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Abstract: Hydraulic fracturing (HF) is the primary choice for stimulating petroleum reservoirs. Rock
tensile strength and brittleness are crucial parameters required for screening candidate reservoirs
and in designing successful HF operations. However, in situ and laboratory determinations of the
hydraulic tensile strength (HTS) of rock can prove problematic. Alternatively, the HTS could be
estimated from the rock brittleness once a reliable relationship has been established between them.
Accordingly, this paper investigates the correlations between the HTS, as measured using laboratory
hydraulic fracture tests, and ten strength-based brittleness indices (BIs) selected from the research
literature. The primary inputs for computing these BIs are uniaxial compressive strength (UCS) and
the Brazilian tensile strength (BTS), which are typically measured for most projects using standard
laboratory rock mechanics tests or obtained from log data. For the purposes of this experimental
investigation, intact rock core samples were obtained from a carbonate–dolomite formation in Iran,
comprising eight distinct geomechanical units, with measured values of UCS, BTS, and HTS ranging
29.7–162.2, 1.93–12.23, and 7.20–20.63 MPa, respectively. The measured HTS was found to directly
correlate with the UCS, BTS, and Young’s modulus, and inversely correlated with the rock porosity.
Seven of the ten investigated BIs correlated with the measured HTS over 69% (R2 ≥ 0.69). In particular,
the BI expressions developed by Yagiz and Gokceoglu, Ghadernejad et al., and Khandelwal et al.
exhibited relatively strong correlations with the measured HTS (producing R2 values of 0.94, 0.87,
and 0.86, respectively), suggesting that these three HTS–BI correlations could be used to provide
preliminary HTS estimates for the investigated carbonate–dolomite formation in Iran. This work
adds to a database that can be expanded to include other geographical regions for providing useful
information about the selection of a suitable site or reserve for conducting HF operations.

Keywords: hydraulic fracturing; laboratory hydraulic fracture test; hydraulic tensile strength; brittleness
index; carbonate rock; correlation

1. Introduction

Hydraulic fracturing (HF) is a widely used well stimulation technique employed in
petroleum reservoirs to enhance near-wellbore permeability, encourage the flows of oil and
gas, and enhance the production rate by means of internal pressurization resulting from
the injection of a fluid or gas (CO2). For instance, taking North America as an example, in
the second half of the 20th century the use of HF has resulted in delivery enhancements of
up to 70% and 50% for gas and oil wells, respectively [1]. Besides reservoir stimulation, HF
is used in some other activities, such as geothermal [2] and CO2 sequestration [3]. Several
significant factors control the HF operations, including the mechanical properties of the
reservoir rocks, in situ stresses, the wellbore pressure inducing HF (i.e., the breakdown
pressure), the injection fluid properties, and the pumping rate. Numerical modeling and
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laboratory hydraulic fracture experiments are commonly used to assess the impacts of the
above factors on the HF operations [4,5].

Knowledge of the mechanical properties of the reservoir rock formations, especially
the rock brittleness, is vital in designing successful field HF operations [6,7]. The rock
brittleness and rupture properties are closely related, i.e., a rock formation generally
fractures easily and sharply when brittle, or previously existing fractures reopen more
easily via fluid injection during the HF operation. Accordingly, the rock brittleness is a
significant parameter in the selection process for identifying suitable candidate reservoirs
for performing HF operations [8]. In other words, knowledge of the rock brittleness can
provide valuable information for optimizing the gaps created in the reservoir during
the HF treatment [9,10]. High values of rock brittleness are indicators of: (i) effective
initiation and propagation of hydraulic fractures in reservoir stimulation; (ii) increasing
fracture complexity; and (iii) resistance to proppant embedment [11–13]. However, there
is no general standard test method available concerning rock brittleness measurements.
Nonetheless, the rock brittleness can be related to other parameters, such as rock lithology,
texture, effective stress, and strength [10,14]. Some researchers indicated that stiffer rocks
(i.e., of high Young’s modulus, E) are more suitable in low permeability zones to heighten
the productivity of multistage HF operations [15,16]; high stiffness and rock brittleness
are broadly related to one another [17]. As elaborated below, obtaining observations of
the fracture initiation and propagation process from field HF monitoring or laboratory HF
experimentation is not an easy task. From reviewing the pertinent literature, the more
favored approach involves the indirect determination of the rock brittleness properties via
correlations with other mechanical properties [18–21].

