
Citation: Puzzilli, L.M.; Ruscito, V.;

Madonna, S.; Gentili, F.; Ruggiero, L.;

Ciotoli, G.; Nisio, S. Natural Sinkhole

Monitoring and Characterization: The

Case of Latera Sinkhole (Latium,

Central Italy). Geosciences 2024, 14, 18.

https://doi.org/10.3390/

geosciences14010018

Academic Editor: Jesus

Martinez-Frias

Received: 15 November 2023

Revised: 22 December 2023

Accepted: 28 December 2023

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

geosciences

Article

Natural Sinkhole Monitoring and Characterization: The Case
of Latera Sinkhole (Latium, Central Italy)
Luca Maria Puzzilli 1,* , Valerio Ruscito 1, Sergio Madonna 2, Francesco Gentili 3, Livio Ruggiero 1 ,
Giancarlo Ciotoli 4 and Stefania Nisio 1

1 Geological Survey of Italy, Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano
Brancati 60, 00144 Rome, Italy; valerio.ruscito@isprambiente.it (V.R.); livio.ruggiero@isprambiente.it (L.R.);
stefania.nisio@isprambiente.it (S.N.)

2 Department of Agriculture and Forest Sciences, Tuscia University, Via San Camillo De Lellis snc,
01100 Viterbo, Italy; sermad@unitus.it

3 Department of Ecological and Biological Sciences, Tuscia University, Via San Camillo De Lellis snc,
01100 Viterbo, Italy; francesco.gentili@unitus.it

4 CNR-IGAG, National Research Council, Institute of Environmental Geology and Geoengineering,
Area della Ricerca di Roma 1-Strada Provinciale 35d, 9, 00010 Rome, Italy; giancarlo.ciotoli@cnr.it

* Correspondence: lucamaria.puzzilli@isprambiente.it

Abstract: The occurrence of sinkhole phenomena in Italy is a prevalent and very uncertain class
of geological hazards that pose a significant threat to human infrastructure and individuals. These
events are characterized by their unpredictability and the challenges associated with their accurate
forecasting. Both natural and anthropic factors influence the occurrence of these events; therefore,
accurate identification of the above factors is critical for effective proactive and predictive efforts.
The work presented in this paper refers to a collapse that occurred in a volcanic region in northern
Latium (central Italy) on 31 January 2023. The area has been monitored using drones since the early
stages of the sinkhole’s formation and has continued to date. Then, the collapse and the neighboring
area were examined via geophysical and geochemical investigations to identify potential underlying
factors. Geophysical and geochemical data were combined to provide a preliminary hypothesis on
the collapse’s genesis. The obtained data indicate that the structural collapse can be attributable to the
fluctuation in groundwater levels as well as the development of instabilities along its banks, leading
to a growth in its dimensions.

Keywords: natural sinkhole; geohazards; monitoring; UAV; photogrammetry; natural radioactivity;
soil gas; radon; thoron; geophysical methods; 3D ERT; MASW; HVSR

1. Introduction

In the technical literature, a wide range of terminology is used to describe different
types of collapse. Over the past several decades, the term “sinkhole” has been widely used
to encompass a subcircular depression related to an abrupt collapse of the ground surface
into an underlying void or cavity, irrespective of its morphogenetic origin or geometric
characteristics [1–5]. Sinkholes are common in Mediterranean countries and their formation
and geomorphological evolution can be attributed to both natural and anthropogenic
factors [6–18]. They represent one of the most relevant geohazards due to their high level
of danger and unpredictable nature and may cause severe damage to infrastructure as well
as casualties, especially in urban areas [19]. Numerous attempts were made to classify
sinkholes, considering the processes through which they are formed. These efforts include
assessments of the terminology employed to designate various forms of geological cavities.
The most recent and thorough study on this topic was conducted by Whaltham [9,10].
However, there are many other documented examples of regional inventories, such as
those presented by some researchers, e.g., [11–18]. Natural sinkholes mainly occur in
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regions characterized by the presence of limestone or evaporitic rock formations. The
predisposing factors for their formation include the existence of soluble rocks that undergo
karst processes, as well as the geotechnical characteristics of the underlying bedrock and
the chemistry and flow rate of groundwater in the overlying loose layers, if present. In
addition, the upwellings along faults and fractured systems of acidic deep high-pressure
fluids containing significant amounts of CO2 and H2S can also have the potential to disrupt
the carbonate matrix of the shallow rocks and sediments, thus creating the instability of the
shallow sedimentary cover [12–14]. Furthermore, extreme weather events linked to climate
change can also cause significant variations in groundwater levels and flow rates, which
can affect soil dissolution and erosion in both natural and anthropic settings [20–23]. In
contrast, anthropogenic sinkholes are generally caused by human activities such as mining,
drilling, and construction. In urban areas, underground cavities are considered a common
predisposing factor for anthropogenic sinkhole formation [15]. Regardless of its origin, if
detected at an early stage, sinkhole formation and evolution can be successfully observed
and monitored using indirect methods [24–27]. The prediction of sinkhole occurrences is
challenging due to the typically minimal surface deformations that serve as precursors [27–29].
However, some preventive measures should be adopted to assess and possibly mitigate
the sinkhole risk. These include defining the geological subsoil setting at a proper scale,
monitoring groundwater levels, surveying the area for any anomalies or fractures in the
subsoil, and checking the condition of sewer and water systems (in urban areas).

This paper examines the emergence of a natural sinkhole formation near Provincial
Road n.118 in the municipality of Latera (northern Latium, central Italy) in late January 2023.
The collapse took place within a volcanic region where no previous occurrences of similar
phenomena have been documented in the geological record. Although sparsely inhabited,
the study area has experienced significant alterations to its hydrographic network and
restoration initiatives, which involved extensive excavation and backfilling. The potential
consequence of these modifications is the loss of historical evidence, which complicates the
risk assessment approach. In the area, technical and scientific activities were conducted to
support the local administration in the safe management of the roadway while assessing
the residual risks in the surroundings of the collapsed area.

In particular, the following activities were carried out:

• Monthly based monitoring by using an Uncrewed Aerial Vehicle (UAV) to evaluate
soil subsidence and study the rise in the groundwater level in the collapse during the
first 30 days after its formation.

• Geophysical surveys to define a reliable subsurface model useful to address direct in-
vestigations (boreholes, geotechnical tests) and to image the collapsed area to possibly
infer considerations on buried structures potentially responsible for the event.

