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Abstract: Chipped and broken functional teeth are common in modern sharks with 

serrated tooth shape. Tooth damage consists of splintering, cracking, and flaking near the 

cusp apex where the enameloid is broken and exposes the osteodentine and orthodentine. 

Such damage is generally viewed as the result of forces applied during feeding as the cusp 

apex impacts the skeletal anatomy of prey. Damage seen in serrated functional teeth from 

sharks Squalicorax kaupi [1] and Squalicorax pristodontus [1] from the late Cretaceous 

lowermost Navesink Formation of New Jersey resembles that occurring in modern sharks 

and suggests similar feeding behavior. Tumbling experiments using serrated modern and 

fossil functional shark teeth, including those of Squalicorax, show that teeth are polished, 

not cracked or broken, by post-mortem abrasion in lowermost Navesink sediment. This 

provides further evidence that chipped and broken Squalicorax teeth are feeding-related 

and not taphonomic in origin. Evolution of rapid tooth replacement in large sharks such as 

Squalicorax ensured maximum functionality after feeding-related tooth damage occurred. 

Serrated teeth and rapid tooth replacement in the large sharks of the Mesozoic and 

Cenozoic afforded them competitive advantages that helped them to achieve their place as 

apex predators in today’s ocean.  
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1. Introduction 

Sharks with serrated teeth commonly number among the largest apex predators in modern marine 

ecosystems. This is particularly true for white sharks, Carcharodon carcharias [2], bull sharks, 

Carcharhinus leucas [3], and tiger sharks, Galeocerdo cuvier [4] which can achieve lengths up to  

6 meters and weights in excess of 2000 kilograms [5–9]. Such large sharks with serrated tooth shape 

are known to feed upon a range of prey including: marine mammals, turtles, birds, large osteichthyans 

and other chondrichthyans [10–19]. 

Sharks with serrated tooth shape can apply enormous bite forces during feeding [20–24]. As a 

result, such sharks commonly break teeth in the functional position during feeding. Examination of 

jaws from large, modern sharks with serrated teeth often reveals teeth in the functional position with 

splintering, cracking and flaking along the cusp apices. These damaged teeth are rapidly replaced, 

usually in less than one week, by new teeth, which we refer to here as pre-functional teeth, developing 

in files within the epithelial tissue and attached to the dental membrane [25–28]. Pre-functional teeth 

continuously rotate in conveyor belt fashion into the functional position at the forward edge of the jaw. 

This insures maximum tooth sharpness and overall jaw functionality as pristine new teeth replace old 

functional teeth broken during feeding.  

In the fossil record, recovery of shark jaws with teeth is an exceedingly rare event due to the poor 

preservation potential of cartilaginous jaw anatomy [29–31]. However, teeth are comprised of extremely 

durable and highly insoluble biogenic apatite and are continuously replaced throughout a shark’s  

lifetime [32,33]. This replacement process produces hundreds, even thousands of teeth, from a single 

shark with a high probability of some becoming fossils. While missing tooth elements may have their 

origin in taphonomic processes, in many instances splintering, and cracks and chips in tooth cusps in 

fossil teeth bear striking similarities to those seen in morphologically similar modern functional teeth still 

contained in the jaws and thus not solely subject to taphonomic processes or fossilization. 

One well-known Upper Cretaceous shark with serrated teeth and global distribution is the  

genus Squalicorax [34]. To date, at least five North American species of Squalicorax have been 

identified on the basis of teeth associated with preserved jaw cartilage, and from artificial tooth sets, 

i.e., from dental series reconstructed from the teeth of many different individuals. The most common 

Campanian-Maastrichtian species are assigned to Squalicorax kaupi [1] and Squalicorax  

pristodontus [1,32,35–38]. Many details of skeletal anatomy and paleoecology of Squalicorax have been 

worked out over the last decade from skeletons as well as teeth directly and indirectly associated with 

prey [35,39]. Prey items are sometimes large animals with robust skeletal anatomy [39–41].  

In this study, we analyze tooth cusp damage seen in an assemblage of Squalicorax kaupi and 

Squalicorax pristodontus from the lowermost Navesink Formation in Monmouth County, New Jersey. 