In other words, while field HF testing may provide reliable results towards under-
standing the hydraulic fracture initiation and propagation processes/behaviors, it often
proves impractical to perform due to complexities affecting the field HF tests, including the
strict coupling between the fluid flow, opening of the fractures, tip fracturing, and fracture
growth, in addition to geometry monitoring issues [22–24]. In order to deal with these
coupling and monitoring issues, laboratory hydraulic fracture experiments are commonly
employed as an alternative for obtaining insights into the rock fracturing processes [25–27].
In other words, as well as providing an opportunity to better understand the physical
HF mechanisms, the laboratory testing approach provides more detailed and practical
engineering design parameters for modeling the hydraulic fracture initiation and propa-
gation. Previous laboratory studies have mostly focused on the parameters significantly
impacting on the hydraulic fracture behavior/properties, such as the stress magnitude
and orientation [28], confinement pressure, borehole size and orientation [29–31], intact
rock characteristics and discontinuities [32], fluid injection types/properties [33], and the
proppant features [28,29,34]. In the design phase, to avoid the risks of not having adequate
HF treatment and to reduce uncertainties, it is recommended to investigate the relevant
parameters using laboratory hydraulic fracture experiments. However, these experiments
invariably encounter upscaling issues, such that the obtained results may not directly
reduce uncertainties or fully replace in situ HF testing.

Among the typical rock mechanics tests, tensile strength testing on different scales
(i.e., ranging from laboratory to field) is employed to determine the critical input parameters
for planning/designing the HF operations [31]. For instance, the rock’s tensile strength
influences the predicted values of fracture length/thickness, apertures for proppant sizing,
and fluid flow [35]. Laboratory testing methods include the splitting tensile strength (i.e.,
Brazilian) test [36], the modified tension test [37], and the hydraulic tensile strength (HTS)
obtained using the hydraulic fracture test [35]. Various researchers typically employ the
latter approach, i.e., via hydraulic fracture testing [38,39]. Molenda et al. [31] compared
the tensile strength measurements obtained from the Brazilian, modified tension, and
laboratory hydraulic fracture testing approaches for the different rock types investigated,
with the mobilized HTS greater than the strengths measured for the other two test methods,
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although broadly comparable with the Brazilian tensile strength (BTS) results. Note that
some literature reports the rock tensile strength in fracture toughness (FT) form.

Measuring the HTS of the rock core samples in the laboratory requires special hydraulic
fracture equipment and testing of at least three rock test specimens. Rock cores can be
difficult and expensive to obtain, e.g., due to the rock formation depth. Given these
constraints, an economical and expedient alternative would be to find a way of indirectly
estimating the HTS. Considering various rock parameters and from reviewing the pertinent
literature, the brittleness index (BI) seems to be a good option, since, as described above,
brittleness plays a central role in determining the rock’s mechanical behavior and failure
traits. Since the mid-1960s, approximately 80 different BI expressions have been reported
in the literature for discerning rock brittleness properties. They can be broadly classified
into groups based on (i) the rock strength properties, (ii) the shape of the stress–strain
curves, (iii) the elastic variables, (iv) the mineralogical composition, (v) traditional well-
logging, (vi) the internal friction angle, (vii) the force–penetration graphs, (viii) indentation
experiments, (ix) fines content after impact, (x) over-consolidation properties, and (xi) other
indices [40]. An in-depth discussion on the reliability of almost all previously reported BIs
is presented in the article by Meng et al. [40]. From reviewing the pertinent literature, to the
best of the authors’ knowledge, the relationship between the brittleness (BI) and HTS of rock
formations has not been studied much in past research. Neither has a well-proportioned
model been proposed for carbonate rocks linking the brittleness (BI) or fracability and
HTS. Since the rock strength properties for most projects are typically measured using
laboratory experiments or obtained from log data, it would appear to the authors that the
strength-based BIs (i.e., as primary inputs, they have uniaxial compressive strength (UCS),
BTS, and/or E) are the obvious choice for developing various BI–HTS correlations, should
they exist.