• Geochemical survey to highlight the presence of anomalous concentrations of soil
gases, indicating the presence of advective gas migration from depth along major
permeability pathways (e.g., faults and fractures) that may trigger the collapse.

The data given refer to continuous eight-month monitoring activities, leading to the
construction of a subsurface model supporting a preliminary hypothesis about sinkhole
genesis via suffusion [17].

2. Study Area
2.1. General Geological Setting

The study area is located in the Latera Volcanic Complex (LVC), whose activity
dates back to about 0.28–0.14 Ma, consisting of a gently sloping, central volcanic edi-
fice about 30 km wide, truncated by a polygenetic caldera associated with several stages of
collapse [30,31]. The LVC is part of the Quaternary Vulsini Volcanic District (VVD), a belt
of young volcanoes aligned along the western coast of Italy. The northwestern sector of
the Latera caldera hosts the minor collapse structure of the Vepe caldera, interpreted as a
nested caldera system developed through multiple collapse phases, each following inter-
vals of moderate-magnitude explosive eruptions (Figure 1). Based on the distribution of
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post-collapse lava domes, this polycyclic caldera had been interpreted “to involve coherent
subsidence of a piston-like block” bounded by a ring fracture system. These occurred in four
major pulses that produced moderate-volume ignimbrites, pumice-fallout, pyroclastic-surge
deposits, lavas, and largely post-caldera cinder and spatter deposits [32–34]. According
to many authors (see, e.g., [32]), the products referring to the older Vepe’s activity can
be distinguished from those derived from the recent activity, respectively, represented by
the “Poggio Pinzo” unit and by the “Vulcanite complessa di Pitigliano” (VCP) unit as in
Figure 1B.
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Figure 1. Geological schematic map of Vepe Caldera (A) along with the stratigraphic interpretative
section (B) based on [32] (modified and partially redrawn). The town of Latera is located just 1 km
NE from the M. Calveglio relief. Legend: (1) recent lacustrine and alluvial deposits; (2) slope (eluvial-
colluvial) and ancient lacustrine and alluvial deposits; (3) M. Spinaio lava units; (4) hydromagmatic
products pertaining to Vepe final stage; (5) M. Rosso units; (6) P. Pilato units; (7) ancient Vepe Caldera
units; (8) sinkhole area; (9) well; (10) rim of subcircular depression (buried or presumed); (11) caldera
rim; (12) crater (Mezzano maar); (13) trace of geological sections reported in (B); (14) road.

The ancient Vepe’s activity is represented by several kinds of pyroclastic deposits,
mostly consisting of pumice deposits and scoriaceous beds, enclosing ballistic blocks and
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bombs due to strombolian fallout, interbedded with massive plane- and cross-laminated
and dune-bedded deposits of ash and poorly vesicular scorias and lapilli from hydromag-
matic surges [33,34]. According to many authors, during the initial activity, a first calderic
collapse takes place, marking the beginning of the formation of Vepe’s caldera. The last
phase of Vepe’s activity results from the emplacement of the ca. 166–155 ka VCP unit, made
by different volcanic sub-units with strong vertical and horizontal variability, fed by a
chemically zoned magma chamber poor in volatile components [35,36]. In the final stage
of Vepe’s caldera evolution, dome-like structures occurred on the pyroclastic deposits at
the base of the VCP. The final phase of the Vepe’s activity is documented by the Mezzano
maar structure with associated hydromagmatic products that, in turn, were covered by
the Monte Spinaio units representing the last dome-like structures put in place in the area,
presumably from more than one emission center (Figure 1A). The alluvial and lacustrine
deposits are widely outcropping within the caldera with a thickness of several tens of
meters that includes peaty levels with poor geotechnical characteristics [36].

2.2. Stratigraphic Setting

The products of Vepe caldera have been intercepted by the Olpetella well, located
some hundreds of meters from the sinkhole. The well has been realized for geothermal
exploration with a core-destruction drilling technique; therefore, log descriptions mostly
referring to the lithology, grain size, composition, and texture of championed geological
units. For the first 16 m, loose covers with an abundant sandy–silty matrix, referred to
as alluvial and lacustrine environments, have been recorded in the well-log. This mantle
rests on porous but compact lava, jointed at the base close to 36 m in depth, where a 4 m
thick pyroclastic deposit has been found. From 40 to 45 m in depth, the well encountered
compact lava, resting on an undistinguished coarse and altered pyroclastic layer. From
78 m to 102 m, light-grey brittle pozzolanas were drilled, lying over about 40 m of compact
effusive unit (grey lava). The well-log ends at a depth of 196 m, and the basal layer recorded
consists of undistinguished and heterogeneous pyroclastic materials, coarse, altered and
with increasingly fine grain size to depth (Figure 2B). With only synthetic lithostratigraphic
descriptions available, no clear hypotheses can be made on the attribution of the drilled
volcanic units to geologic formations described in the literature. No indication about the
groundwater level is reported in the well log; however, filters were placed at three intervals
starting from 55 m in depth, suggesting the possible presence of a multi-level aquifer. In this
regard, note that at a regional scale, the main groundwater table is expected to be located
in this area between 440 and 420 m above sea level, i.e., from 10 to 30 m in depth [37].

2.3. Morphological Setting

Due to the persistence of a marshy environment in many areas within the caldera,
many reclamation activities took place, in particular during the XVIII century, such as
reclamation works focused on the Mezzano Lake and its hydraulic network [36]. Figure 1A
shows that the ditches northeast of Mezzano Lake appear clearly rectified. These works
also concerned the Olpeta River, which runs just north of the study area, to lower the
riverbed by 2 m. Further reclamation works [38] were realized for the last time between
1934 and 1936 in the Olpeta area: the final morphological setting of the study area at present
is depicted in Figure 2A, where the hydraulic network had been marked with blue color in
order to underline the effects of the reclamation activities. After the analysis of available
aerial photos in the same picture (dotted blue), the course of a possible old ditch that ran
through the area (before it was channelized) has been recognized.

