restricted in 

outcrop extent to isolated areas, almost exclusively along major strands of the northwest-trending Najd 

fault system. Most basins are small: 5 to 10 km across and 15 to 50 long. However, the Jifn basin and 

its extension to the northwest, form virtually continuous exposure over a strike length of 175 km. At 

least one basin (Jifn) may have been initiated during dextral displacement on Najd faulting [95] with 

inversion and folding caused by subsequent sinistral movement.  

Figure 20. Representative stratigraphic columns for terrestrial to shallow-marine 

Ediacaran successions in the Arabian Shield (not to scale). Rubtayn basin succession  

after [93]; Jifn basins succession after [95]; Antaq basin succession and age constraint on 

Antaq basement from [96].  

 

The Jibalah Group mostly rests unconformably on exhumed, uplifted, and eroded volcanic and 

plutonic arc-associated rocks of the ANS basement and locally overlies ~630 Ma clastic sedimentary 

and volcanic rocks of the Murdama and Shammar groups. It is very locally intruded by Ediacaran-aged 

granitoids. The sub-Jibalah unconformity is readily identifiable in the field by the occurrence of a basal 

conglomerate, which records proximal uplift and the origin of the basins. The age of the Jibalah group 

is debated, but existing data suggest it is between 600 and 560 Ma. Microgranite plugs in the basement 

beneath the Antaq basin, yielding a U-Pb chemical abrasion TIMS age of 618 Ma [96], provide the 
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strongest constraint on the maximum age of sedimentation of the Jibalah Group. Its youngest age of 

sedimentation is broadly constrained by the age of the Cambrian Siq Sandstone and the ~526 Ma  

sub-Siq/Angudan unconformity at the base of the lower Paleozoic succession overlying the shield [94]. 

The minimum deposition age is more tightly constrained by a felsite dike cross-cutting the upper part 

of the Jibalah group in the Jifn basin, which has a U-Pb concordia age of 577 ± 6 Ma [97]. Carbonate 

rocks of the Jibalah group in the Dhaiqa basin contain tuff beds that yield a LA-ICP-MS zircon age of 

560 ± 4 Ma [98]. Detrital zircon from tuff beds in the Dhaiqa and Rubtayn basins yields U-Pb SIMS 

ages suggesting deposition between 600 and 570 Ma [99,100]. Three tuffs collected from the upper 

Rubtayn Formation in the Antaq basin contain abundant equant quartz, feldspar lathes, angular biotite, 

devitrified glass suggesting a pyroclastic origin, and have broken, stubby, euhedral zircon that yields 

LA-ICP-MS U-Pb ages of 596 ± 17, 579 ± 17, and 604 ± 18 Ma [96]. 

Deposition of the lower Jibalah overlapped with the Gaskiers glacial event (~585–~582 Ma) [101]. 

It is therefore noteworthy that diamictite comprising matrix-supported boulders, cobbles, and possible 

dropstones are recognized in conglomeratic sandstone in some of the basins (e.g., Figure 21C). It is 

conceivable that some of these conglomeratic units may represent glaciogenic diamictite, but  

their glaciogenic origin is not established and most conglomeratic units are probably alluvial  

fans [95,98,102]. The age of the Jibalah group, additionally, raises the possibility that some of the 

carbonates in the Jibalah group may have been deposited during the Shuram negative δ13C anomaly 

(Figure 22), which is well defined in the Huqf Group of Oman [103], and such carbonates are worthy 

of further study.  

Lithologically, the Jibalah group consists of variable amounts of siltstone, sandstone, conglomerate, 

bimodal volcanics, and carbonate in sequences more than 3000 m thick (Figure 20). The rocks in 

several basins in the northwestern Arabian Shield are divided, from bottom to top, into the Rubtayn, 

Badayi’, and Muraykhah formations and similar lithologies are recognized in other basins [94,96] 

although different names may be used. In the Jifn basin, a lower epiclastic and carbonate interval 

makes up the Umm al’Aisah formation and an upper arkosic sandstone and conglomeratic unit makes 

up the Jifn formation (Figure 20).  