For the present research, laboratory testing and statistical analysis were performed
to investigate the efficacy of employing ten previously proposed strength-based BI cor-
relations in predicting the HTS of carbonate rock formations. For this purpose, original
HTS results were obtained using laboratory hydraulic fracture experiments performed
on intact core samples obtained from a carbonate–dolomite rock formation composed of
eight distinct geomechanical units (GUs). For each GU, a series of standard rock mechanics
tests were performed to measure the rock’s porosity (n), UCS, E, Poisson’s ratio (ν), and
BTS properties. Additionally, triaxial compression testing was performed to determine the
values of the rock’s apparent cohesion (C) and internal friction angle (φ). The authors then
chose ten existing strength-based rock BIs (see Table 1) from the published literature for
investigation of their BI–HTS correlations. That is, using the newly assembled database
for the investigated carbonate–dolomite rock formation, the ten correlations between the
deduced BIs and the measured HTS were critically examined, identifying those BIs that
produced strong correlations with the HTS.
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Table 1. Brittleness index (BI) correlations based on rock strength properties.

Equation Strength-Based BI Correlation Reference Application

Equation (1) BI1 = σc/σt [41] Assess rock fragmentation efficiency.
Predict possibility of rock burst.Equation (2) BI2 = (σc − σt)/(σc + σt)

Equation (3) BI3 = (σc + σt)/2 [42] Investigate relationship between rock
brittleness and drillability, cutability,

drilling rate, etc. Equation (4) is used to
predict FT.

Equation (4) BI4 = σcσt/2 [43]

Equation (5) BI5 =
√

σcσt/2 [44]

Equation (6) BI6 = 0.0009γ2.72 + 0.61σ0.81
c − 1.37σ1.13

t + 5.45 [45]
Developed by linear fitting or

regression analysis.
Applications for these BIs were

not reported.

Equation (7) BI7 = 0.59σ0.769
c − 5.085σ0.531

t + 0.009γ2.332

[46]
Equation (8)

BI8 = {ln[tan(10.9 + γ) + 53.27/σc + tan σc + σc + 6.65]}2+[
(6.65 − σt + tan σc + σc)/

(
4.17σt

3
√

γ2

σc−4.17

)]2

Equation (9) BI9 = σ0.84
t E0.51/σ0.21

c [47]

Estimating FT modes I and II.
Finding the positive linear
interconnection of BI-9 and

modes I and II.

Equation (10) BI10 = σ1.26
c × σ−0.76

t = σ1.26
c

σ0.76
t

[48] Used when punch penetration test tools
are not available.

E, Young’s modulus; γ, bulk unit weight; σc, uniaxial compressive strength; σt, Brazilian tensile strength; ρ, bulk
density of rock.

