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Abstract: The water balance in the very shallow subsurface can be influenced by capillary rise due to a
high groundwater table. Since moisture content is an important factor for the thermal conductivity of
soils, this can also have an influence on the very shallow geothermal potential (vSGP). For this reason,
the effect of spatial and seasonal variations in groundwater tables on moisture content in essential
depth layers was investigated at a large-scale geothermal collector system (LSC) in Bad Nauheim,
Germany. Quasi-one-dimensional simulations using the FEFLOW®finite-element simulation system
were employed to determine site-dependent and seasonally varying moisture contents, from which
thermal conductivities were derived. The model setup was previously validated based on recorded
moisture contents. The simulations resulted in groundwater-related maximum seasonal and spatial
differences in thermal conductivity of 0.14 W/(m·K) in the LSC area. Larger differences of up to
0.21 W/(m·K) resulted for different soil textures at the same depth due to different thermal properties.
The results indicate that an efficient design of LSCs requires a sufficiently detailed subsurface
exploration to account for small-scale variations in grain size distribution and groundwater level.

Keywords: large-scale geothermal collector system (LSC); very shallow geothermal potential (vSGP);
thermal conductivity of soils; groundwater; quasi-one-dimensional simulation

1. Introduction
1.1. The Significance of the Very Shallow Geothermal Potential (vSGP) in the Context of the
Large-Scale Geothermal Collector System (LSC) in Bad Nauheim

A large-scale geothermal collector system (LSC) was installed in two layers (1.5 m
and 2.9 m below ground level (m b.g.l.)) in Bad Nauheim, Hesse, in central Germany [1,2].
The approximately 11,000 m2 area is used for agriculture or as a horse paddock. The LSC,
in combination with a low-temperature district heating and cooling network (5GDHC),
supplies a new residential area with cooling and heating energy. Approximately 2.3 GWh/a
of source heat is required to heat 400 residential units: 50% of this energy is extracted
from the subsurface by the LSC, and 50% is obtained by the 5GDHC system due to low
temperature levels and uninsulated piping [1]. The very shallow geothermal potential
(vSGP) in the form of thermal conductivity is therefore crucial for the heat extraction of the
overall system. The project is scientifically accompanied by the research project “KNW-Opt”
(Grant No. 03EN3020).

The potential of very shallow geothermal applications can be described by the system-
specific heat extraction [3] or by the thermal conductivity of soils (λ) [4]. The parameter
λ is determined by soil physical parameters such as moisture content (θ), bulk density
and grain size distribution [4–7]. Therefore, the thermal conductivity is independent of
the geothermal system used and dependent on the available subsurface. The individual
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components of soils, such as soil grains, water and air, have different thermal properties.
The contribution of each component to the total thermal conductivity of soils is shown by
the sequence described by Yun and Santamarina [8]:

λair < λdry-soil < λwater < λsaturated-soil < λmineral

1.2. High Groundwater Level as an Influencing Factor on Moisture Content

Moisture content in particular is subject to temporal and spatial variations. Basically,
the water balance in the very shallow subsurface depends on the hydraulic properties
of the soil and is affected by surface influences, such as precipitation, evaporation and
transpiration [9–11].

In addition, moisture can ascend from high groundwater tables into the very shallow
subsurface through capillary rise [9,12,13]. The potential for capillary rise depends on the
soil texture class and the associated pore size distribution, as well as the moisture content
and soil moisture tension (pF value) [14]. Capillary rise and its effects can be simulated
with appropriate modeling software for different applications [15,16].

At very high groundwater levels, soil moisture can also be significantly affected up
to the surface, as Smit et al. [17] showed by comparing groundwater levels and surface
moisture contents on a beach. Accordingly, groundwater distance is also an important
factor for vegetation coverage, especially in arid areas [18]. The higher moisture contents
caused by shallow groundwater tables can also lead to higher hydraulic conductivities of
soils and thus result in higher infiltration and groundwater recharge rates [19].

Therefore, due to the low installation depth of very shallow geothermal systems, the
influence of groundwater on the water balance, especially on the soil moisture content, and
thus on the geothermal potential can be particularly evident at high groundwater levels.
Due to the existing slope of the terrain, there are spatially distinct groundwater depths in
the area of the LSC in Bad Nauheim that are also subject to seasonal fluctuations. For this
reason, this test site is suitable for investigating the potential influence of the groundwater
table on the moisture content and, further, on the very shallow geothermal potential.