2.4. Climate

The territory of Latera is characterized by a warm–rainy temperate climate (Csa, ac-
cording to [39]) with average temperatures between 18◦ and −3 ◦C. The dry season lasts
from June to August, and the temperatures in the hottest month reach above 22◦ (these
characteristics can also be deduced from the climatograph obtained from the data of the ref-
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erence rain gauge station for the municipal area, namely the “Latera-Centro Florovivaistico”
station of the Regional Agency for Agricultural Development and Innovation of Lazio—
ARSIAL (open data available at http://dati.lazio.it/catalog/it/dataset?organization=arsial
(accessed on 10 November 2023), located just 2.5 km southeast of the study area). The
climatograph shown in Figure 3 was reconstructed taking into consideration the mete-
orological series reported on the ARSIAL website and referred to the period 2004–2023.
The 2005 data were not considered, due to the lack of measurements during the last four
months of the year. The average temperature of this area is 13.7 ◦C, while the annual
rainfall slightly exceeds 1000 mm. The rainiest months are November and December, while
constant rainfall levels are recorded in the months of January, February and March. As for
2023, the month of January was characterized by rainfall of 154.9 mm, with many events in
the first twenty days.
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Figure 2. Morphological setting of the study area with the location of the sinkhole expressed in WGS84
geographic coordinates (A) along with the existing hydraulic network (blue lines) partially modified
by reclamation works that occurred in the last two centuries (see text for details). Coordinates: on the
right, the stratigraphic record of the Olpetella well (B) located east of the sinkhole, as indicated by the
white arrow.
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3. Materials and Methods

The characterization of the subsoil in the study area was accomplished by implement-
ing the Electrical Resistivity Tomography (ERT) method first, combined with surface-wave
seismic surveys and single station microtremors recordings for Horizontal-to-Vertical Spec-
tral Ratio technique ([40] hereafter referred to as HVSR). After the geophysical campaigns, a
preliminary subsoil model was defined, and additional surveys were conducted, consisting
of geochemical parameters measurements (natural radioactivity), in order to constrain the
subsoil model and to investigate the predisposing factors, e.g., fractures/faults, that could
have contributed to the formation of the sinkhole. In the following sections, the geological
setting of the study area is briefly described, along with the expected local stratigraphic
setting as derived from the well-log for geothermal exploration near the site. The results
of photogrammetric monitoring of the sinkhole area are then illustrated, including the
estimation of the groundwater balance within the cavity over eight months. The indirect
methods applied are briefly described, and the outcomes obtained from geophysical and
geochemical surveys are integrated and eventually discussed.

3.1. UAV Photogrammetric Surveys

UAVs surveys were carried out monthly, from February to September 2023, aiming
to monitor any variations in the shapes and dimensions of the sinkhole. Two types of
Uncrewed Aerial Vehicle (UAV) were used: the Italdron EVO 4hse with a 9 kg take-off
configuration and armed with a Sony Alfa 7r mark II with 35 mm optics; and the DJI Mavic
Pro, with a 900 g take-off configuration and on-board camera. To obtain topographic data
from UAV surveys (see below), all flights were supported by placing Ground Control Points
on the ground (three of which fixed and non-removable). The results obtained were also
used as a topographical basis for geophysical investigations. The flights were carried out,
imposing a photographic overlap of 75–80% between frames at an altitude varying between
30 m and 65 m (depending on the UAV used) to obtain a minimum nominal definition on
the ground between 0.9 and 1.3 cm/pixels. The nadiral flight was integrated with passages
of camera image acquisitions at 45◦ and lower altitudes to reconstruct the structure of
the sinkhole and facilitate the cleaning and classification of the dense cloud. The images
and coordinates thus obtained were processed using the commercial software Agisoft
Metashape Professional v.1.6.3 (https://www.agisoft.com, accessed on 10 November 2023),
following the steps described below:

• Image control and quality assessment to identify high-quality images to be used;
• Image alignment and preliminary sparse cloud elaboration;
• Attribution of a reference system (EPSG 3003) and positioning of marks in pho-

tographic images, with subdivision into ground control point (GCP) and control
point (C.P.);

• Process of alignment optimization and gradual selection for error reduction;
• Heights map from high-quality, dense cloud generation;
• Elimination of low confidence points and classification of the dense cloud into terrain

points;
• Generation of the final model using terrain points (DTM) and quality reduction from

1.5 cm/pixel to 20 cm/pixel;
• Generation of contour lines (50 cm interval);
• Creation of the textured 3D topographic model;
• Creation of the orthomosaic (1.15 cm/pixel).

3.2. Geophysical Methods

The geophysical surveys in the study area were implemented as depicted in Figure 4,
including single-station ambient vibrations recordings for HVSR, active seismic (surface-
wave surveys) and geoelectrical profiles for tomographic 2D and 3D imaging (ERT). The
location and the length of the seismic and resistivity profiles have been fixed after the
early field surveys. The eastern end of the investigated area includes the location of the

https://www.agisoft.com
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Olpetella geothermal well, from which information on the expected stratigraphic setting
has been derived. Seismic surveys were extended to the Olpetella well area to possibly
extend stratigraphic information in the study area through geophysical models.
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3.2.1. Electrical Resistivity Surveys

This method is recognized as the most suitable electrical method to image the subsoil
by exploiting the correlation of electrical resistivity with hydraulic and geotechnical param-
eters [41]. Investigations are routinely conducted from the soil surface by using a four-pole
system according to which the soil is energized with a known amount of electric current by
the application of a potential difference between two metal pins conventionally defined as
current electrodes. As a result of the induced current, a potential field is generated within
the ground, the intensity of which is measured by means of a second pair of electrodes
(potential electrodes). The four-electrode configurations used for resistivity measurements
follow field arrangements called “array”, e.g., Wenner (W), Wenner–Schlumberger (WS),
Dipole–Dipole (DD), etc. (see, among others, [42]), for which the main characteristics of
resolution, sensitivity, and depth of investigation are known [42,43]. Subsoil resistivity dis-
tribution along a 2D section is estimated through the use of geophysical software, by means
of the so-called “inversion” procedure of the experimental data which proceeds through
successive iterations to search for the distribution of resistivity values that minimize the
differences between measured and calculated resistivity values, within acceptable error
limits (usually expressed as root mean square error, RMS). The area affected by the sinkhole
was investigated through four resistivity profiles, crossing the study area to possibly model
the subsoil setting along the NS and EW directions. Resistivity data were also acquired in a
real 3D configuration, using L-shaped segments of cables deployed around the sinkhole, to
achieve resistivity measurements referring to the subsurface of the area now occupied by
the hollow. The MAE X612EM+ multichannel geo-resistivimeter (www.mae-srl.it, accessed
on 10 November 2023), a multi-electrode system with an integrated P.C. capable of han-
dling up to 96 electrodes, was used for geoelectrical prospecting. Dipole–Dipole (DD) and