We demonstrate from this assemblage that: (1) isolated teeth that occupied the functional position in 

Squalicorax kaupi and Squalicorax pristodontus can be distinguished from pre-functional teeth that 
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were developing in an individual tooth file; (2) modern shark jaws with serrated functional teeth have 

feeding-related damage along their cusp apices similar to that seen in some Squalicorax kaupi and 

Squalicorax pristodontus functional teeth; (3) taphonomic damage simulated by tumbling experiments 

on serrated modern functional teeth as well as Squalicorax kaupi and Squalicorax pristodontus 

functional teeth is random and can be distinguished from feeding-related damage; (4) damage seen in 

Squalicorax kaupi and Squalicorax pristodontus functional teeth is the product of feeding behavior; 

and, (5) similar cusp damage to Squalicorax kaupi and Squalicorax pristodontus functional teeth 

occurs in other chondrichthyan fossil localities in North America and is also feeding-related. 

2. Teeth of Squalicorax 

Teeth from the anacoracid Squalicorax are abundant and well-known from the Cenomanian through 

the Maastrichtian in North America [33,39,42–51]. The blade-like tooth shape, serrated edges, 

anaulacorhizous, bilobate root and absence of cusplets readily distinguishes teeth belonging to 

Squalicorax from other Cretaceous chondrichthyans. Figure 1 shows examples of pristine lateral teeth 

from Squalicorax kaupi and Squalicorax pristodontus from the lowermost Navesink Formation of 

Monmouth County, New Jersey, which we utilized in this study. 

Figure 1. Squalicorax kaupi and Squalicorax pristodontus functional teeth (upper panel) 

and location of Ramanessin, Big and Willow Brooks, Monmouth County, New Jersey 

(lower panel). 1 and 2, Squalicorax kaupi; 3 and 4, Squalicorax pristodontus. Differences 

between Squalicorax kaupi and Squalicorax pristodontus are based on the well-defined distal 

notch seen in Squalicorax kaupi and the overall larger size of Squalicorax pristodontus. Scale 

bars: 1,2 = 1.0 cm and 3,4 = 2.0 cm. Tooth orientations: 1,3 = labial face; 2,4 = lingual face. 
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Previous studies compare the similarities of Squalicorax to the modern tiger shark Galeocerdo cuvier, 

particularly the serrated mesial and distal edges of their teeth and vertebral centra which lack radial 

lamellae [35,39]. While these features suggest a carcharhiniform evolutionary history for Squalicorax, 

tooth histology from this genus is that of an osteodont, and consistent with teeth belonging to 

lamniform sharks [52]. Both modern carcharhiniforms and lamniforms are known have rapid rates of 

tooth replacement and by analogy to fossil jaw examples this is also thought to have occurred in 

Squalicorax [35,53–55]. Reconstructions from naturally occurring and artificial tooth sets demonstrate 

that both these species are monognathic homodonts [31,33,35,36]. Differences between Squalicorax kaupi 

and Squalicorax pristodontus are subtle and based primarily on the well-defined distal notch seen in 

Squalicorax kaupi and the overall larger size of Squalicorax pristodontus (See Figure 1).  

3. Materials and Methods 

3.1. Modern Jaws and Teeth 

Fifty modern shark jaws with associated teeth belonging to Carcharodon carcharias, Carcharhinus leucas 

and Galeocerdo cuvier were examined in the collection of the Department of Ichthyology of the 

American Museum of Natural History (AMNH). These species were selected based on serrated tooth 

shape that is generally similar to Squalicorax kaupi and Squalicorax pristodontus. Additionally, both 

these modern and fossil species of sharks are known to prey upon animals with robust skeletal 

anatomy. Similar prey should ideally result in equivalent damage to tooth cusps in functional teeth 

during feeding.  

Four varieties of functional tooth cusp damage were identified among these fifty modern jaws:  

(A) labial damage on the tooth cusp apex; (B) labial damage on the mesial edge; (C) lingual damage 

on the tooth cusp apex; and, (D) lingual damage on the mesial edge (Figure 2). In some cases, 

observed functional tooth damage includes combinations of these four different varieties as seen on 

both the labial and lingual cusp faces. It is important to note that no developing (pre-functional teeth 

within individual tooth files) in these modern jaws had tooth cusp damage of the four varieties listed 

above. The majority of developing teeth along with their roots are protected within the epithelial jaw 

tissue from direct impact with prey during feeding. 

Teeth in the functional position have fully-developed, bilobate roots, convex lingual cusp faces  

and concave labial cusp faces. The root and cusp are also well-mineralized, thick, and the serrations  

well-defined along the mesial and distal edges. Developing teeth lack all these features, particularly the 

well-developed, bilobate roots and convex lingual cusp faces. We also note that the roots in developing 

teeth are only partially permineralized and appear lighter in color than fully developed teeth. 