The Rubtayn formation is typically conglomeratic, varying in thickness from a few meters (e.g., in 

the Antaq basin) to many hundreds of meters thick (e.g., the Rubtayn basin). The Rubtayn and Umm 

al’Aisah conglomerate is massive to well bedded (Figure 21D). It is typically poorly sorted, with 

moderately to well-rounded clasts, of diverse lithologies in a muddy or calcareous wacke 

matrix [92,93] (Figure 21D,E). Clast lithologies are dominated by the underlying basement lithology. 

The Rubtayn formation in the Dhaiqa basin contains the prominent diamictite referred to above 

(Figure 21C). In some basins, such as the Rubtayn [94] and Antaq [96] basins (Figure 20), the basal 

conglomerate grades upwards into brown to red micaceous and commonly arkosic sandstone and 

muddy siltstone, in places with interbedded conglomerate, and almost everywhere, only intermittently 

exposed. Graded beds are common in the sandstone facies and m-scale fluid escape structures have 

been observed in the Antaq basin [96]. The overlying siltstone is devoid of distinct sedimentary 

structures. In the Rubtayn basin, siltstone is overlain by 60 m of pebbly conglomerate [93].  

The Rubtayn formation is sharply overlain by the Badayi’ formation, which consists of subaerially 

extruded, purple-brown, sodic and iron-rich, porphyritic andesite and basalts [92,93]. Individual flows 

are discernible based on concentrations of amygdules and occurrence of tuffs between flows. The 
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Badayi’ formation, or its equivalent member within the Umm al’Aisah formation in the Jifn basin, is 

commonly ~100 m-thick. 

Figure 21. Lithologic and bedding features of the Jibalah group. (A) Well-bedded 

limestone, Dhaiqa formation, Dhaiqa basin; (B) Detail showing microbial laminites, 

Dhaiqa formation, Dhaiqa basin; (C) Paraconglomerate at the base of the Dhaiqa 

formation, Dhaiqa basin comprising granite boulders embedded in coarse-grained pebbly 

sandstone (R.J. Stern for scale); (D) View of massive conglomerate (to the left) overlain by 

well-bedded conglomerate and sandstone (to the right), basal part of the Jifn basin 

(R. Trindade for scale); (E) Rounded-to-subangular pebble-to-boulder clasts of granite and 

mafic volcanic rock, Jifn basin; (F) Cyclic bedding in the eastern Antaq basin composed of 

arkosic sandstone and siltstone, subordinate conglomerate, and minor carbonate.  

 

The Badayi’ volcanics are typically overlain by an interval of sandstone and pebbly conglomerate 

marking the base of the overlying Muraykhah formation. The Muraykhah formation otherwise is 
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characterized by a carbonate-dominated, shallowing upward sequence. In most locations, the 

Muraykhah formation (and its equivalent interval in the upper Umm al’Aisah formation in the Jifn 

basin; Figure 20) comprises ~300 m of cherty, gray limestone and dolomite, with interbedded shale, 

siltstone, minor volcanics (including tuffs), and conglomerate. The carbonates are well bedded  

(Figure 21A) and show abundant microbial lamination (Figure 21B). Carbonates from the lower 

Muraykhah formation were likely deposited in relatively deep water, whereas the upper Muraykhah 

formation carbonates include rippled and crossed-bedded dolarenites, implying a shallow depositional 

setting [90]. Stromatolites have been described [92,93], but are relatively rare. It has been suggested [94] 

that the Muraykah formation correlates with the carbonate-dominated Dhaiqa formation in the 

northwestern Arabian shield [102], which contains a tuff dated at 560 ± 4 Ma [98], as noted above, and 

the upper Jibalah group in the Antaq basin. However, in the Antaq basin, the upper Jibalah group is 

dominated by mostly fine sandstone and siltstone arranged in spectacular cycles (Figure 21F). Here, 

carbonate occurs variably as cement in fine to medium sandstone or in nodules at the tops of the cycles 

and as massive to poorly laminated beds within the maximum flooding intervals of cycles [96]. It has 

been argued [94] that the Muraykhah formation records a regional flooding event and marine incursion 

across the northern and eastern Arabian shield, which is consistent with evidence for shallow marine 

conditions in the upper Jibalah group in the Antaq basin [96]. However, Sr isotope data from the 

Dhaiqa formation [102] and from limestone in the Jifn basin (modified from [104]) demonstrate that 

these basins were at least intermittently restricted. In the Jifn basin, Muraykhah-equivalent carbonates 

are overlain by a thick wedge of sandstone, shale and conglomerates belonging to the Jifn formation 

(Figure 20). In the Rubtayn basin, they are overlain by more intermediate to mafic volcanics. Where 

the upper contact of the Jibalah Group is preserved, it is an angular unconformity, overlain by the 

lower Cambrian Siq Sandstone [105]. 