www.mae-srl.it
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Wenner–Schlumberger (WS) arrays were used for the characterization of the area along all
profiles to combine the needs of horizontal coverage, vertical and lateral resolution, and
depth of investigation. Based on the available space, a maximum of 72 electrodes with 3 m
spacing were deployed along each profile or L-shaped ground configuration around the
sinkhole. Data referring to the 2D profiles were processed with the 2D inversion software
Res2DInv [43,44]. As a subsequent step, the 3D resistivity modeling referred to the subsoil
of a squared area (about 45 × 45 m2), approximately centered on the sinkhole lake, up to
10 m in depth. Data were processed by means of the ViewLab software (Geostudi Astier
srl (Livorno, Italy), Multi-Phase Technologies LLC (Sparks, NV, USA)) that implements
the Occam’s regularization as described in [45,46]. The inversion algorithm is efficient
in managing noisy data, as the robust inversion procedure allows a data re-weighting
for the adaptive changes in the variance matrix after each iteration (see [47] for further
details on this topic). A value of Gaussian noise equal to 5% (i.e., the error associated with
measurements, in percentage) was chosen before proceeding to the inversion, as well as
the initial apparent resistivity value for the starting homogeneous half-space, chosen to be
equal to 20 Ωm (corresponding to the mean apparent resistivity value).

3.2.2. Surface-Wave Surveys

Seismic methods have been widely used for many decades for subsurface characteri-
zation in support of exploration and geotechnical design due to the link between seismic
parameters, such as the compressional (P) wave velocity, shear wave (S) velocity, signal
attenuation, energy of reflections/reflections, etc., and the resistance of materials to nor-
mal and tangential stresses [48]. Among the seismic methods, the surface waves can be
efficiently applied for characterizing soils in terms of shear wave velocity [49]. Surface
waves are called “dispersive” because their propagation in inhomogeneous media occurs
according to a phase velocity that varies with frequency [50–52]. Data acquisition can
be performed with seismic survey equipment by employing an array of receivers (for
phase velocity estimation, as in [51,52]) or a single sensor (as for the case of amplitude
and group velocity analysis, e.g., [53]). According to the acquisition procedure and anal-
ysis of a multichannel seismic record proposed by [52], i.e., the so-called Multi-Channel
Analysis of Surface Waves (MASW), a series of regularly spaced vertical sensors, usu-
ally 4.5 Hz geophones, are deployed along a straight line and a vertical impact source is
used to generate Rayleigh waves. The recorded seismic traces are then transformed into
the velocity–frequency domain to obtain the (Rayleigh or Love) phase velocity spectrum.
Active seismic sources (e.g., sledgehammer or drop weight) are mostly used to gener-
ate artificial surface waves, but microtremors (e.g., [54,55]) are also exploited as passive
seismic sources for site investigation due to their energy content at very low frequency,
thus allowing us to extend the velocity profile to depth. In the classical approach, the
velocity spectrum is interpreted in terms of modal dispersion curves that are inverted to
eventually obtain the VS vertical profile [51]. For the sites under investigation, the data
were processed according to the Full Velocity Spectrum approach (FVS, see [56]) through
the WinMASW Academy 2019 software (www.eliosoft.com, accessed on 10 November
2023), whose modeling/inversion genetic algorithm consists of a process of progressive
optimization of the search for models that best fit the experimental data via the Pareto front
analysis [57,58], represented by one or more objective functions (e.g., single dispersion (R
or L); Rayleigh dispersion + Love dispersion; Love dispersion + HVSR, etc.). The data
considered in the modeling process for the investigated sites are summarized in Table 1.

The active seismic surveys at the ESAC/MASW site were carried out using 16 vertical
geophones (natural frequency 4.5 Hz) equally spaced 3 m, setting the off-end shots at a
distance equal to 5 and 10 m, in a mutual configuration. Data at the ESAC/MASW site
were acquired using a 16-channel Sara Instruments seismograph connected to 16 vertical
geophones (4.5 Hz natural frequency). The active seismic data were coupled via passive
seismic recordings, which were processed according to the ESAC technique [59]. At the
MASW 1 and MASW2 sites, acquisitions were made by using the “Tromino” equipment

www.eliosoft.com
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(www.moho.it, accessed on 10 November 2023), a 3-Component velocimeter capable of
recording seismic signals along the horizontal plane in two directions (one parallel and
the other perpendicular to the spreading for Love waves) and along the vertical plane.
The minimum offset distance of 10 m was adopted, simulating a multichannel array
using one receiver [60] by conducting multiple shots at increasing distances from the 3-C
receiver. The dataset for these two sites was subsequently recomposed to perform the
multichannel analysis.

Table 1. Measurement parameters adopted, and surface-wave components recorded. Specification of
the sensors used (H = horizontal geophone; V = vertical geophone) and the seismic phases sampled
named according to [57] (ZVF: Rayleigh vertical component; RVF: Rayleigh radial component; THF:
Love phase) used to estimate velocity profiles.

Site Source Impact Geoph. SW Comp. Recording
Time (s)

Samp.
Rate (ms)

MASW1 Active V H, V ZVF, RVF 2 0.125
MASW2 Active V, H H, V ZVF, THF 2 0.125
MASW3 Active V V ZVF 2 0.125

ESAC/MASW Active V V ZVF 2 0.125
ESAC/MASW Passive V V Z 420 8

3.2.3. Ambient Vibration Recordings

For many decades, the Horizontal to Vertical Spectral Ratio (HVSR) method popular-
ized by [40], has been widely used for estimating the resonance frequency of a site. The
HVSR method relies on the analysis of the spectral ratio between the horizontal (H) and the
vertical (V) components of ground motion originated by ambient vibrations and recorded
using a three-component (accelerometers or velocimeters) single station. According to
many authors, the frequency corresponding to the maximum value of the HVSR function
was shown to have a strict correspondence with the local resonance frequency f0 of a site
(see, among many others, [61–65]). The HVSR curve may exhibit several peaks, caused
by the presence at depth of sedimentary layers contrasting in lithology and, thus, also in
acoustic impedance (i.e., the product of geologic material density and its seismic veloc-
ity). Therefore, in principle, by applying the HVSR methods, it is possible to constrain
the local seismo-stratigraphical setting. Assuming the hypothesis of a 1D planar-layered
stratigraphy, e.g., a soft sedimentary cover overlying a rigid (rocky) bedrock, the resonance
phenomenon results from the entrapment of seismic waves in the loose covers. The reso-
nance of the sedimentary layer occurs at the frequency corresponding to the ratio between
the average shear wave velocity (VS) and its thickness (H) according to the following
equation (see [61]):

f0 = VS/4H (1)

Moreover, it can be seen that if the subsoil average seismic properties (VS) are known,
it is possible to reconstruct a simplified subsurface model by estimating the thickness of
the resonant layer from (1). In the study area, single-station ambient recordings were
collected by employing the Tromino instrument described before. The duration of the noise
recordings ranged from 20 to 220 min, and the sampling frequency was fixed at 128 Hz.