Developing teeth are lost upon the death of the animal or in extreme cases of feeding related injury. 

Table 1 lists the number of teeth in these categories and upon which this study is based. 
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Figure 2. Modern shark jaws displaying functional teeth with feeding-related damage of 

the following types: (A) labial damage on the tooth cusp apex; (B) labial damage on the 

mesial or distal tooth edge; (C) lingual damage on the tooth cusp apex; and (D) lingual 

damage on the mesial or distal edge. 1, labial view of an anterior tooth in the lower jaw of 

Carcharodon carcharias (AMNH 53095) with type A cusp damage; 2, lingual view of a 

lateral tooth in the upper jaw of Carcharodon carcharias (AMNH 53095) with type D cusp 

damage; 3, labial view of a lateral tooth in the upper jaw of Carcharhinus leucas (AMNH 

225868D) with type A cusp damage; 4, lingual view of a lateral tooth in the upper jaw of 

Carcharhinus leucas (AMNH 225868D) with type C cusp damage; 5, labial view of a 

lateral tooth in the lower jaw of Galeocerdo cuvier (AMNH 37950SD) with type A and B 

cusp damage; 6, labial view of a lateral tooth in the upper jaw of Galeocerdo cuvier 

(AMNH 37950SD) with type A and B cusp damage; Scale bars for 1,2,5,6 = 2.0 cm;  

3,4 = 1.0 cm.  
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Table 1. Sample populations of S. kaupi and S. pristodontus functional and pre-functional 

teeth from the lowermost Navesink Formation. Individual teeth are designated as 

functional or pre-functional according to the degree of cusp and root development as 

described in the text.  

 

Species 

 

Functional Teeth Pre-Functional Teeth Indeterminate 

or Broken 

During 

Collecting 

Total  

Number 

of Teeth 

Studied 

Undamaged 
Feeding 

Damage 

Taphonomic 

Damage 
Undamaged 

Pathologically 

Deformed1 

Squalicorax 

kaupi 
187 36 16 1448 4 237 1928 

Squalicorax 

pristodontus 
13 20 30 326 1 87 477 

Note: 1. as defined in [56]. 

3.2. Fossil Teeth and Tumbler Experiments 

Squalicorax kaupi and Squalicorax pristodontus teeth utilized in this study are housed in the 

William Paterson University (WPU) paleontological collections. These teeth were recovered from a 

lag deposit that drapes a disconformity and comprises the lowermost Navesink Formation [57] along 

Ramanessin, Big and Willow Brooks, Monmouth County, New Jersey. This lag consists of  

silty, micaceous marl with uncommon quartz pebbles up to 2.0 centimeters in diameter and ranges from  

10–30 centimeters thick. Such lag deposits are common in the Late Cretaceous of North America and 

represent complex taphonomic histories that include multiple episodes of exhumation and reburial 

associated with sea level cyclicity [45,49,58,59].  

An industrial grade rock tumbler was used to simulate taphonomic effects and distinguish them 

from feeding-related damage among functional teeth of Squalicorax kaupi and Squalicorax pristodontus. 

Although pre-functional teeth were also exposed to similar taphonomic effects, these teeth are not 

exposed directly to feeding-related impact along their cusp apices and were excluded from further 

consideration in our taphonomic simulation experiments. Five pristine, functional teeth of Squalicorax kaupi 

and Squalicorax pristodontus respectively were placed in 5.0 kg of sediment from the lowermost 

Navesink Formation and water was added to cover the top of the sediment. Teeth were tumbled for 

one month and removed at six day intervals for inspection and photography. The same procedure was 

utilized for five pristine, functional teeth from each of the three modern test species: Carcharodon 

carcharias, Carcharhinus leucas and Galeocerdo cuvier. All specimens were taken from WPU 

paleontological collections. 

4. Results 

4.1. Sample Populations 

Details of Squalicorax kaupi and Squalicorax pristodontus tooth sample population are compiled in 

Table 1. Of the 1926 Squalicorax kaupi teeth analyzed, 239 teeth were determined to occupy the 

functional position and 1448 teeth were determined to be pre-functional based on the degree of cusp 

and root development. Of the 477 Squalicorax pristodontus teeth analyzed, 63 teeth were determined 
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to occupy the functional position and 326 teeth were determined to be pre-functional based on the 

degree of cusp and root development using the criteria described above.  