2. Materials and Methods

The rock cores investigated in this research were obtained from a single carbonate–
dolomite formation in Iran. It dates back to the Triassic period, and is composed of a
178 m depth of limestone intercalated with dolomites, containing vast reserves of natural
gas [49,50]. Using the information available from geological reports, macroscopic and
microscopic (e.g., thin section) feature studies, and core analysis, this carbonate–dolomite
formation was sub-categorized into eight distinct GUs. The identified lithology of each GU
is presented in Section 3, along with the physicomechanical properties of the intact samples.
One core from each of the eight GUs was selected for detailed investigation in this research.
Before performing the UCS, BTS, and HTS testing, all test specimens were proven intact,
as determined from X-ray computed tomography image analysis (see Figure 1). Their
petrophysical characteristics and mechanical properties were determined using standard
laboratory rock mechanics tests. The specific gravity (rock matrix density) was measured
using the gas pycnometer method according to ASTM D5550 [51], quantifying the amount
of empty spaces inside the rock samples, thereby allowing for the specific gravity calcu-
lation based on the mass and volume of the solid constituents. The rock porosity was
measured using mercury intrusion porosimetry in accordance with ASTM D4404 [52], with
the bulk density measured in accordance with ASTM D1188 [53]. The velocities of compres-
sional (P-wave) and shear (S-wave) waves (i.e., VP and VS, respectively) were measured
using ultrasonic testing performed in accordance with the ISRM standard. Following the
guidelines set by ISRM, numerous rock test specimens were created for performing the
UCS, BTS, and FT testing. For the UCS determination, cylindrical test specimens were
subjected to axial compression loading using uniaxial testing equipment, with the UCS
value calculated as the highest mobilized axial load (at failure) divided by the test spec-
imen’s original cross-sectional area. The value of Young’s modulus (E) was determined
via analyzing the initial (linear) portion of the obtained axial stress–strain curve, while the
value of Poisson’s ratio (v) was obtained via evaluating the ratio of the measured lateral to
axial specimen strains. The BTS and FT measurements were also obtained in accordance
with the ISRM testing standard. For the FT, test specimens prepared with predetermined
notches experienced crack propagation as the loading was increased. Related data, includ-
ing applied load and crack length, were carefully recorded, and used to calculate the critical
stress intensity factor, providing a numerical representation of the rock’s resistance to crack
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propagation (i.e., its FT). The values of apparent cohesion (C) and internal friction angle
(φ) were determined from the results of a series of triaxial compression tests performed on
cylindrical rock specimens.

Using the apparatus shown in Figure 2, hydraulic fracture testing was performed
on 37 mm diameter × 70 mm long test specimens, each including a central pre-bored
4 mm diameter × 60 mm deep cavity (borehole). The apparatus (manufactured by Wille
Geotechnik, Germany) can apply a specimen confinement pressure, stress- or stain-rate-
controlled axial loading, and an injection pressure to the specimen cavity, with measurement
of its volume change response in the range of 0.0001–58 mL/min.
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For performing the hydraulic fracture tests, each meticulously prepared specimen
was mounted on the base pedestal of the triaxial cell and enclosed by a special membrane
sleeve, with the inlet connection to the specimen cavity (borehole) linked to an oil injection
pump. Once the triaxial cell had been fully assembled, a small axial load (e.g., of 1.0 MPa
stress) was applied via the loading piston to act along the specimen length, serving as a
setting force to justify the specimen and apparatus. The cell chamber was then filled with
oil for the application of the confinement pressure. Next, the axial stress and confinement
pressure were simultaneously increased, typically by 20, 30, or 40 MPa, after which they
remained constant for the rest of the test. Note, because of the test setting and apparatus
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configuration, the applied axial stress and confinement pressure values were not exactly
equal. However, relative to the typical 20–40 MPa stress range investigated, their small
difference (of ~1 MPa) may be considered negligible, such that the hydrostatic (isotropic
confinement) condition can be assumed. For the next stage of the test, the borehole fluid
(oil) was injected by means of a pump into the specimen cavity at a constant rate of typically
1–2 mL/min (depending on the rock porosity), with the resulting increase in the injection
(bore) pressure simultaneously measured. The oil injection was continued until tensile
fracturing of the specimen wall thickness occurred for the peak injection (breakdown)
pressure. The oil injection was stopped, the axial stress and confinement pressure were
relaxed to unload the test specimen, the oil in the cell chamber was allowed to drain
away, and finally the triaxial cell was disassembled to allow the failed test specimen to
be removed.

For each GU, laboratory hydraulic fracture testing was performed at three different
confinement pressures (i.e., in total, 24 separate tests were performed). As an example,
Figure 3 shows one of the test specimens, pre and post testing. Figure 4 presents the
injection pressure mobilized by introducing oil into the specimen’s bore cavity at a flow
rate of 1.2 mL/min for an applied 40 MPa confinement pressure. The injection pressure
progressively increased with the test duration (showing a slight concave upward curvature
in Figure 4) until tensile fracturing of the cylinder wall occurred, at which point the injection
pressure is seen to suddenly reduce to the magnitude of the confinement pressure (40 MPa).
Note, as the oil was injected via the top end of the test specimen and with the pre-bored hole
sealed at its lower end, while every care was taken it was not possible to fully guarantee
that all air was bled from the pore fluid system at the start of each test. It is possible that
the compressibility of trapped air had an impact on the testing procedure.
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3. Experimental Results