Possible Ediacaran trace and body fossils are reported from the upper part of the Jibalah group. 

These include Beltanelloides-like structures, a putative Pteridinium imprint [98,102], and a putative 

Harlaniella-type structure from the Dhaiqa basin [98]. Structures resembling Aspidella are reported 

from the Antaq basin [96], and Charniodiscus from the Antaq and Dhaiqa basins [96,98].  

Two contrasting depositional models are proposed for the Jibalah group. One envisages that the 

group was continuously deposited over a large part of the northern Arabian Shield as the result of a 

shallow-marine incursion, and is now preserved in younger grabens, having been eroded in other 

places. Based on recent mapping and sampling [100], the same stratigraphy is recognized in several of 

the Jibalah basins on the Arabian Shield consistent with the interpretation that the unit was originally 

widespread. The rock assemblages suggest deposition within a single, laterally continuous basin that 

evolved from proximal fluvial conditions at its base to a marine-shelf setting at the top. The other 

model envisages that the Jibalah group was never regionally extensive but was deposited 

syntectonically in fault-controlled basins during Najd faulting under fluvial to shallow-marine or 

lacustrine conditions [94–96]. In terms of a fault-controlled basin model, the Al Jifn basin  

(north-central Arabian Shield) is inferred to have developed at a releasing bend along the  

Halaban-Zarghat fault during a period of dextral shear [95,97]. The Al Kibdi (eastern Arabian Shield) 

basin is located between two left-stepping strike-slip splays of the Ar Rika fault and is a pull-apart 

basin that formed during sinistral shear. The Antaq basin (eastern Arabian Shield) is a half-graben that 

appears to have formed as a result of normal dip-slip movement on the hanging wall, perhaps during 
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E-W directed extension. The Rubtayn basin (NW Arabian Shield) consists of fault blocks and grabens 

depressed as a result of subsidence along boundary faults [93]. 

9. Discussion 

The ANS is the product of a ~300 million year cycle of Neoproterozoic accretionary orogeny and 

crustal growth that evolved from ~870 Ma, the oldest dated rocks in the Makkah batholith and Erkowit 

pluton in the Jiddah and Haya terranes, to ~560 Ma, the age of some of the youngest granitoids and 

strata. These rocks formed during a critical episode in Earth history that spanned the transition from 

Neoproterozoic to Phanerozoic geologic and evolutionary processes and witnessed some of the most 

important, rapid, and enigmatic changes known in Earth’s environment and biota [1,106]. Changes 

during this period included the breakup of the Rodinia supercontinent, followed by the dispersal and 

rapid movement of continental nuclei, and the assembly of the new Gondwana supercontinent at the 

end of the Neoproterozoic. Other changes included important shifts in Earth climate and modifications 

in the biosphere; some of the most severe glacial episodes known in geologic history covered much of 

the globe; eukaryotes diversified and gave rise to the first simple animals; the atmosphere and oceans 

were affected by major fluctuations in their oxygen and iron contents; carbon and strontium isotope 

compositions of seawater varied dramatically. Orogeny in the ANS began with deformation and 

metamorphism at about 806 Ma of the juvenile early Neoproterozoic Kurmut terrane and its accretion 

with the Saharan Metacraton along the Abu Hamed and Dam El Tor fault/thrust belts, precursors of the 

Keraf suture [107]. The terminal stages of orogeny included the onset of posttectonic A-type granitoid 

magmatism (~610 Ma onward); orogenic collapse, tectonic escape, and orogen-parallel extension 

(605–595 Ma); local extension and rifting (620–545 Ma); gneiss core complex formation, exhumation, 

and cooling (620–580 Ma); NNW-ward thrusting (605–600 Ma); SW-ward and NE-ward thrusting 

(600–590 Ma); E-W shortening and transpression (620–580 Ma); Najd strike-slip faulting 625–565 Ma); 

subhorizontal low-angle shearing (605–600 Ma); amalgamation of terranes in the eastern Arabian 

Shield (<620 Ma); and terminal collision of ANS with the Saharan Metacraton by 580 [11,66]. The 

large number of volcanosedimentary basins described here evidence the ANS orogenic cycle was 

punctuated by periods of exhumation, uplift, and erosion, and demonstrate that the tectonic phenomena 

of mountain building, subsidence, and deposition were closely linked in time and space (Figure 22). 