Teeth broken during field excavation and sieving along with those where not enough of the cusp 

and root were preserved to determine the exact location in the file constituted 12% of our total 

Squalicorax kaupi sample population or 237 teeth, and 18% of our total Squalicorax pristodontus 

sample population or 87 teeth. Figures 3 and 4 show nine Squalicorax kaupi and nine Squalicorax 

pristodontus functional teeth respectively that display damage analogous to that seen in the modern 

AMNH jaws and determined to be feeding-related. This sample population also contained four 

pathological Squalicorax kaupi teeth and one pathological Squalicorax pristodontus tooth with highly 

deformed cusps and roots similar to pathological teeth from the Navesink Formation that we described 

earlier [53]. 

Figure 3. Feeding related damage in Squalicorax kaupi teeth from the lowermost 

Navesink; Formation, Monmouth County, New Jersey. Types A and B damage: 1–3, 5, 8 

and 9; Types C and D damage: 4, 6 and 7. Scale bar: 1–9 = 1.0 cm. Tooth orientations: 1–3, 

5, 8, 9 show labial face. 4, 6, 7 show lingual face.  
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Figure 4. Feeding related damage in Squalicorax pristodontus teeth from the lowermost 

Navesink Formation, Monmouth County, New Jersey. Types A and B damage: 1–3, 7–9; 

Types C and D damage: 4–6. Scale bar: 1–9 = 2.0 cm. Tooth orientations: 1–3, 7–9 show 

labial face; 4–6 show lingual face. Note in 3 additional tooth damage on labial cusp face.  

 

4.2. Tumbling Experiments 

The results of tumbling experiments conducted on Squalicorax kaupi and Squalicorax pristodontus 

functional teeth are shown in Figure 5. After six days of tumbling, serrated edges of the teeth of both 

Squalicorax kaupi and Squalicorax pristodontus were completely removed.  

This was followed by thinning and polishing of the enameloid and root on both the lingual and 

labial cusp faces. Near the cusp base after one month of tumbling, the enameloid was completely 

removed exposing the osteodentine and orthodentine, particularly on the labial cusp face. Squalicorax 

kaupi and Squalicorax pristodontus lost 14.4 and 14.2% of their original mass after one month of 

tumbling, respectively (Table 2). No splintering, cracking and flaking along the tooth cusp similar to 

that seen in the modern shark jaws illustrated in Figure 2, or in Squalicorax kaupi and Squalicorax 

pristodontus teeth (Figures 3 and 4) were observed.  
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A similar pattern of material loss due to tumbling was observed in teeth of modern Carcharodon 

carcharias, Carcharhinus leucas, and Galeocerdo cuvier (Figures 6 and 7). The teeth of these three 

sharks tested in the tumbler are clearly polished as indicated in Figures 7 and 8, and show no indication 

of significant cracking, chipping, or other forms of breakage. One can also observe in Figures 6 and 7 

that the test specimens, particularly the roots, become darker in color as tumbling time increases. The 

roots of the modern teeth, and to a lesser extent the enameloid, incorporate iron staining from the host 

sediment in the tumbler almost immediately. At the end of one month, tooth roots and cusp edges were 

heavily iron-stained. Carcharodon, Carcharhinus and Galeocerdo teeth lost 42.6, 49.4 and 48.3 % of 

their original mass after one month of tumbling (Table 2). We attribute the smaller reduction in mass 

seen in the fossil teeth to increased durability associated with permineralization undergone by these 

teeth during fossilization and diagenesis.  

Figure 5. Squalicorax kaupi and Squalicorax pristodontus functional teeth (lingual and 

labial views) during one month in an industrial tumbler with 5.0 kg of host sediment from 

the lowermost Navesink Formation. Individual teeth were removed at six day intervals and 

photographed. Note overall reduction in size, loss of serrations, thinning of enameloid, 

osteodentine and orthodentine.  
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Table 2. Results of tumbling experiments conducted on functional teeth of S. kaupi,  

S. pristodontus, C. carcharodon, C. leucas and G. cuvier. The average mass of five teeth from 

each species was used before and after tumbling in calculating the percentage of lost mass.  