Tables 2 and 3 list the respective petrophysical characteristics and mechanical prop-
erties of the eight GUs comprising the carbonate–dolomite rock formation. Note, the
experimental values of UCS and BTS measured for the eight GUs ranged from 29.7 to 162.2
and from 1.93 to 12.23 MPa, respectively. Table 4 presents the hydraulic fracture test results,
with the HTS values determined as follows. For each GU, the measured breakdown pres-
sures for the three tested specimens (A–C) were plotted against their corresponding applied
confinement pressures, from which the best fitting linear correlation was obtained, with
the y-axis intercept value defined as the HTS [29,31]. As an example, Figure 5 presents the
best fitting breakdown pressure–confinement pressure correlation, deduced from the data
obtained for the geomechanical unit GU5, with the associated value of HTS determined as
17.75 MPa. Note, the experimental values of HTS measured for the eight GUs ranged from
7.20 to 20.63 MPa.

Table 2. Petrophysical characteristics of the tested specimens for each geomechanical unit (GU).

GU Lithology
Specific
Gravity
(g/cm3)

Porosity, n
(%)

Bulk Density, ρ
(g/cm3)

VP
(m/s)

VS
(m/s)

1 Dolomite and
anhydritic dolomite 2.87 5.25 2.80 3835 2332

2 Anhydritic dolomite 2.73 16.61 2.28 3207 1811

3 Limestone 2.71 1.57 2.50 3797 2284

4 Anhydritic dolomite 2.86 1.89 2.75 4325 2510

5 Anhydritic dolomite 2.87 0.46 2.54 4182 2483

6 Limestone and
dolomite 2.71 19.29 2.50 2199 1262

7 Limestone 2.88 12.81 2.52 3129 2183

8 Limestone 2.77 24.41 2.09 3169 2189

VP, compressional wave velocity; VS, shear wave velocity.
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Table 3. Some mechanical properties of the tested specimens for each geomechanical unit (GU).

GU UCS (MPa) E (GPa) ν C (MPa) φ (Degree) BTS (MPa) FT
(MPa.m0.5)

1 114.4 ± 0.5 40.8 0.25 30.6 43.1 9.86 ± 0.5 0.585

2 57.7 ± 0.5 21.0 0.20 15. 7 32.3 5.50 ± 0.5 0.474

3 107.4 ± 0.5 35.1 0.25 27.9 39.6 8.25 ± 0.5 0.551

4 162.2 ± 0.5 45.4 0.20 34.5 46.7 12.23 ± 0.5 1.285

5 127.1 ± 0.5 39.5 0.21 25.4 49.0 12.11 ± 0.5 1.140

6 29.7 ± 0.5 10.7 0.29 12.5 26.9 1.93 ± 0.5 0.425

7 48.8 ± 0.5 20.6 0.30 9.9 26.3 4.67 ± 0.5 1.950

8 49.0 ± 0.5 22.7 0.27 14.8 21.2 4.58 ± 0.5 0.580

BTS, Brazilian tensile strength; FT, fracture toughness; UCS, uniaxial compressive strength; C, apparent cohesion;
E, Young’s modulus; φ, internal friction angle; ν, Poisson’s ratio.

Table 4. Laboratory hydraulic fracture test results for each geomechanical unit (GU).

GU Test Specimen Confinement
Pressure (MPa)

Breakdown
Pressure (MPa) HTS (MPa)