1.3. Aim of This Study

The aim of this study is to examine the influences of spatially and seasonally varying
groundwater conditions at the LSC in Bad Nauheim on moisture content and thus to
determine the influence on the very shallow geothermal potential in the form of thermal
conductivity. The investigations are intended to demonstrate the importance of sufficiently
detailed subsurface explorations, including hydrogeological conditions, for the design
of LSCs.

Quasi-one-dimensional simulations were used to determine moisture contents at
various locations around the collector system, considering surface influences and the tem-
poral and local variations in the groundwater level. Prior to this, the model structure
was validated using moisture contents measured continuously with sensors. Based on the
simulated moisture contents, the geothermal potentials were derived using thermal con-
ductivities measured in the laboratory. Exemplary simulations of heat extraction were used
to illustrate the resulting seasonal and site-dependent differences in thermal conductivity.

2. Materials and Methods
2.1. Hydrogeological Conditions at the LSC in Bad Nauheim

The LSC in Bad Nauheim was installed in Quaternary valley deposits [20,21], which
consist mainly of silty clay loam and silt loam layers according to the USDA (U.S. Depart-
ment of Agriculture) soil classification [22]. These layers are largely overlain by agricultur-
ally influenced silt loam. Three open-end tests [23] in the silty clay loam layer at 1.5 m b.g.l.
yielded hydraulic conductivities between 2.0·10−3 and 2.2·10−4 m/d. Several infiltration
tests with double rings [24] yielded higher values, but these are considered less reliable.
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The valley deposits overlay the 2.1 to 4.3 m thick bench gravel aquifer [25]. Due to the
varying ground elevations, the distance between the groundwater and surface on site can
range from 2.0 to 7.0 m. Since October 2020, groundwater levels have been measured with
fluctuations of up to 1.9 m at six monitoring wells around the LSC (Figure 1a). Figure 1b
shows the different groundwater depths due to the existing slope, despite the low hydraulic
gradient seen in Figure 1a.
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Sieve analyses based on DIN EN ISO 17892-4 [26] showed contents of gravel or 
coarser components of between 20% and 80% for the bench gravel layer. The grain size 
distributions are too non-uniform to derive hydraulic conductivity [27–30]. Evaluations 
of the recovery phase of two short pumping tests gave hydraulic conductivity values of 
32 and 58 m/d for the bench gravel. 

The boundary with the valley deposits is characterized by a gravelly loam or loamy 
gravel layer, which is stratigraphically largely assigned to the bench gravel. Below the 
aquifer, decomposed and locally water-conducting basalt is present [25]. 

2.2. Monitoring of Moisture content, Groundwater Table and Weather Data 
The KNW-Opt research project involves intensive monitoring of the LSC [2]. 

Monitoring data on soil, groundwater and weather conditions were used for this study. 

Figure 1. (a) Test site and location of monitoring wells B1 to B6, measuring points with moisture
sensors and exemplary groundwater elevation contour lines from groundwater table measurements
taken on 7 April 2021, given in meters above sea level (m a.s.l.), adapted from Rammler et al. [22];
(b) exaggerated schematic cross-section through the collector area with stratigraphic units to illustrate
the different distances of the groundwater level (GWL) to the collector layers (LSC) at 1.5 m and
2.9 m b.g.l. The location of the cross-section is shown in Figure 1a. Here, valley deposits include
topsoil and agriculturally influenced soil.

Sieve analyses based on DIN EN ISO 17892-4 [26] showed contents of gravel or coarser
components of between 20% and 80% for the bench gravel layer. The grain size distributions
are too non-uniform to derive hydraulic conductivity [27–30]. Evaluations of the recovery
phase of two short pumping tests gave hydraulic conductivity values of 32 and 58 m/d for
the bench gravel.

The boundary with the valley deposits is characterized by a gravelly loam or loamy
gravel layer, which is stratigraphically largely assigned to the bench gravel. Below the
aquifer, decomposed and locally water-conducting basalt is present [25].

2.2. Monitoring of Moisture Content, Groundwater Table and Weather Data

The KNW-Opt research project involves intensive monitoring of the LSC [2]. Monitor-
ing data on soil, groundwater and weather conditions were used for this study.

Moisture and temperature sensors were installed in the middle of the LSC at 1.5 m,
2.2 m and 2.9 m b.g.l. (measuring point “mLSC”) and at the “Reference” measuring point
at 0.1 m, 0.25 m, 0.75 m, 1.5 m, 2.2 m and 2.9 m b.g.l. (Figure 1a). For the installation
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of the moisture sensors, it was necessary to ensure that the sensors were surrounded by
fine-grained material. Therefore, to avoid damage, they were embedded in sand.