One of the oldest exhumation and erosional events is recorded by deposition of the Hali group 

(~795–780 Ma). By 795 Ma, volcanic arcs and large TTG-type intrusions had formed in the Al  

Lith-Bidah and Shwas-Tayyah structural belts. Shortly prior to and during the inferred convergence of 

these arc systems at 780–765 Ma, part of the Shwas-Tayyah belt was exhumed, uplifted, and eroded. 

The resulting erosion surface beveled mid-crustal plutonic rocks of the An Nimas complex, suggesting 

exhumation on the order of 10 km. Epiclastic sediments deposited on this surface were chiefly sand 

but included pebbles derived from the An Nimas complex. The Hali basin did not last long,  

and by about 780 Ma, the basin had subsided and was affected by elevated P and T, leading to 

amphibolite-facies metamorphism of the epiclastics. The rocks were metamorphosed concurrent with 

shearing within, and on the margin of, the An Nimas complex and emplacement of syntectonic 

tonalite. Because of overprinting by later orogenesis and lack of focused research, the original size of 

the Hali basin, its structural controls and likely mechanism of subsidence during and after 



Geosciences 2013, 3 432 
 

sedimentation are unknown. The carbonate member is evidence of subaqueous deposition, but no 

evidence has been reported to determine whether the environment was lacustrine or marine.  

Figure 22. Summary diagram showing temporary relationships between volcanosedimentary 

basins, glacial intervals, orogenic accretionary events, orogenic collapse events, and 

secular variation in carbon-isotope composition of shallow-marine carbonates. Timing of 

glacial events after [41]. See text for discussion of the structural-tectonic features that 

make up the headings for the two columns labeled “Convergence, amalgamation (sutures, 

shear zones)” and “Orogenic collapse”. The red stars indicate depositional units that 

contain diamictite–matrix supported pebbles in the case of the Ghamr and Hadiyah groups, 

and matrix supported boulders in the case of the Jibalah group. These diamictites are 

consistent with the timing of glacial events, but are not proven to be glacial deposits. 

Composite seawater carbon-isotope curve on right modified from [104].  
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Some 30 million years later, during collision between the Jiddah-Haya and Hijaz-Gebeit terranes 

along the Bi’r Umq-Nakasib suture, the southern flank of the Jiddah terrane was exhumed. Arc rocks 

of the Samran, Arj, and Mahd groups and arc-related plutonic rocks were eroded, forming a surface 

that became covered by sedimentary and volcanic rocks of the Ghamr group and Amudan formation. 

The Ghamr and Amudan are only weakly metamorphosed implying that, in contrast to the Hali group, 

they were little buried after deposition. A glaciogeneic diamictite is suspected at the base of the Mahd 

group beneath the Ghamr group, possibly deposited during an early phase of the Kaigas glacial event, 

but no glaciogenic deposits are reported for the Ghamr group. It is interesting, however, that broadly 

coeval metasedimentary rocks in the southern Nubian Shield are reported to contain glaciogenic 

diamictite and peri-glacial polymict conglomerate and arkose [108]. The location of the  

Ghamr-Amudan basin on the flank of the Jiddah terrane, alongside the Bi’r Umq suture, on what was 

probably the upper plate of a convergent margin is consistent with deposition in a retroforeland basin. 

The rocks were deposited in alluvial fans, drainage channels, and volcanic centers in terrestrial or  

near-shore submarine environments. 