3.3. Geochemical Surveys

Natural radioactivity, originating from nucleosynthesis and biogeochemical cycling,
is widespread in the lithosphere and various environmental compartments. It constitutes
a significant part of the ambient radiation dose for humans, mainly from primordial
radionuclides like 40K and the decay series 238U, 232Th, and 235U. Each of these decay series
in-corporates an intermediate radon isotope, distinguished by its noble gas properties,
which render it prone to facile mobilization from the mineral matrices where it originates
through radioactive decay. The naturally occurring radon isotopes encompass 222Rn (with

www.moho.it
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a half-life of t1/2 = 3.8 days), 220Rn (t1/2 = 55.6 s), and 219Rn (t1/2 = 3.96 s), arranged
in decreasing order of half-life. Of these, only 222Rn possesses a half-life of sufficient
duration to hold geological significance. Indeed, in contrast to 220Rn, the source of 222Rn
can be attributed not solely to local contributions from shallow soil and rocks but may
also result from advection processes, i.e., being transported to the surface from specific
depths [65–68]. The measurement of soil gases and Terrestrial Gamma Dose Rate (TGDR)
is of fundamental importance in environmental monitoring and understanding the natural
and anthropogenic processes that affect air composition and ionizing radiation levels in the
surrounding environment [65,69–71]. Over time, various measurement techniques have
been developed and successfully applied to collect reliable and accurate data. Previous
geochemical studies of the Latera caldera, aimed at carbon dioxide storage and geo-thermal
exploration, have revealed the existence of near-surface deep thermogenic fluids, with a
specific focus on pronounced CO2 anomalies [72,73]. The sampled parameters included
soil gas (CO2, O2, 222Rn, 220Rn) and terrestrial gamma dose rate (TGDR). Regarding soil
gas sampling, this well-defined technique involves collecting soil air samples by inserting
a 6.4 mm thick stainless-steel probe into the ground to a depth ranging from 0.7 to 0.9 m
to minimize the influence of meteorological variables. A portable gas analyzer (Draeger
Xam 7000) was directly connected to the probe to measure CO2, CH4, O2, H2S, and H2
concentrations in situ. Furthermore, no CH4, H2S, or H2 were detected. Radon (222Rn)
and thoron (220Rn) activities in the soil were measured using a portable alpha detector
RAD7 (Durridge Company Inc., Sheffield, UK) connected to the sampling probe through
a drying tube used to maintain the instrument’s relative humidity below 10%. The alpha
detector consists of an ion-implanted silicon semiconductor calibrated to measure in the
range of 4 to 400,000 Bq/m3. A single measurement had an average duration of 20 min,
with partial readings taken every 5 min. As for TGDR measurements, measurements
were conducted using a portable sodium iodide (NaI) spectrometer, known as the “nuke
ALERT II Model 1703M,” capable of directly measuring the Ambient Dose Equivalent
Rate (ADER). The results were corrected using a calibration coefficient, with an error of
approximately 5% and an overall uncertainty of 8%. Field activities were conducted from
8 to 11 August 2023, and included in situ measurements of 222Rn, 220Rn, CO2, CH4, O2,
H2S, and H2 concentrations in the soil, as well as gamma radiation measurements at each
sampling site. The geochemical survey was extended to approximately 30,000 square
meters around the sinkhole by means of 89 measurements points. Measurements were
made during dry weather conditions with stable atmospheric pressure, minimal or absent
wind, and the early morning hours were avoided to prevent the effect of radon progeny
accumulation in dew, which could increase the normal soil emission rate by up to 15%.
To characterize the population of soil gas and TGDR samples, descriptive statistics and
graphical representations were employed. In order to examine the spatial variability of
the measured parameters, data were processed into contour maps using a geostatistical
approach, which includes an analysis of the experimental variogram and the construction of
contour maps through ordinary kriging. Anisotropy was determined for kriging estimation,
as spatial correlation can vary depending on the direction in which experimental variograms
are calculated. The experimental variograms thus obtained were modeled using common
spatial correlation models, and the overall error of each model (root mean square error,
RMSE, and/or mean standard error, MSE) was calculated using the leave-one-out cross-
validation technique. The parameters of the selected model were utilized to estimate
soil gas concentrations at unsampled locations using ordinary kriging as geostatistical
interpolator. All resulting maps have a grid size of 5 × 5 m2, representing one-quarter of
the average point measurement distance.

4. Results
4.1. Photogrammetry

The Digital Terrain Model (DTM) obtained from the survey conducted at the end of
March can be observed in Figure 5. It is used here to describe the overall morphological
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setting of the study area. Two distinct small, depressed areas were identified within a
larger one, delimited westward and northward by the 447.5 contour line. The sinkhole
occupies the first depression that, based on the 3D topographic model of 1 February, is
elliptical in shape with a surface of about 695 m2, with a major axis length of 34.5 m. The
second depression, with a minimum altitude slightly lower than 446.5 m a.s.l., is located
just northwest (Figure 4). Based on the monitoring activity conducted so far, since the end
of February 2023, no significant morphological variations were detected by comparing
subsequent 3D digital terrain models.
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Figure 5. Topography obtained from the flight conducted at the end of March. Inside the orange ovals,
the two small depressions described in the text are indicated, encompassed into a larger depressed
area delimited by the 447.5 m a.s.l. contour line.

For safety reasons, it was impossible to approach the hollow edge to perform direct
water level measurements; thus, we exploited the UAV surveys to retrieve information
about the water level variation with respect to the ground surface. In Table 2, the estimates
of the water level inside the sinkhole are reported.