The area around “Reference” is covered with conifers, resulting in significantly in-
creased water discharge in the shallow subsurface.

Furthermore, pressure and temperature sensors were installed in six groundwater-
monitoring wells in the vicinity of the LSC (Figure 1a) with different groundwater distances
due to the existing slope of the terrain (Figure 1b). These monitoring wells are described
in detail in Bertermann and Rammler [25]. Recorded data are sent from an EASYBus
data logger to a central server at 5-min intervals. All measurement components were cali-
brated by the manufacturer and adjusted to the different cable lengths. The measurement
configurations of the used sensors are shown in Table 1.

Table 1. Description and data specifications of the sensors used for the moisture content and tem-
perature measurements in the soil and the groundwater level (GWL) and groundwater temperature
measurements in the monitoring wells.

Domain Parameter Sensor Accuracy Range

Soil
Moisture content HD3910.1 (DeltaOHM) ±3% 0% to 100%

Temperature four-wire Pt1000
(GTF 101 P-OKH) ±0.4% of the measured value −25 ◦C to +70 ◦C

Groundwater
Temperature

P-Sense320
±0.2 ◦C 0 ◦C to 70 ◦C

GWL ±0.5% 0 to 1 bar

Additionally, groundwater tables were manually recorded almost monthly starting in
October 2020 (Figure 2).
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Figure 2. Continuously recorded and manually measured groundwater levels in meters below
ground level (m b.g.l.) and their location relative to the LSC layers. According to current knowledge,
it is unclear what the temporary short-term stronger fluctuations in B5 can be attributed to. Surface
influences could be a possible cause. Also shown are time periods 1 and 2, which were used
for the simulations. Period 1 ranges from 1 January 2020, to 6 February 2023. Period 2, from
3 February 2022, to 2 February 2023, was repeated cyclically in the simulations. Data gaps were
linearly interpolated. For a smoother transition when repeating the annual course of period 2, the
first 20 days of groundwater levels were linearly interpolated. Moisture contents were recorded
beginning on 7 November 2021.
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To monitor weather conditions, a weather station was installed on the roof of the
energy center at a height of about 3 m directly east of the LSC. Here, long-wave sky
irradiation, short-wave radiation (global radiation), wind direction and speed, ambient
temperature, precipitation and relative humidity were recorded at 1-min intervals starting
in January 2021. Data gaps and time periods before January 2021 were filled with data from
two other climate measurement systems of the German weather service (DWD) delivering
open-source data within a range of 15 km from Bad Nauheim (https://opendata.dwd.de/,
accessed 27 January 2023).

2.3. Quasi-One-Dimensional Simulations with FEFLOW®

The simulations to investigate the influence of different groundwater levels on mois-
ture content were performed using the FEFLOW® (v8.0) finite-element simulation system
from DHI Wasy GmbH [31]. A quasi-one-dimensional approach was adopted for a detailed
investigation at a specific site focusing on vertical water movement. For this purpose, the
models were created as one-meter-wide, two-dimensional vertical planar projections with a
quadrangle element width of 1 m and height of 0.01 m. Water flow into or out of the model
is only possible through the surface or through the gravel aquifer. The schematic model
setup is shown in detail in Figure 3.
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Figure 3. Schematic model setup for quasi-one-dimensional FEFLOW® simulations. Boundary
condition (BC) time series were implemented in a daily interval.

First, the model setup was validated by comparing the simulated moisture contents
with recorded values at the “Reference” and “mLSC” measuring points at 1.5 m, 2.2 m and
2.9 m b.g.l. in time period 1 (b). Due to the expected significantly increased water extraction
by the conifers at ”Reference”, the moisture sensors between 0.1 m and 0.75 m b.g.l. were
not considered. The value of the hydraulic head of the first time step was set as initial
condition for all nodes.