1
A 20.0 ± 0.5 45.2 ± 0.5

19.24B 30.0 ± 0.5 63.7 ± 0.5
C 40.0 ± 0.5 72.8 ± 0.5

2
A 20.0 ± 0.5 33.0 ± 0.5

9.30B 30.0 ± 0.5 48.5 ± 0.5
C 40.0 ± 0.5 57.7 ± 0.5

3
A 20.0 ± 0.5 36.0 ± 0.5

20.63B 30.0 ± 0.5 49.6 ± 0.5
C 40.0 ± 0.5 53.1 ± 0.5

4
A 20.0 ± 0.5 42.0 ± 0.5

18.32B 30.0 ± 0.5 59.0 ± 0.5
C 40.0 ± 0.5 67.2 ± 0.5

5
A 20.0 ± 0.5 42.2 ± 0.5

17.75B 30.0 ± 0.5 56.0 ± 0.5
C 40.0 ± 0.5 67.1 ± 0.5

6
A 20.0 ± 0.5 32.5 ± 0.5

8.67B 30.0 ± 0.5 39.0 ± 0.5
C 40.0 ± 0.5 54.8 ± 0.5

7
A 5.0 ± 0.5 11.5 ± 0.5

7.20B 10.0 ± 0.5 15.0 ± 0.5
C 15.0 ± 0.5 19.7 ± 0.5

8
A 10.0 ± 0.5 20.1 ± 0.5

11.38B 20.0 ± 0.5 30.6 ± 0.5
C 30.0 ± 0.5 38.4 ± 0.5
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Figure 5. Correlation between specimen breakdown and confinement pressures obtained for geome-
chanical unit GU5.

4. Analysis
4.1. HTS Correlation with Other Rock Parameters

Figure 6 presents various correlations deduced between the measured HTS and the
UCS, BTS, Young’s modulus, and FT parameters for the eight carbonate GUs investigated.
Furthermore, Figure 7 presents the correlations deduced between the HTS and the rocks’
physical properties of porosity, bulk density, VP, and VS.

Clear trends are evident between the HTS and the UCS, BTS, Young’s modulus, VP,
and porosity. In other words, the HTS tends to increase proportionally with increasing
UCS, BTS, Young’s modulus, and VP, with the opposite occurring for the HTS—porosity
correlation. Among the various parameters linked to the HTS in this study, the correlations
between the HTS and the UCS, BTS, and E parameters were found to produce coefficient of
determination (R2) values closer to unity (i.e., correlations between the HTS and the rock
porosity, bulk density, VP, and VS produced lower R2 values). As seen in Figure 6d, no
correlation was found between the HTS and FT, with an R2 value of 0.02. These outcomes
support the authors’ original decision to choose the strength-based BIs for assessing the
possible correlations with the HTS. Moreover, rocks with high UCS, BTS, and Young’s
modulus can generally be categorized as brittle. Hence, based on the obtained correlations
in Figures 6 and 7, with a summary list presented in Table 5, it can be concluded that brittle
rocks mobilize high HTS values. Whereas the HTS value declined severely in the case of
high porosity rock (i.e., for n > 10% considering the eight GUs investigated), as reported
previously for other rock formations in [17,28,29,31,34].

Table 5. Various deduced correlations with HTS calculation error comparison.

Correlation R2 RMSE MAPE

HTS = 0.1003 × UCS + 5.318 0.75 2.53 16.33
HTS = 1.1912 × BTS + 5.243 0.69 2.81 19.27

HTS = 0.395 × E + 2.4036 0.80 2.26 15.38
HTS = −0.484 × n + 19.026 0.67 2.90 22.27
HTS = 12.861 × ρ − 18.073 0.30 4.27 33.31

HTS = 0.0064 × VP − 8.1304 0.66 2.96 23.18
HTS = 0.0089 × VS − 4.9005 0.46 3.75 28.45

MAPE, mean absolute percentage error; RMSE, root-mean-square error; R2, coefficient of determination.
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Figure 6. Correlations between the HTS and (a) UCS, (b) BTS, (c) Young’s modulus, and (d) FT for
the investigated carbonate–dolomite formation, comprising eight distinct GUs.
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Figure 7. Correlations between the HTS and (a) porosity, (b) bulk density, (c) VP, and (d) VS for the
investigated carbonate–dolomite formation, comprising eight distinct GUs.



Geosciences 2024, 14, 52 11 of 16

4.2. HTS Correlation with BIs

This section investigates the strength of the correlations between the ten existing strength-
based BIs listed in Table 1 and the measured HTS for each of the eight GUs. Using the measured
UCS, BTS, bulk density, unit weight, and/or Young’s modulus values as inputs, the values of
the ten BI parameters were calculated for each GU using Equations (1)–(10), as listed in Table 6.