Table 2. Water depth in the sinkhole (meters from ground surface).

Survey Date (Month/Day/Year) Water Level
[m]

02/01/2023 3.0
02/25/2023 0.4
03/30/2023 0.4
04/27/2023 0.4
06/09/2023 1.0
08/09/2023 2.7
09/18/2023 3.3
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The initial size and depth of the sinkhole were not measured; the hollow was almost
completely filled by groundwater in about eight days, between 31 January and 7 February,
as reported by a few eyewitnesses. Based on the differential measurements from 1 February,
i.e., when the water level was measured 3 m below the ground level, to 25 February, an
estimated additional volume of water equal to about 1900 m3 filled the cavity as the water
level reached 0.4 m from the ground surface. During the same time period, we detected a
slight enlargement of the sinkhole in the direction of Provincial Road n.118 due to some
minor slips along the banks (compare aerial Figure 6A,B); thus, the total surface reached
720 m2. The subsequent measurements on 30 March and 27 April did not indicate any
significant changes in water level and in sinkhole shape. Conversely, after the survey on
9 June, we determined a decrease in the water level of approximately 0.65 m (Figure 6C),
corresponding to a water volume loss of about 470 m3, despite the days between May and
the beginning of June being characterized by intense rainfall events (see Table 2). The survey
of 9 August showed a decrease in the water level that was measured at about 2.7 m from
the ground level (similar to that recorded on 1 February), corresponding to approximately
1800 m3 of water being leaked from the cavity. From the last survey, conducted on 18
September (Figure 6D), the water level was measured at 3.3 m from the ground level, for a
total loss of about 2000 m3 since the beginning of May. The beginning of the emptying phase
was estimated around 12 May (about 104 days from the sinkhole’s formation) through a
linear regression analysis of the measurements inferred from the UAV surveys (Figure 7).
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March (B), 9 June (C), 18 September (D).

To possibly identify the cause of water level fluctuations, monthly precipitations be-
tween February and September were also considered to estimate the water volume loss for
evapotranspiration. The data in Table 3 were retrieved from the ARSIAL meteorological
station “Latera-Centro Florovivaistico”. Available data include the potential evapotran-
spiration (PET) values calculated according to the Penman formula [74] after [75]. Water
volume loss due to evapotranspiration was estimated by considering a constant surface of
about 700 m2 for the sinkhole.
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Table 3. Data from the Latera rain gauge station and the estimated volume loss due to the evapotran-
spiration.

Month Rainfall PET Volume Loss (m3)

February 28.8 38.3 26.81
March 67.4 61.6 43.12
April 59.4 89.3 62.51
May 87.2 107.3 75.11
June 75.6 138.9 97.23
July 10.2 37.2 26.04

August 43.3 157.9 110.53
September 1 12.6 88.5 61.95

1 Only 20 days.

The ARSIAL database reports a monthly rain equal to 37.6 mm between the end of
January and the end of February; this amount of rain was considered not to be enough
to explain the infill of the sinkhole by surface water. On the other hand, the loss of water
volume due to evapotranspiration estimated between May and September is equal to c.a.
371 m3, which is not able to explain the volumetric decrease of approximately 2000 m3

starting from May. Therefore, even without considering the rainfall, the decrease in the
water level (still ongoing) was most likely due to changes in the groundwater flow.

4.2. Resistivity Surveys

The 2D models along the ERT1 and ERT3 profiles are presented in Figure 8 as represen-
tative of the resistivity values of the soils along the two main directions of investigation. In
general, the association of DD and WS measurements resulted in better horizontal sensitiv-
ity (laterally at the model edges) than that could have been obtained with WS or DD data
alone: the models were reliable and useful for characterizing the subsurface up to 30 m in
depth (elevations of 425–430 m above the sea level). The 2D model for ERT1 is proposed
in Figure 8A: within the first 3–4 m depth, a medium resistive surface layer (40–70 Ωm)
corresponds to the superficial layer with fine-to-medium grain size. From about 5 m in
depth, the resistivity drops to values below 15 Ωm almost evenly along two-thirds of
the section.
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(B) directions.

These low values are compatible with the presence of fine grain size deposits (and/or
reworked pyroclastic deposits), most likely saturated by groundwater. Below and later-
ally, the resistivity increases and therefore it is possible to assume a different lithological
composition/a remarkably lower water content. To be noted, starting from the progressive
x = 144 m in the SSE direction, there can be observed the presence of a resistivity gradient
that marks the contact of the aforementioned deposits with a geological body characterized
by resistivity even higher than 150 Ωm. These values are compatible with coherent volcanic
deposits and/or fractured lavas with water. The model adopted for the ERT 3 profile is
presented in Figure 9. The resistivity distribution clearly recalls that of the ERT1 profile
in terms of the number and thickness of resistivity layers, buried geometries and values.
Exceptions are the two sectors at the edges of the model, where two areas of high resistivity
could indicate, similarly to what was observed for ERT1, the possible presence in depth
of coherent volcanic deposits and/or fractured lavas with water. The final 3D resistivity
distribution revealed an anomalous sector characterized by resistivity values significantly
higher than the average of soils in the study area. Resistivity values suggested the volume
could be empty or only partially filled with water. The longitudinal axis of the anomaly
runs oriented NW-SE, intersecting the roadway, as shown in Figure 9.

4.3. Surface-Wave Surveys

In general terms, for all the sites, the inversion converged with an associated misfit of
less than 10% and the velocity profiles were reliable for depths of several tens of meters.
As shown in Figure 10, the seismic S-wave velocities close to the sinkhole do not exceed
200 m/s for nearly 20 m in depth, suggesting the presence of deposits with little stiffness
for many meters in depth. Along the southern margin, near the Provincial roadway, the
soil condition seems to be slightly better as seismic velocities appear to be higher, albeit
by a small amount. Note incidentally that, based on [76], the time-averaged VS value to
a depth of 30 m (VS30), i.e., thus including almost the whole thickness of the superficial
covers, was expected to be 340 m/s on average, so that a strong impedance contrast was
also possible, considering the presence of the lava unit just below.