At monitoring wells B1 to B5, the seasonal, spatial, and depth-dependent moisture
content differences over the course of different groundwater levels and surface influences
were then determined by cyclic simulations in time period 2. For this purpose, the moisture
contents of one simulated year at 1.5 m, 2.2 m, 2.9 m and 3.4 m b.g.l. after reaching an
annual equilibrium were considered. B1 to B5 are located outside the LSC but are simply
assumed to be the outer boundary of the LSC.

https://opendata.dwd.de/
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2.3.1. Material Properties and Model Layer Structure

The variably saturated states of the soils were simulated in FEFLOW® using Richards’
equation (mixed head–saturation) with the parametric van Genuchten–Mualem model [32–34]:

Se =
θ − θr

θs − θr
=

S − Sr

Ss − Sr
=

1[
1 + (αψ)n]m (1)

k (Se) = k0·SL
e

{
1 −

[
1 − S

1
m
e

]m}2

(2)

m = 1 − 1
n

(3)

L = 0.5 (4)

with :
Se : relative or effective saturation;
S : saturation;
Ss : maximum saturation;
Sr : residual saturation;
θ : volumetric water content /moisture content

[
cm3/cm3];

θr : residual volumetric water content/moisture content
[
cm3/cm3]

θs : saturated volumetric water content/moisture content
[
cm3/cm3];

α : fitting coefficient [1/m];
ψ : pressure head [m];
n : fitting parameter;
m : described in Equation (3);
k : hydraulic conductivity [m/d];
k0 : maximum hydraulic conductivity [m/d];
L : parameter for pore tortuosity and pore connectivity.

The hydraulic material properties of the fine-grained layers were determined in ad-
vance using the HYPROP® 2 measuring device from Meter Group, Inc. The measurement
and evaluation are based on the simplified evaporation method [35–37]. Water retention
and hydraulic conductivity curves, also based on the van Genuchten–Mualem model, were
fitted by the automated adjustment of crucial parameters using the LABROS SoilView-
Analysis software (v5.1.0.0), considering Equations (3) and (4). The van Genuchten–Mualem
model was used to allow the direct transfer of the HYPROP® results to FEFLOW®.

A list of the soil samples used for the HYPROP® tests and a graphical representation
of the results are shown in Table A1 and Figure A1.

Basically, an alternation of silt loam and silty clay loam was assumed for simplification
for the shallow fine-grained area based on soil profiles and grain size analyses from
Rammler et al. [22].

The layered structure of the model for the “Reference” measuring point was deter-
mined using trial pit TP3. The corresponding borehole profiles were used for the models
at monitoring wells B1 to B5. The soil composition of the measuring point “mLSC” is
unknown and was derived from average values. Local variations, as well as the possible
mixing of stratification due to excavation and backfilling in the LSC area, were neglected
to ensure the comparability of the models. Furthermore, the layer boundaries might be
less visible or disturbed in the drilled soil material. Bench gravel was divided into the
less gravelly transition zone (“loam/gravel”) and the pure gravel layer. Silty intermediate
layers were neglected.

The layering for each model is summarized in Table 2.
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Table 2. Lower boundaries of the layers in meters below ground level in the simplified model
structure for the individual models. The gravelly loam or loamy gravel layer (“loam/gravel”) is
stratigraphically assigned to the bench gravel, except for B4, which is a layer already found in the
Quaternary valley deposits according to the drilled soil material. Besides topsoil, all simulated layers
are labeled according to the soil texture class assumed or determined on site.

Layer Reference mLSC 1 B1 B2 B3 B4 B5

Topsoil 0.20 0.30 0.25 0.40 0.35 0.25 0.25
Silt loam 1.00 0.90 0.80 0.80 0.75 1.25 0.80

Silty clay loam 1.80 1.65 1.30 1.60 1.80 1.85 1.85
Silt loam 2.80 4.50 6.40 4.60 4.10 3.00 3.30

Loam/gravel 3.20 5.25 7.00 5.70 4.80 4.40 3.60
Gravel 5.50 7.40 8.50 7.30 6.20 7.80 5.80

1 Average values of B1, B2, B3 and B4.

The material properties assigned to the layers based on the HYPROP® results and
literature data are listed in Table 3.

Table 3. The material properties assigned in FEFLOW®. For the layers’ topsoil, silt loam and silty
clay loam, the results of HYPROP® measurements were used.

Layer k0 [m/d] Porosity 1 Ss
1 Sr α [1/m] n

Topsoil 0.020 0.50 1.00 0.00 0.385 1.328
Silt loam 0.080 0.42 1.00 0.00 1.160 1.232

Silty clay loam 0.031 0.47 1.00 0.00 0.684 1.248
Loam/gravel 0.625 2 0.41 3 1.00 0.00 4 7.010 2 1.246 2

Gravel 43.200 5 0.30 6 1.00 0.00 4 24.400 7 2.494 7

1 Simplified assumption that porosity corresponds to the maximum moisture content at saturation (θs). 2 k0, α and n
taken from DIN 4220:2020-11 [14] for slightly clayey loam according to KA5 [38] based on a grain size analysis of the
gravelly loam at B6. 3 Maximum recorded value of moisture content at saturated state at 2.9 m b.g.l. at “Reference”.
4 Simplified assumption. 5 Average value from evaluated pumping tests. 6 Medium porosity for sandy gravel
according to Hölting and Coldewey [39]. 7 α and n for exemplary gravel according to Mace et al. [40].