After about 55 million years, orogeny resumed in the ANS with collision between the  

Jiddah-Gebeit/Gabgaba terranes and the Midyan-Eastern Desert terranes leading to emplacement of 

ophiolites and development of the Yanbu-Sol Hamed-Allaqi suture. The Hadiyah group was deposited 

in a trough inboard in the Hijaz terrane from the suture and above the forearc sedimentary wedge of 

the Al Ays arc. The putative unconformity at the base of the Hadiyah group that cuts down as much as 

4 km into the Al Ays arc is evidence of significant exhumation and erosion inboard of the Yanbu 

suture. We envisage that the Hadiyah basin is a type of retroforeland basin formed in a terrestrial 

depression on the upper plate adjacent to the Yanbu suture. The basin evolved from a volcanic 

environment to a locally upward-shallowing sedimentary environment. Coarse clastics derived from 

the underlying arc rocks of the Al Ays group and its arc-associated intrusion shed into the basin as 

conglomerate and pebbly sandstone; bimodal volcanic rocks at the base of the group suggest faulting 

and rifting during initiation of the basin. We note that the Hadiyah group was deposited during the 

Sturtian glacial event (Figure 22). Further research would be useful to determine whether any of the 

siliciclastic deposits in the group, such as the matrix-supported pebble and boulder sandstone in the 

Jammazin member are glaciogenic. 

The Furayh basin is a large volcanosedimentary basin at the triple junction between the Jiddah, 

Hijaz, and Afif terranes. It overlies the Bi’r Umq suture on the south postdating suturing here by about 

100 million years, and the Afif suture on the northeast. Volcanism began in the basin ~665 Ma and 

sedimentation continued until convergence between the Hijaz and Afif terranes and initiation of the 

Afif suture during the Nabitah orogeny (680–640 Ma). Exhumation along the Bi’r Umq and Afif 

suture zones allowed Furayh sediments to be deposited on erosion surfaces that locally cut across the 

sutures. The Furayh basin was dominated by volcanic centers in the west and epiclastic sedimentation 

in the east. Sedimentary structures are indicative of shallow water to subaerial exposure. Conglomerates 

in the east and southeast suggest proximity to elevated source regions; volcaniclastic deposits in the 

west indicate proximity to rapidly unroofing volcanic centers. Carbonates in the Furayh group have not 

been studied in any detail, but may provide evidence of shallow-marine conditions. If so, they should 

bear the imprint of the global negative δ13Ccarb excursions known to occur globally at this time (Figure 

22). Likewise, we might expect some record of the Marinoan glaciation in clastic rocks.  
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The largest volcanosedimentary basin in the ANS is the Murdama basin. It overlies newly accreted 

arc systems in the Afif composite terrane and is located between the Nabitah mobile belt on the west 

and the Halaban suture on the east (Figures 1 and 11). Toward the end of and following these suturing 

events, a large part of the Afif terrane subsided and became a terrestrial to shallow-marine basin. The 

underlying arc rocks had been assembled to form the Afif composite terrane by or soon after 685 Ma, 

but were uplifted and eroded within at least 30 million years, followed by volcanism in the Murdama 

basin between 650 and 640 Ma, and sedimentation by 630 Ma. The amount of exhumation and erosion 

was significant, unroofing amphibolite- and granulite-facies metamorphic rocks so that Murdama 

marine deposits rest on basement probably brought from depths of 15–20 km or more. Subsidence 

followed major exhumation and erosion of the sub-Murdama basement, affecting a vast region over an 

area of 700 km by 120 km. The cause of subsidence is unknown. It may have been initiated by faulting 

and extension, as suggested by bimodal volcanism in the basal volcanic units in the basin. Or it could 

have been the effect of cooling following Nabitah orogeny and Halaban suturing, the result of 

delamination, the product of crustal warping as a flexural basin following loading by overthrusting 

along the Halaban suture, or a combination of these factors; further study is needed to answer this 

question. What is notable is that, whereas subsidence persisted for perhaps 20 million years while the 

basin filled and was sufficient to accommodate 10 km or more of sediments, accumulation rates and 

subsidence were in balance and maintained a shallow sediment-water interface with connections to the 

sea. The result was that lithologically monotonous sediments containing shallow-water sedimentary 

structures persisted across the basin and up through the stratigraphic column. As in the case of the 

Furayh group, the Murdama basin was filled during the Marinoan glacial event. Murdama carbonate is 

conceivably a favorable rock to sample to detect the Marinoan negative δ13Ccarb excursion (Figure 22); 

arenaceous and rudaceous deposits could be examined for glaciogenic indicators. 