SPECIES 
Mass Before 
Testing1 (gm) 

Mass After 
Testing2 (gm) 

% Loss3 

FOSSIL 
Squalicoras kaupi 0.41 0.35 14.6 

Squalicorax pristodontus 1.27 1.09 14.2 

MODERN 
Carcharodon carcharias 2.49 1.43 42.6 

Carcharhinus leucas 0.77 0.39 49.4 
Galeocerdo cuvier 0.29 0.15 43.3 

Notes: 
1. Average mass of 5 teeth for each species prior to tumbling for 30 days; 
2. Average mass after tumbling for 30 days; 
3. Average loss of mass after tumbling for 30 days. 

Figure 6. Carcharodon carcharias functional tooth (lingual and labial views) during one 

month in an industrial tumbler with 5.0 kg of host sediment from the lowermost Navesink 

Formation. Individual teeth were removed at six day intervals and photographed. All scale 

bars = 2.0 cm. Note iron staining in root and along cusp edges, and physical changes 

similar to those seen in Figures 5 and 6.  
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Figure 7. Functional teeth of Carcharhinus leucas (left two columns) and Galeocerdo 

cuvier (right two columns) (lingual and labial views) during one month in an industrial 

tumbler with 5.0 kg of host sediment from the lowermost Navesink Formation. Individual 

teeth were removed at six day intervals and photographed. All scale bars =1.0 cm.  

Note iron staining in root and along cusp edges, and physical changes similar to those seen 

in Figures 5 and 6.  
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Figure 8. Squalicorax kaupi tooth in labial view. 1, Labial feeding-related damage on the 

tooth cusp apex. (Type A damage); 2, 70X SEM close-up of cusp apex. Note rounded 

edges adjacent to missing enameloid and exposure of osteodentine and orthodentine.  

Scale bar: 1 = 1.0 cm; 2 = 1.0 mm. 

 

5. Discussion 

5.1. Taphonomic Versus Feeding-Related Tooth Damage 

All Squalicorax kaupi and Squalicorax pristodontus teeth utilized in this study were recovered from 

a lag deposit and therefore must have experienced some taphonomic transport and reworking. The 

central focus of this paper is to determine whether such reworking is the cause of the tooth damage we 

observe, or if, in contrast, damage can be attributed primarily to feeding injury. During feeding, 

maximum force is concentrated in teeth along the point of impact, often the cusp apex. In loading tests 

this force rapidly dissipates across the mesial and distal cutting edges toward the root [23,24]. This 

concentrated force on cutting surfaces results in the type of repeated tooth breaks of cusp and cutting 

surfaces, seen in modern sharks with serrated tooth shape (see Figure 2) and is the product of the cusp 

apices impacting bony anatomy in prey [60–63]. Comparing the broken Squalicorax kaupi and 

Squalicorax pristodontus teeth in Figures 3 and 4 to the feeding damaged teeth of our modern 

analogues illustrated in Figure 2, indicates that the characteristics of the breaks in the fossil teeth, and 

in particular their association with cusp apex and cutting edges, are essentially the same as those of 

feeding damaged teeth in the modern examples. Moreover, the results of the tumbler experiment 

illustrated in Figures 5–7, show that both modern and fossil teeth are polished by abrasion in the 

tumbler; they do not suffer major breaks. Because the test teeth were tumbled with lowermost 

Navesink sediment, we infer that post-mortem transport and reworking were not a factor in producing 

the major breaks in the fossil teeth seen in Figures 4 and 5. Based on these observations, we suggest 

that the broken, chipped, and cracked teeth discussed here are the result of damage induced during feeding. 

When a tooth damaged in feeding falls out of the jaw it becomes a sedimentary clast. It can then 

undergo transport, reworking, and the associated abrasion that acts on all such materials. As a result, 

fossil chondrichthyan teeth can be expected to show both types of damage, i.e., major breaks 

associated with feeding, and rounding and smoothing of edges and surfaces associated with 

taphonomic abrasion. The interplay of these two modes of tooth damage should be visible in many, if 

not most, damaged teeth. This viewpoint is reinforced by examination of the cusp apex of a 

Squalicorax kaupi tooth using an EVEX-3000 Scanning Electron Microscope. The distinct break of 

this tooth (Figure 8.1) is similar to feeding damage seen in Squalicorax kaupi and Squalicorax 
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pristodontus (Figures 3 and 4) as well as in modern teeth (Figure 2). However, at 70× magnification 

(Figure 8.2) the broken enameloid tooth edges and ridges in the surface of the exposed osteodentine 

are observed to be strongly rounded. They are not sharp or angular as would be expected in a tooth 

freshly damaged during feeding. This suggests that the cusp apex was broken prior to taphonomic 

reworking and more than likely occurred during a feeding-related impact. Rounding of the exposed 

edges and surfaces occurred after the tooth was shed or its owner died and the tooth was released onto 

the substrate as a sedimentary particle. 