The k0 values determined with the Hyprop® tests may differ from the actual saturated
hydraulic conductivities [41–43]. In addition, the focus of the fitting process using LABROS
SoilView-Analysis software was on the water retention curves. The porosities are based on
the bulk densities of the soil samples, so deviations are possible here as well.

In the first step, the parameters k0, α and n of the loam/gravel layer were estimated
with the FePEST (v8.0.2.3519) software by DHI Wasy GmbH using singular value decom-
position based on the observed moisture contents at the “Reference” measuring point. The
fitted material properties of this layer were then applied to the other models.

2.3.2. Aquifer and Surface Boundary Conditions

The recorded and manually measured groundwater levels at the respective monitoring
wells were used as boundary conditions for the hydraulic head in the gravel aquifer. For
the “Reference” measuring point, the data of monitoring well B6 were used, as it is located
directly next to it. At the “mLSC” site, the exact groundwater level is not known, so average
values were calculated from the data from B1 to B4. Due to the significantly different
groundwater levels in the individual monitoring wells, their influence on the moisture
content can be worked out by simulations. For the period from January to October 2020,
the corresponding groundwater levels of 2021 were assumed.

On the surface of the models, the climatic influences were implemented as fluid flux
boundary conditions (Figure 3). These boundary conditions were derived from the basic
water balance equation [39]:

D = P − E − R (5)
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with :
D : subsurface discharge rate

[
m3/d

]
;

P : precipitation rate
[
m3/d

]
;

E : evaporation rate (here : evapotranspiration rate )
[
m3/d

]
;

R : surface runoff rate
[
m3/d

]
.

Due to the low slope, it was assumed that the subsurface discharge rate D is equal to
groundwater recharge. For simplification, the potential evapotranspiration calculated with
the FAO grass reference evapotranspiration model [44,45] based on the Penman–Monteith
model [46] was assumed as the actual evapotranspiration.

The groundwater recharge rate at the test site is between 26 and 100 mm/a according
to a rough graphical evaluation of groundwater recharge maps [47,48], with between
65% and 70% of precipitation evaporating in Hesse [49]. To obtain the corresponding
values and variance of surface influences, two scenarios were considered, each assuming a
certain percentage of precipitation as surface runoff, including additional evaporation of
accumulated rainwater and plant interception (Table 4).

Table 4. Scenarios A and B considering different surface influences for time period 2 (and for time
period 1 in 2022 and 2023). In scenario A, a surface runoff of 20% of the precipitation was considered.
For scenario B, 30% of the precipitation was assumed to be surface runoff.

Scenario Precipitation Rate
[mm/a]

Evapotranspiration Rate
[mm/a]

Surface Runoff Rate
[mm/a]

Groundwater Recharge Rate
[mm/a]

A 569 339 114 116
B 569 339 171 59

By comparing the two scenarios, not only the influence of groundwater but also the
surface influence on moisture content can be determined, and future developments due to
climate change can be estimated.

No scenario distinction was made for the years 2020 and 2021, which were used in
time period 1. For the dry year 2020, according to weather data, there was no groundwater
recharge in the annual balance, and in the rainier and colder year 2021, after adjusting the
surface runoff rate, there was an assumed groundwater recharge of 99 mm/a.

2.4. Derivation of Thermal Conductivities from Simulated Moisture Contents and Exemplary
Simulations of Heat Extraction

In order to evaluate the influence of the different groundwater tables at the test site on
the geothermal potential, thermal conductivities were derived from simulated moisture
contents. For this purpose, two representative punctual thermal conductivity measure-
ments from Rammler et al. [22] were used for the fine-grained soils for the investigated
moisture ranges (θ > 0.15 cm3/cm3) (Table 5). Linear interpolation and extrapolation of
the punctual measurements yielded the maximum possible and theoretical change in λ

with changes in moisture content. However, the equations listed in Table 5 are not suitable
for general thermal conductivity calculations, as they were only determined for a specific
moisture content range.

The silty clay loam at the test site can have different thermal conductivities. For this
study, a series of measurements with lower thermal conductivities were selected to obtain
possible maximum differences from the silt loam layers.