The VS30 values are considerably smaller than expected, in particular moving from
the MASW3 site close to the Olpetella well to MASW2 and ESAC/MASW sites near the
sinkhole. In addition, based on the velocity values in the upper 5 m, the VS values barely
reached 200 m/s.
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4.4. Ambient Vibration Recordings

The procedures proposed in [62] have been implemented for the processing and the
statistical validation of the Horizontal-to-Vertical Spectral Ratio (HVSR) curves. The data
were analyzed and processed using the WinMASW Academy 2019 software (www.elisoft.it,
accessed on 10 November 2023); to retrieve HVSR curves, each recording was first sub-
divided into time windows of 40 s, selecting the most stationary part of the registered signals
and excluding transient parts since these are potentially associated with close sources. Then,
for each time window, the signal was cosine tapered (5%), and the Fourier spectrum was
calculated within the 0.20–20 Hz frequency interval. Smoothing was applied using a
triangular window at a width equal to 10% of the central frequency. The single-component
spectra (NS, EW and Z) are the averages resulting from all analyzed windows; the final
curve for each recording site was then calculated between the two horizontal components
and the vertical one according to Nakamura’s procedure [40]. As an example, Figure 11
shows the data processed in terms of HVSR curves from noise recordings placed east
and west of the sinkhole so as to highlight the marked shift toward low peak frequencies
in the same direction. The spectral ratio curves have been further processed in order to
obtain 2D profiles of the HVSR values [77–79] by considering the average value of VS equal
to 150 m/s. Along these two sections, oriented WSW-ENE (Figure 12A) and NNW-SSE
(Figure 12B), the upper color scale indicates positive acoustic impedance contrast, while

www.elisoft.it
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cool colors are associated with low-to-intermediate contrasts that could correspond to an
absence of seismic velocity changes with depth.

The 2D distribution of HVSR values highlights a progressive deepening of the impedance
contrasts from SSE to NNW, while an even sharper deepening can be observed from SSE to
NNW very close to the sinkhole (Figures 12C and 12D, respectively); both sections suggest
a sudden and unexpected increase in the thickness of the superficial deposits right in the
center of the study area up to 25–30 m, confirming what was observed along the ERTs.
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4.5. Geochemical Survey

The investigated area has been centered on the sinkhole, including the whole sector
previously investigated via the ERTs (Figure 13); thus, the results have been integrated to
obtain a more comprehensive and reliable subsoil model. The geometry of the sampling
point distribution and the distance between samples were chosen considering the extent
of the sinkhole and the accessibility of the area. The distribution of sampling points is
not regular due to dense vegetation in certain areas. The sampling points were spaced
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approximately 10 m apart near the sinkhole and about 20 m apart moving away from it.
Additional sampling points were measured far from the sinkhole to assess the general
background of the caldera area.
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In Table 4, the main statistical indexes for the measured variables are reported.

Table 4. Main indexes of the studied variables (N: number of samples; Std. Dev: standard deviation).

Parameter N Mean Median Min Max Std. Dev.

CO2 vol% 89 2.8 2.8 1.0 5.4 1.0
O2 vol% 89 19.6 19.7 18.3 20.9 0.6

TGDR µSv/h 89 0.218 0.217 0.187 0.261 0.014
222Rn kBq/m3 89 173.2 161.7 62.9 303.1 54.2
220Rn kBq/m3 89 399.4 349.5 102.0 862.8 142.4

Specifically, in relation to the range and maximum values (minimum for O2) of CO2
and O2, no anomalous values have been observed beyond what is considered normal due
to biological activity and the morphology of the area. The TGDR (despite having a limited
range) exhibits elevated yet normal values for a volcanic area, which can be attributed to
the geological characteristics of the lithotypes in the study area. As for the soil activity of
222Rn and 220Rn, anomalous values have been detected, suggesting a deep-seated source
for 222Rn and a shallower origin, likely related to high-permeability zones for 220Rn [80–82].
Regarding 222Rn, a comparative analysis with other studies realized within the Vulsini
volcanic complex immediately highlights the significantly elevated values uncovered in this
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study. For instance, within the municipality of Celleno (Vt), [70] recorded an average 222Rn
concentration of 60 kBq/m3, with a maximum value of 253 kBq/m3 (vs. 303.1 kBq/m3

found in this study). Analyzing the spatial distribution of CO2 in detail, as shown in
Figure 14A, concentration anomalies are evident to the west and north of the sinkhole.
These anomalous values, with a maximum concentration of 5.4 vol%, fall within the range
attributable to soil biological activity (1–10 vol%), according to [83]. The distribution of
anomalies is likely correlated with the presence of morphological depressions with dense
vegetation and moist soil. In Figure 14B, a map of the spatial distribution of TGDR is
depicted. Several small areas with positive anomalies are observed to the north and south
of the sinkhole, as well as to the east of it. TGDR is related to the content of radionuclides
in rocks, and negative anomalies in this radiation should indicate the presence of less dense
areas, such as cavities, as well as faults and fractures. The negative anomaly just east of
the sinkhole, parallel to the ravine, could suggest the presence of a structure with a north–
south direction. In addition, the discontinuity among the positive anomalous values found
in the sinkhole’s southeast sector is compatible with the presence of the sub-horizontal
conduit (see Figure 9) inferred from the 3D resistivity model. Figure 14C depicts the spatial
distribution of 222Rn. There are primarily two areas of positive anomalies located to the
south and northeast of the sinkhole. On the other hand, the area to the west of the sinkhole
exhibits lower values of 222Rn, confirming the surface biological production mentioned
for CO2. Regarding 220Rn, in Figure 14D, there is a large positive anomalous zone at the
easternmost part of the study area, while both around the sinkhole and westward, the
values are much lower. The presence of this anomalous zone could be related to surface
factors such as soil permeability in the upper meters and water content. In this area, dry
and superficially fractured soils (mud cracks effect) were found that could promote the
upward migration of 220Rn in the last meters.