The types of cusp breaks seen in Squalicorax kaupi and Squalicorax pristodontus and the modern 

jaws with serrated teeth from the AMNH can also be observed in Cenozoic sharks. Three  

Miocene-Recent serrated fossil teeth from the Peace River in Hardee County, Florida are shown in 

Figure 9. These teeth were eroded out of the river banks and incorporated with stream gravels along 

the base of the river. These Cenozoic teeth have cusp breaks along both the lingual and labial faces 

analogous to those seen in the feeding damaged teeth of Squalicorax kaupi and Squalicorax 

pristodontus (Figures 3 and 4) and the modern AMNH teeth (Figure 2). 

Figure 9. Fossil functional teeth displaying Types A–D feeding-related damage from the 

Bone Valley Formation (Miocene-Recent) Peace River, Hardee County, Florida, (WPU 

paleontological collections). 1 and 2, Carcharocles megalodon; 2 and 3, Carcharhinus 

leucas; 3 and 4, Galeocerdo cuvier. Scale bars: 1–4 = 5.0 cm; 5–6 = 2.0 cm. Tooth 

orientations-lingual face: 1, 3, 5. labial face: 2, 4, 6. 
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5.2. Modern Versus Fossil Functional Teeth 

Examination of the jaws of modern Carcharodon carcharias, Carcharhinus leucas and Galeocerdo 

cuvier demonstrates that it would not be uncommon to find as many as 300 teeth in the lower and 

upper jaws of an individual animal of these species with approximately 50 teeth, or seventeen percent, 

in the functional position [5,60,61]. This percentage compares very favorably to the fossil teeth in our 

sample population, where 14% of Squalicorax kaupi teeth and 16% of Squalicorax pristodontus teeth, 

were determined to have been in the functional position when the animals from which they derive were 

alive. Teeth broken during field collection or those where location in the tooth file could not be 

determined, 12% and 18% for Squalicorax kaupi and Squalicorax pristodontus respectively, may 

slightly alter the percentage of functional teeth involved in this study. However, the addition of a few 

functional or pre-functional teeth to this sample population does not drastically compromise our 

sorting techniques and ability to recognize functional and pre-functional teeth when compared to 

modern analogues. 

Damaged functional teeth in the modern AMNH jaws determined to be the product of feeding-related 

behavior range from a few percent to as much as 10%. Our fossil population was determined to have 

15% of Squalicorax kaupi, and 32% of Squalicorax pristodontus, functional teeth broken due to 

feeding-related behavior. While the exact cause of this larger percentage of broken teeth relative to the 

modern AMNH jaws remains unknown at this time, one of the more interesting possibilities is that 

Squalicorax kaupi and Squalicorax pristodontus may have had slightly slower rates of tooth production 

and replacement. This slightly slower rate of tooth replacement would have resulted in a greater 

residence time for any broken functional tooth and a higher percentage of broken teeth in the jaws at 

any one time. Similar results for slower tooth replacement have been previously identified in some 

Late Paleozoic and Mesozoic sharks [64–69]. Evidence from these studies includes large wear facets 

related to feeding on the tooth cusps and suggested slower rates of tooth replacement occurred in these 

ancestral sharks [69].  

5.3. Functional and Pre-Functional Teeth 

By analogy to modern sharks, teeth in the functional position in the jaws of fossil sharks were fully 

formed, fully biomineralized and fully ready for use. These teeth would thus have been extremely hard 

and highly resistant to taphonomically induced abrasion occurring within the depositional 

environmental prior to final burial and fossilization. Pre-functional teeth further back in the tooth files 

of fossil forms, like such teeth in modern sharks, would have been less mineralized and comprised of 

smaller amounts of enameloid, osteodentine and orthodentine. Such teeth released by death into the 

sediment before they are fully formed and shed by a live animal would be far more susceptible to 

taphonomically induced abrasion. As a consequence of such differential resistance, pre-functional teeth 

would be preferentially destroyed as recognizable fossils faster and by less abrasion then functional 

teeth. In a general way, therefore, the fossil record of shark teeth should primarily be a record of 

functional and late pre-functional teeth. Early pre-functional teeth should be relatively rare.  
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5.4. Bite Force and Prey in Modern and Fossil Sharks with Serrated Tooth Shape 