For the loam/gravel layer, exemplary values from a master’s thesis, in which the
thermal conductivities of the gravelly soils of Bad Nauheim were investigated [50], were
used (Table 5 and Figure A2b).

The measurement series are shown graphically in Figure A2.
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Table 5. Calculation equations of thermal conductivities (λ) using moisture content (θ) or saturation
(S) for different depths and soil texture classes based on the thermal conductivity measurements
shown in Figure A2. Also shown is the bulk density of the soil samples (ρb) during the measurement.
For the thermal conductivity of the fine-grained soils, only the moisture range >0.15 cm3/cm3 was
considered. No grain size analysis is available for the silt loam soil sample, but it is assumed to be the
same soil texture class. For the loam/gravel layer, λ is calculated based on saturation, since the bulk
density might differ significantly from the value considered in the simulations.

Depth [m b.g.l.] Layer ρb [g/cm3] Calculation Equation

1.5 Silty clay loam 1.28 λ = 1.24·θ + 0.84
1.5–3.4 Silt loam 1.49 λ = 1.91·θ + 0.91

3.4 Loam/gravel 1.81 λ = −1.13·S2 + 2.68·S + 0.81

The potential impacts of the minimum and maximum groundwater-dependent or
soil-texture-dependent thermal conductivities of the fine-grained soils calculated using the
equations shown in Table 5 were illustrated by investigating the potential resulting heat
extraction. Therefore, exemplary simulations were performed using the DELPHIN finite-
volume simulation software (v6.1.5, https://www.bauklimatik-dresden.de/, accessed
on 26 May 2023). With the DELPHIN software, the heat extraction of different geometric
configurations of ground heat exchangers and LSCs can be examined in detail. Open-source
climate data from the German weather service (https://opendata.dwd.de/, accessed on
27 January 2023) for moderate-climate regions in Germany were used for these simulations
as boundary conditions. In addition, a homogeneous loamy subsurface with a constant
thermal conductivity was assumed in each case. By adjusting the thermal conductivity of
the soil according to the calculated minimum and maximum thermal conductivities, the
resulting differences in heat extraction were determined.

The purpose of these simulations is to illustrate the noticeable variations in possible
heat extraction associated with the variation in thermal conductivity. The results are
therefore not presented as absolute values but as maximum percentage deviations in heat
extraction that can be caused by different groundwater levels or the thermal properties of
soils. The performed simulations do not correspond to an energy analysis of the specific
LSC in Bad Nauheim.

3. Results
3.1. Parameter Estimation and Model Validation at “Reference” Measuring Point

In the considered period from 7 November 2021 to 6 February 2023, no data on
observed moisture contents at “Reference” were available on nine days (2%). The ground-
water level fluctuated between 2.0 m and 3.6 m b.g.l. during this period, with a median of
3.1 m b.g.l.

The results of the simulations and the comparison with the observed moisture contents
are shown in Figure 4.

At 2.9 m b.g.l., the gravelly and loamy transition zone is present. Based on the material
properties in Table 3, the simulation resulted in an RMSE value of 0.09 compared to the
observed moisture contents (Figure 4c). By estimating the parameters k0, α and n with
FePEST for this layer, the RMSE was significantly reduced to 0.01 due to a lower water
retention capacity, regardless of the considered surface influences.

The adjusted material properties for the loam/gravel layer are shown in Table 6.
Parameter estimation had no significant effect on the simulated moisture content at

2.2 m b.g.l. (Figure 4b). Low RMSE values of 0.02 and 0.03 resulted, with the simulated
moisture contents mostly slightly higher than observed values. Due to the sharp rise in
groundwater at the end of the simulation period (b), the silt loam was temporarily fully
saturated at this depth.

At 1.5 m b.g.l., the simulated moisture contents were significantly higher than the
observed data, with RMSE values of 0.33 (Figure 4a). The median of the observed moisture

https://www.bauklimatik-dresden.de/
https://opendata.dwd.de/
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contents was 0.07 cm3/cm3. The low values can be explained by the increased water
extraction by the conifers in this area, which has an effect at least down to 1.5 m b.g.l. The
resulting lower rate of groundwater recharge may also be the reason for the slightly higher
simulated moisture contents at 2.2 m b.g.l. compared to observed values.