Further exhumation and extension marked the development of Ediacaran volcanosedimentary 

basins. Although consensus on details is lacking, it is generally accepted that Ediacaran exhumation 

and extension in the ANS resulted from crustal thickening, orogenic collapse, and tectonic escape 

during terminal orogenesis and assembly of the shield [109]. The process of orogenic collapse and 

exhumation entailed crustal thinning and widespread extension manifest by normal faulting and  

low-angle detachments associated with exhumation of gneiss domes and strike-slip sinistral and 

dextral shearing of the Najd fault system. It is modeled as the result of removal and replacement of 

thickened lithospheric mantle by delamination [110], was contemporary with a transition from  

calc-alkaline to alkaline magmatism [111], the emplacement of a significant number of dike  

swarms [40,112], and enhanced heat along fault systems leading to the formation of syn-extensional 

plutonism and a triggering of exhumation of hot middle crust [109]. On the basis of Rb-Sr and 
40Ar/39Ar cooling ages it appears that exhumation was relatively long lived across the region, 

beginning by ~650 Ma, continuing between 620 and 606 Ma, and ceasing before ~580 Ma [80,113]. 

Basement rocks in northern Sinai were rapidly exhumed and eroded at about 600 Ma [108] following 

peak regional metamorphism at about 620 Ma at 7 ± 1 kbar (20–25 km depth) and 650–700 °C. 

Erosional models for the northern ANS envisage that the region underwent more than 3 km uplift 

following mantle delamination, which triggered rapid unroofing of about 10–12 km of crust in  

about 20 million years. This lowered the average relief by about 2 km and formed the surface and 

basins covered by the Elat and Saramuj Conglomerates [109,114]. The Elat Conglomerate overlies 
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630–605 Ma granitoids [64]; the Saramuj Conglomerate overlies 625–600 Ma granitoids [115]. 

Erosional denudation may have been followed by isostatic uplift but erosion, as well as thermal 

subsidence, ultimately lowered the surface to sea level [110]. Metamorphism and cooling during 

exhumation is dated in the eastern ANS by hornblende 40Ar/39Ar ages between about ~616 and  

601 Ma [116,117]. In the southern ANS, hornblende and biotite 40Ar/39Ar cooling ages of 577 ± 2 Ma 

and 577 ± 5 Ma [118] are interpreted as evidence of rapid Ediacaran cooling and exhumation 

following terminal collision and the cessation of ductile deformation in the vicinity of the Keraf suture.  

Ediacaran subsidence and depositional centers developed in many parts of the ANS during this 

period of orogenic collapse, extension, and exhumation. Basins associated with strike-slip faulting may 

be variably classified as transform, transpressional or transtensional. Others, having no causal link with 

strike-slip faulting, originated during normal faulting in regional extension regimes. Some basins had 

complex origins that began as fault-bounded rifts and half-grabens and evolved into pull-apart basins 

at bends in Najd shear zones. Others are referred to variously by terms that include foreland, 

intramontane, and piggy-back basins. The lithologic character of the Ediacaran basins suggest that the 

western ANS was at a higher elevation than the eastern ANS during the closing stages of ANS 

orogeny. Molasse in the western basins was deposited in terrestrial basins, under subaerial to  

shallow-water conditions. The eastern basins, characterized by the Jibalah group, had mixed terrestrial 

and shallow-marine environments. They were affected by a late Ediacaran marine transgression [40] 

and regional flooding event or had at least some connection to the ocean. Clastic material in the basins 

was shed from elevated basin margins in the case of individual fault-bounded basins, or possibly 

introduced by major fluvial systems of continental proportions. Conglomerates contain clasts derived 

from underlying arc rocks. Carbonates indicate shallow-marine or more restricted environments. Isotopic 

data consistent with the prominent Shuram negative δ13Ccarb excursion are not reported, although 

boulder-clast diamictite and paraconglomerate in some Jibalah basins are conceivably glaciogenic. 