Linear, logarithmic, exponential, and power curve fitting models were investigated for
the eight HTS–BI datasets (i.e., one for each GU) to identify the best HTS–BI correlations.
The power curve fitting model was generally found to produce better results (in terms of
obtaining R2 values closer to unity), i.e., f (x) = axb + c, where a, b, and c are the model
coefficients. Figures 8 and 9 present the power curve fitting applied for each HTS–BI
dataset, with the obtained correlations and associated R2 values listed in Table 7. According
to Table 7, a general trend of increasing HTS for increasing BI exists, with eight out of the
ten BI correlations investigated producing reasonable or strong correlations with the HTS
based on their R2 values (see Table 7).

Table 6. Values of ten strength-based BIs calculated for the eight GUs using Equations (1)–(10).

GU Equation
(1)

Equation
(2)

Equation
(3)

Equation
(4)

Equation
(5)

Equation
(6)

Equation
(7)

Equation
(8)

Equation
(9)

Equation
(10)

1 11.6 0.84 62.2 564.2 23.8 15.6 5.5 69.6 16.8 68.9

2 10.5 0.83 31.6 158.6 12.6 12.3 0.8 55.7 8.4 45.3

3 13.0 0.86 57.8 443.0 21.0 17.5 6.0 84.7 13.5 72.9

4 13.3 0.86 87.2 991.9 31.5 19.9 10.4 95.8 19.7 90.8

5 10.5 0.83 69.6 769.7 27.7 13.4 5.5 72.2 19.1 67.3

6 15.4 0.88 15.8 28.6 5.4 12.1 0.9 77.7 2.9 43.5

7 10.5 0.83 26.7 114.0 10.7 11.9 0.3 33.0 7.5 41.6

8 10.7 0.83 26.8 112.3 10.6 12.1 0.4 45.9 7.8 42.4
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Figure 8. Best fit HTS–BI correlations for the investigated carbonate–dolomite formation comprising eight
distinct GUs, with (a–d) presenting the values of the BIs deduced using Equations (1)–(4), respectively.
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Table 7. Power equations relating the measured HTS with each BI deduced using Equations (1)–(10).

Correlation Correlation Equation R2 RMSE MAPE

HTS–BI-1 HTS = (−1.331e+15)BI1(−14.1) + 16.8 0.21 5.69 49.96

HTS–BI-2 HTS = (25.8)BI2(1.16) − 6.952 0.07 4.89 39.00

HTS–BI-3 HTS = (11.41)BI3(0.26) − 16.91 0.69 2.95 21.08

HTS–BI-4 HTS = (3.05)BI4(0.28) − 0.86 0.74 2.56 18.89
HTS–BI-5 HTS = (3.19)BI5(0.55) − 1.14 0.74 3.65 20.37
HTS–BI-6 HTS = (−2.087e+14)BI6(−12.29) + 19.67 0.94 1.55 3.45
HTS–BI-7 HTS = (26.17)BI7(0.12) − 14.73 0.86 1.95 13.90
HTS–BI-8 HTS = (6.27)BI8(0.37) − 16.28 0.50 3.73 24.37
HTS–BI-9 HTS = (1.03)BI9(0.9) + 4.34 0.72 2.66 17.92
HTS–BI-10 HTS = (−2.722e+6)BI10(−3.28) + 20.86 0.87 0.88 4.31

MAPE, mean absolute percentage error; RMSE, root-mean-square error; R2, coefficient of determination.
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5. Discussion