Finally, in Figure 15, the 222Rn/220Rn ratio is represented. This ratio highlights the
areas with a deeper source of 222Rn (values ranging from 0.48 to 0.72). Indeed, only 222Rn
has a sufficiently long half-life (3.8 days) to originate from greater depths together with a
surface origin. This can only occur through advection transport, using a carrier gas such
as CO2 and the presence of sufficiently permeable fractures/faults to allow for a rapid
ascent [65–67]. It is evident, examining the spatial distribution map of 222Rn/220Rn, that
the main positive anomalous zone is located east of the sinkhole in a north–south direction.
This leads us to hypothesize the presence of a discontinuity, also supported by CO2, which
acts as a carrier gas for 222Rn, also found in high concentrations along the ditch.
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5. Discussion

Since its formation on 31 January 2023, the sinkhole has been monitored on an airborne
surveys basis, with attention focused on its morphological evolution (shape and size) as
it opened very close to a provincial road. In this regard, no significant changes in the
morphological setting have been registered during the monitoring period (still active), nor
along the Provincial Road located very close to the hollow, or across the whole study area.
Minor changes only occurred in the shape of the sinkhole due to the occurrence of soil
slips along the banks; as a consequence, its elliptical shape was slightly modified with an
increment in the total surface of less than 5% (from 695 m2 to 720 m2). UAV data were
also processed to retrieve indirect measurements of the water level within the sinkhole; it
varied sensibly across the months and this was most likely due to the groundwater flow
changes, indicating that, until present, the fluid circulation beneath the sinkhole is far from
stable. The analysis of orthophotos from 1984 to 2021 referring to the study area (not shown
here) has allowed for the identification of a sub-circular sinkhole paleoform in the same
site. The paleoform was already visible in 1984 and has become progressively more evident
over the years. It was particularly pronounced in 2015. Therefore, it is possible to consider
the formed sinkhole as a reactivation phenomenon. Additionally, information collected
regarding the local traditions of the study area has highlighted the narrative of a sinkhole
transforming into a small lake in the nineteenth century. Non-destructive methods were
also applied to investigate the subsoil. Based on the indirect methods, the sinkhole opened
inside a small basin filled with fine grain-size deposits, with a thickness of several tens of
meters at least (to be constrained by using boreholes). The edges of the basin were inferred
along two main directions investigated via ERTs from the presence of resistivity gradients
that mark the contact of the conductive deposits with geological units that, based on their
higher resistivity (up to 150 Ωm and more), were interpreted as coherent volcanic deposits
and/or fractured, saturated lavas. In particular, due to effusive deposits at different depths,
such depth intervals should correspond to high seismic velocity layers and medium-to-high
resistivity ones, at least within the first tens meters in depth (i.e., above the groundwater
level). The HVSR results supported the preliminary hypothesis of a strong impedance
contrast between the covers and underlying rigid layer (lava units based on the well-
log), and the frequency shift from 4.5 Hz–8 Hz to 1 Hz–2 Hz (Figure 11) approaching the
sinkhole from NE was interpreted as the effect of the deepening of the main impedance
contrast. As highlighted by the 2D HVSR sections, the increase in the soft covers occurred
very abruptly, mostly in the north–south direction; thus, the presence of a discontinuity
(fracture/fault zone) could be inferred very near the sinkhole. In this context, geochemical
investigations complemented the geophysical data, as shown by considering the respective
spatial distributions. Positive anomalies of TGDR and the 222Rn/220Rn map support the
hypothesis of a buried discontinuity running along the NS direction, responsible for the
abrupt increase in loose deposits just in the center of the investigated area. This seems to
indicate the presence of a north–south oriented discontinuity located just east of the sinkhole
(without, however, the definition of a clear geometry). The 222Rn and 220Rn distributions
indicate a possible lithological change between the western sector and the eastern sector
within the study area. Differences in average shear-wave velocity values approaching
the sinkhole area can be explained considering (i) the possible presence of terrains softer
than expected; and (ii) a non-negligible modification in the strength parameters of terrains
close to the sinkhole area, possibly induced by the collapse. The main contribution of the
ERT to the subsoil model was the identification of the 3D anomaly located beneath the
sinkhole that runs below the Provincial roadway. Incidentally, it can be noted that this
method has proven to be the most cost effective among those implemented here since it
is able to provide reliable 2D and 3D information about the subsoil. On the other hand,
the constraints introduced into the subsurface model through the seismic and geochemical
methods, which require more processing, proved essential for effective characterization of
the area. Considering the hazardous conditions, it is also worth mentioning the smart use
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of the UAV data for monitoring the water level inside the hollow as a proxy parameter to
the possible evolution of the phenomenon.

6. Conclusions

Airborne surveys helped in periodically monitoring the morphological setting of
the study area, also allowing for the indirect measurements of the water level inside
the cavity. In this regard, after the initial filling of the cavity by groundwater, starting
from May 2023, a clear groundwater discharge was detected and monitored. Based on
the data already collected, at present, there is concern that the sinkhole may expand
laterally and potentially affect the Provincial Road, creating further issues. The geophysical
and geochemical investigations conducted so far allowed for a preliminary geotechnical
characterization of soils and the image of the main targets, consisting of discontinuities
and/or buried structures, potentially responsible for the collapse at the surface. The
presence of a paleoform in the sinkhole area since 1984, along with the legends recounted
by the local inhabitants about the sudden formation of a cavity and the creation of a lake in
the nineteenth century, demonstrate that the phenomenon under investigation is a natural
sinkhole. Furthermore, given the current low level of urbanization in the area and its
rural character in the nineteenth century, it is possible to exclude a triggering cause related
to human activities (such as mining or water regulation). An erosive mechanism can be
proposed for the phenomenon under evaluation. At present, the subsoil model accounts
for the presence of a buried conduit that could have played a key role in the processes
of erosion and syphoning of the covering materials, leading to the final collapse of the
superficial covers. The predisposing causes of the phenomenon must be sought in the
geological–structural and hydrogeological context of the area: an intra-calderic volcanic
plain characterized by the circulation of gaseous fluids and pressurized mineralized waters.
Furthermore, the presence of a karstified carbonate basement is excluded. Additional
investigations will be needed in order to better define the process that led to the formation
of the sinkhole as the deep piping process cannot be excluded, due to the presence of the
discontinuity revealed via indirect methods that could drive the leakage of fluids from
the collapsed area. As an overall consideration, the geophysical models, the geochemical
evidence, and UAV-derived surface data highlighted the significant complexity of the area
where the sinkhole has developed, and can motivate local authorities to carry out direct
investigations to (i) improve the geology at a local scale; (ii) calibrate the geophysical
models; (iii) ascertain the subsurface conditions under the roadway, in correspondence to
the high-resistivity anomaly; and (iv) collect the descriptive parameters of the mechanical
behavior of the soils to properly assess the residual risk for the Provincial Road n.118, as
the sinkhole structure appears to be unstable due to the water discharge (still on course) at
present and to soil slips that have occurred along the banks.
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