The most prominent unconformity in the ANS is the extensive erosion surface that removed 

between 2 and 10 km of basement rock [114,119] prior to deposition of lower Paleozoic siliciclastic 

rocks that blanket the shield. This surface, the sub-Siq or Angudan unconformity [94], had originated 

by about 535 Ma. The unconformities beneath the Ediacaran basins predated but were probably 

precursors of the sub-Siq surface. All these surfaces may be multigenerational, the result of more than 

one period of erosion during the Ediacaran. In the northeastern ANS, for example, erosion between 

640 and 615 Ma formed the surface on which the Hibshi (632 Ma) and Jurdhawiyah (612–594 Ma) 

groups were deposited [54]; the Jibalah group was deposited on a surface that truncates 625 Ma 

rhyolite and 618 Ma microgranite; and granites are differentially preserved whereby late Ediacaran 

granites (580–570 Ma) retain their apical parts and their extrusive equivalents, whereas early 

Ediacaran plutons (Idah suite: 620–615 Ma) are deeply eroded. This granite pattern suggests that 

Abanat suite plutons were intruded into crust that had already been exhumed and denuded, but were 

themselves little eroded prior to deposition of the lower Paleozoic sandstone. Similar multiple periods 

of erosion are suggested for the northern parts of the Arabian Shield and Sinai Peninsula in a region 

where the emplacement of A-type rocks was preceded by a phase of extensive erosion associated with 

lithospheric extension and crustal rupture [120].  

As stated many times, the unconformities at the bases of the volcanosedimentary successions 

considered in this review are unambiguous evidence of periodic exhumation and erosion of basement 
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crust; they imply strong uplift of rocks that were once deep-seated in the crust and removal of material. 

The causes of basement exhumation in the process of ANS orogeny are far from clear however. 

Exhumation can occur in virtually any geologic setting. It is conventionally considered to be driven by 

three main processes: normal faulting or extension, ductile lithospheric thinning, and erosion [121], to 

which can be added, with specific reference to the Eastern Desert in the Nubian Shield, gravitational 

sliding of supracrustal rocks from core complexes. In this context it is important to recognize that 

convergent margins can exhibit coeval compressional and extensional strain, so that orogens may 

undergo horizontal contraction and horizontal extension at different levels at the same time. This is an 

important constraint for models that may be developed to account for exhumations considered in this 

review. The specific causes of the periodic phases of ANS exhumation described here, evidenced by 

the volcancosedimentary basins, need to be established by further structural and tectonic analysis. 

Other major gaps in relevant information about the volcanosedimentary basins concern the cause(s) 

and rates of basin subsidence and whether or not basins coeval with global glacial periods contain 

glaciogenic deposits or evidence of glacial-related isotopic excursions. Although potential glacial 

diamictite is reported for the Ghamr, Hadiyah, and some Jibalah basins, the character and origin of the 

diamictite needs to be unambiguously determined. The Ghamr, Hadiyah, Furayh, and Murdama basins, 

broadly contemporary with the Kaigas and Marinoan events, should be searched for solid evidence of 

glaciation and if such evidence is absent, reasons should be considered for its absence such as whether 

glaciation had restricted extents in the ANS because of topography and(or) variable paleoclimatic 

conditions or that conditions were not conducive to preservation of appropriate rocks. 

10. Conclusions 

The main conclusion we draw from this survey of volcanosedimentary basins is that orogeny in the 

ANS was closely linked with subsidence and deposition. Mountain building created uplands, but 

erosion denuded exhumed basement and created vast amounts of clastic debris that shed into terrestrial 

and shallow-marine basins. Sectors of the ANS orogenic belt, particularly in the east, were penetrated 

by seaways or flooded by marine incursions. Western parts, at least during the late Cryogenian and 

Ediacaran, were above sea level and were subaerial to shallow-water depocenters of volcanic rocks 

and terrigenous sediments. 

Importantly, the preservation of the volcanosedimentary successions in the ANS, despite ongoing 

orogeny, motivates research aimed at elucidating Neoproterozoic geologic processes. The mineralogy 

and textures of sandstones and siltstones, examination of sedimentary facies and isotopic compositions 

of seawater precipitates, and reconstructions of depositional environments will provide information 

about weathering and, by implication, of Neoproterozoic climate. The Ediacaran basins have potential 

to yield more information on late Neoproterozoic biospheric evolution, possibly including the earliest 

animals. Detrital zircon analysis in these basins will give information about the sources of sediment 

and the distribution of Neoproterozoic, Paleoproterozoic, and Archean crustal blocks in the 

Mozambique Ocean. Overall, because of their excellent exposure and preservation despite being part 

of an accretionary orogen, these volcanosedimentary basins are a world-class natural laboratory for 

testing concepts about crustal growth at the end of the Precambrian and a prime target for calibrating 

Neoproterozoic Earth history. 
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