The bite force of modern sharks (e.g., taxa with serrated teeth) were analyzed in several studies and 

indicate forces of several thousands of Newton [21–24,70,71]. Serrated teeth form an effective cutting 

dentition that together with the tearing and sawing action produced as the shark shakes its head from 

side to side can remove large pieces from its prey [20,53,72]. Modeling based on tooth and jaw shape 

has also been utilized in the fossil sharks Carcharocles megalodon [1], Squalicorax kaupi and 

Squalicorax pristodontus to infer bite force [21,35,73,74]. By applying isometric scaling, Wroe et al. [21] 

estimated the bite force for Carcharocles megalodon at an incredible 93,127 N to 182,201 N. Shimada 

and Cicimurri [35] compared Meckel’s cartilage in the modern tiger shark, Galeocerdo cuvier, to 

Squalicorax kaupi and Squalicorax pristodontus. Their results indicate that Squalicorax had a larger 

surface area for the attachment of the quadratomandibularis muscle. This larger attachment surface 

implied a larger muscle, which led them to conclude that the biting force of Squalicorax was 

significantly greater than that of an equivalent sized Galeocerdo cuvier [35].  

5.5. Diet of Fossil and Extant Sharks with Serrated Teeth 

Large and mature sharks with serrated tooth shape such as Carcharodon carcharias, Carcharhinus 

leucas and Galeocerdo cuvier are opportunistic feeders which actively hunt and scavenge the world’s 

oceans. They also migrate seasonally to specific locations to take advantage of abundant food sources, 

such as pinnipeds and albatross [11,15]. Carcharodon carcharias, Carcharhinus leucas and 

Galeocerdo cuvier have also been documented scavenging marine mammals including whales and 

dolphins as well as turtles and large fish [10,14,17,75]. Bones recovered from the sea floor in regions 

where such sharks congregate often bear teeth marks created by the sawing and cutting behavior of 

serrated teeth [76,77].  

Direct and indirect fossil evidence suggests similar feeding behavior among fossil sharks with serrated 

tooth shape, particularly in Carcharocles megalodon, Squalicorax pristodontus and Squalicorax kaupi. 

In locations where Carcharocles megalodon teeth are abundant, vertebral centra and ribs from marine 

mammals including whales, dolphin and dugongs bear serrated teeth marks from predation or 

scavenging [63,78–81]. In fact, the evolution of tooth shape and size in Carcharocles megalodon is 

thought to have occurred contemporaneously with the appearance in the Cenozoic of large mammals 

such as seals and whales [61,82]. Squalicorax kaupi and Squalicorax pristodontus teeth have been 

found embedded in mosasaur vertebral centra. This association provides direct evidence of predation 

or scavenging by these sharks on contemporary large marine reptiles [83]. Serrated teeth from 

Squalicorax kaupi and Squalicorax pristodontus leave a distinct and unmistakable striated tooth pattern 

on prey [39,40,84,85] which is similar to bite marks made by modern sharks with serrated tooth shape.  

Turtle bones with striated tooth marks occur in the same stratigraphic horizon as the Squalicorax 

kaupi and Squalicorax pristodontus teeth utilized in the present study [86]. Additionally, this horizon 

contains pathologically deformed Squalicorax kaupi and Squalicorax pristodontus teeth caused by 

feeding damage to developing teeth [56] and spiral coprolites contains containing bone fragments [87]. 

Such associations provide additional evidence that the above described feeding behaviors also 

occurred at the Monmouth County collection sites.  
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5.6. Serrated Teeth Replacement as an Evolutionary Advantage 

The ability to rapidly replace teeth is one of the most significant evolutionary advantages achieved by 

neoselachians throughout the Mesozoic [34,70,88–91]. Rapid tooth replacement would have ensured 

maximum functionality of the dentition, particularly after feeding-related tooth damage occurred. 

Serrated teeth such as those seen in Squalicorax kaupi and Squalicorax pristodontus also provided an 

evolutionary blueprint for similar teeth seen in some of the larger carcharhiniforms and lamniforms 

throughout the Cenozoic. This type of tooth shape helped make possible successful scavenging and 

predation on marine mammals, turtles, birds, large osteichthyans and other chondrichthyans.  
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