This section discusses the relative performances of the ten BIs as predictors of the
measured HTS for the investigated carbonate–dolomite formation that was comprised of
eight distinct GUs. The first two indices, i.e., BI-1 and BI-2, were early attempts reported
in the literature [41] for estimating rock brittleness; however, as shown for their BI–HTS
correlations reported in Table 7, they were found to produce weak and no correlations,
respectively for the investigated carbonate–dolomite formation. Possible reasons might
be the simple assumptions adopted in [41] for developing Equations (1) and (2), their
physical meanings not representing the rock fracturing process according to [45], such
that these two indices are not satisfactory BI indicators. For instance, index BI-1 more
properly characterizes the rock’s strength than its brittleness, since (referring to Equation
(1)) both tensile strength and BI-1 increase with UCS. Furthermore, the experimental values
of BI-1 and especially of BI-2 have narrow ranges. Despite sharing similar limitations
to BI-1 and BI-2, the indices BI-3 and BI-4 positively correlate with the rock drillability,
specific energy, and FT [44,54]. Accordingly, BI-3 and BI-4 were found to produce good
correlations with the HTS, giving R2 values of 0.69 and 0.74, respectively (refer to Table 7).
Apart from BI-8 (R2 = 0.50), indices BI-5 to BI-10 produced good to strong correlations with
the HTS according to their calculated R2 values. The strongest correlations were obtained
for indices BI-6, BI-10, and BI-7 (i.e., Equations (6), (7) and (10), with R2 values of 0.94,
0.87, and 0.86, respectively. Hence, the authors concluded that these three equations may
be appropriate for obtaining preliminary approximations of the HTS parameter for the
investigated carbonate–dolomite formation. It should be noted that HTS–BI correlations
deduced from experimental data obtained for one specific rock type, or established using a
small database, may not be applicable to other more general conditions (e.g., for other rock
types and stress states). Hence, it is recommended that further experimental laboratory
studies be performed on other carbonate formations, as well as for other rock types, to
investigate the wider application of the three identified HTS–BI correlations.

6. Summary and Conclusions

As one of the critical parameters in designing reliable HF operations, the determination
of the rock tensile strength via laboratory hydraulic fracture testing (like the HTS tests
performed in the present investigation) is an expensive and time-consuming exercise.
To reduce such costs and save time, the rock brittleness, assessed in terms of various
proposed BI metrics, may be a useful parameter for estimating the HTS. For the present
research, ten strength-based BIs were selected from the existing literature for evaluation
in identifying possible strong correlations among them and the laboratory HTS measured
for a carbonate–dolomite formation in Iran. The major findings of this research work are
summarized, as follows:

• UCS, BTS, E, ρ, VP, and VS directly correlated with the HTS, whereas the rock porosity
was found to inversely correlate with the HTS. The correlations between the HTS and
the UCS, BTS, and E produced the best agreements.

• Seven of the ten investigated BIs correlated with the HTS over 69% (R2 ≥ 0.69).
Whereas the indices BI-1 and BI-2 were found to produce weak or no correlations with
the HTS, since they are considered as not satisfactory indicators of rock brittleness.

• The best agreements with the HTS among the ten investigated BIs occurred for indices
BI-6, BI-10, and BI-7 (developed by [45], [48], and [46], respectively), producing R2

values of 0.94, 0.87, and 0.86, respectively.

While other parameters (e.g., in situ stresses) have an impact on the HF process, the
authors concluded that the three correlations developed in this paper between the HTS and
the indices BI-6, BI-10, and BI-7 may be used to provide preliminary HTS estimates for the
investigated carbonate–dolomite rock formation in Iran. It is recommended that further
experimental laboratory studies be performed on other carbonate formations, and for other
rock types, to investigate the possible wider application of these three HTS–BI correlations,
e.g., in selecting a suitable site or reserve for conducting HF operations.
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Abbreviations

BI brittleness index
BI-1 to BI-10 brittleness index correlations (numbered 1 to 10)
BTS Brazilian tensile strength
HF hydraulic fracturing
HTS hydraulic tensile strength
FT fracture toughness
GU geomechanical unit
MAPE mean absolute percentage error
RMSE root-mean-square error
UCS uniaxial compressive strength

Notations

a, b, and c coefficients of power equation
C apparent cohesion (cohesion intercept)
E Young’s modulus
R2 coefficient of determination
VP compressional wave velocity
VS shear wave velocity
γ bulk unit weight
ν Poisson’s ratio
φ internal friction angle
ρ bulk density
σc uniaxial compressive strength
σt Brazilian tensile strength
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