The low RMSE values of ≤0.03 at 2.2 m and 2.9 m b.g.l. in the range of measurement
accuracy of the moisture sensors demonstrated the suitability of the quasi-one-dimensional
model setup and the assigned material properties for the simulation of moisture contents,
which, in this area, are mainly groundwater-influenced. Only minor or no differences were
determined between scenarios A and B.
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Figure 4. Observed and simulated moisture contents (θ) before (“simulated” for scenario A) and
after parameter estimation of the loam/gravel layer with FePEST (scenarios A and B) starting on
7 November 2021, at (a) 1.5 m b.g.l., (b) 2.2 m b.g.l. and (c) 2.9 m b.g.l. Also shown is the root mean
square error (RMSE) comparing simulated and observed values. Partly due to only minor differences
between scenarios A and B, the corresponding lines largely overlap.

Table 6. Material properties for the loam/gravel layer after parameter estimation with FePEST.
Although the transition zone is very heterogeneous at the test site, for simplification, the estimated
material properties were assumed for each considered measuring point or monitoring well.

Layer k0 [m/d] Porosity Ss Sr α [1/m] n

Loam/gravel 1.366 0.41 1.00 0.00 4.000 2.189

3.2. Model Validation at Measuring Point “mLSC”

In the considered period from November 07, 2021, to February 06, 2023, no data on
observed moisture contents were available at “mLSC” on 18 days (4%). The assumed
groundwater table fluctuated between 3.7 m and 5.4 m b.g.l. during this period, and the
median was 4.9 m b.g.l.

The results of the simulations and the comparison with the observed moisture contents
are shown in Figure 5.

Between January and May 2022, the recorded moisture contents showed a rapid and
significant decrease and, toward the end of this period, a rapid and significant increase
at each depth. During this period, the soil temperatures also reached minimum values
as low as −0.4 ◦C. It is therefore assumed that the soil was temporarily and partially
frozen due to heat extraction by the LSC. The course of the moisture contents thus did not
correspond to the undisturbed and natural course. The time delays in freezing and thawing
in the comparison of moisture contents and soil temperature can be explained by the
required withdrawal and supply of icing enthalpy. Judging from temperature trends, the
soil partially refroze immediately after the end of the simulation period. Since the thermal
effects of the LSC and thus possible soil freezing were not considered in the simulations,
these specific periods were not used for validation.

RMSE values ≤ 0.04 were reached at all depths considered, with no differences be-
tween scenarios A and B. At 1.5 m b.g.l., a significant and rapid increase in moisture content
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was initially recorded just before freezing (Figure 5a). This was probably due to a measure-
ment error caused by a previously insufficient connection of the sensor to the surrounding
soil. Considering only the period after thawing, there were even smaller deviations, with
an RMSE = 0.01.
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Figure 5. Observed and simulated moisture contents (θ) starting on 7 November 2021, at (a) 1.5 m b.g.l.,
(b) 2.2 m b.g.l. and (c) 2.9 m b.g.l. at “mLSC”. Also shown is the root mean square error (RMSE)
when comparing simulated and observed values. In addition, the soil temperature recorded by the
temperature sensors is shown for each depth. The time period in which the soil was partially frozen
and that was not considered in the RMSE calculation is indicated by the dashed lines. Partly due to
only minor differences between scenarios A and B, the corresponding lines largely overlap.

The largest deviations between simulated and observed moisture contents in the
comparisons were observed at 2.9 m b.g.l. (Figure 5c), which is probably due to the
unknown actual groundwater level. The significantly higher observed moisture content
after thawing could be due to the appearance of cavities in the immediate vicinity of
the sensor.

The low RMSE values ≤ 0.04, despite the groundwater levels being only assumed,
were taken as evidence for the suitability of the quasi-one-dimensional model setup, in-
cluding the assumed surface influences, and of the assigned material properties for the
moisture content simulations.

3.3. Simulated Moisture Contents with Different Groundwater Levels at Monitoring Wells B1 to B5

The simulated site- and depth-dependent annual trends in moisture contents are
shown in Figure 6a–d, exemplary of scenario A. Since the simulated values are based on
an annually repeating cycle of groundwater level and surface influences as well as on an
assumed soil structure, the actual moisture contents may deviate from them. However, the
validation simulations at “Reference” and “mLSC” showed only minor deviations from
the actually observed moisture contents. Basic trends, as well as the effects, of different
groundwater conditions can therefore be derived from the simulated data. Since B1 to
B5 are located at the outer edge of the LSC, and B1, in particular, is even farther away,
the simulated moisture contents thus represent maximum and minimum values for the
LSC area.

At B3 and B4, the groundwater level is temporarily higher than 2.9 m b.g.l. At B5, the
highest groundwater table in time period 2 is 2.1 m b.g.l.

Based on the medians in both scenarios, moisture contents between 0.32 and 0.42 cm3/cm3

were simulated for the fine-grained soils at the considered depths. The medians of the two
scenarios differ by a maximum of 0.02 cm3/cm3. The sensors at “Reference” and “mLSC”
recorded medians between 0.34 and 0.39 cm3/cm3, when periods of partially frozen soil are
excluded. Thus, the observed values are within the range of moisture contents simulated at
B1 to B5.

Moisture contents measured in a trial pit in the LSC area and moisture contents derived
from gravimetric water contents measured in the boreholes B2 to B5 gave mean values
between 0.31 and 0.34 cm3/cm3 for fine-grained soils and are thus basically in a similar,
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slightly lower range of values [22]. Sampling for this evaluation was conducted in the
summer and autumn of the dry year 2020. As can be seen in Figure 6, lower moisture
contents generally occur during these seasons.
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Figure 6. (a–d) Simulated moisture contents using cyclic time period 2 after establishing an annual
equilibrium for scenario A and (e–h) the difference in the simulated moisture contents for scenario A
(θA) and scenario B (θB) at monitoring wells B1 to B5 and their specific groundwater levels and soil
structures at the depths 1.5 m, 2.2 m, 2.9 m and 3.4 m b.g.l. Time = 0 corresponds to January 01.

At 3.4 m b.g.l., at B4 and B5, significantly lower moisture contents relative to the
groundwater table occur temporarily due to the lower water retention capacity of the
loam/gravel layer. In addition, different hydraulic properties of silt loam and silty clay
loam are evident at a depth of 1.5 m b.g.l. While medians of 0.32 and 0.34 cm3/cm3 were
simulated in the silt loam at B1, the median values in the silty clay loam at other monitoring
wells are significantly higher (up to 0.09 cm3/cm3).

Figure 6e–h show the differences between the simulated moisture contents of scenarios
A and B. These generally decrease with depth, as the groundwater influence increases and
the surface influence decreases. In addition, the differences are greatest at high groundwater
distances, such as at B1 and B2. The maximum values occur at 1.5 m b.g.l., mainly in the
rainy period at the beginning of the year, and then appear with a certain time delay as the
depth increases.

3.4. Influence of Spatial Differences in Groundwater Distance on Moisture Contents

The comparison of the simulated moisture contents with the distance to the groundwa-
ter level at the respective depths shows a clear correlation in the form of a power function
with coefficients of determination (R2) between 0.86 and 0.99 (Figure 7).

Moisture content decreases with increasing distance to the groundwater level, depend-
ing on the soil texture class and surface influences. Considering medians (θmed), differences
of up to 0.08 cm3/cm3 occur within one soil texture class (here: silt loam).

No differences between scenarios A and B are observed at very low groundwater dis-
tances. Here, the moisture content is mainly determined by capillary rise and groundwater-
related temporary full saturation. With increasing distance to groundwater, increasing
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differences in θmed between the scenarios of up to 0.02 cm3/cm3 occur with generally
higher moisture contents in scenario A, which is due to the higher groundwater recharge
rate considered in scenario A. In addition, the decrease in moisture content with increasing
groundwater distance in scenario B is therefore steeper.
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Figure 7. Comparison of distances present at 1.5 m, 2.2 m, 2.9 m and 3.4 m b.g.l. at B1 to B5 to median
groundwater level (GWLmed) with median moisture contents (θmed) for scenarios A and B and for
different fine-grained soil texture classes. Additionally shown are trend lines of power functions with
an indication of the coefficient of determination (R2).

For the same depth and the same soil texture class, differences in moisture content of
up to 0.08 cm3/cm3 result from the spatial variation in groundwater levels. The largest
differences occur at 2.9 m b.g.l. in the silt loam layer.

3.5. Influence of Groundwater on the Seasonal Variation in Moisture Content

The comparison of the maximum annual range of moisture contents (∆θ) at a given
depth and location with θmed for different partially saturated soil texture classes and depth
ranges shows a clear linear correlation, with Pearson’s correlation coefficients (r) between
0.87 and 0.99 (Figure 8).
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Figure 8. Comparison of the maximum range of annual variation in moisture content (∆θ) for
different sub-domains considering scenarios A and B with the median moisture content (θmed). In
addition, linear trend lines indicating Pearson’s correlation coefficient (r) are shown. Therefore, only
fine-grained soil layers were considered.

Depending on the depth and the soil texture class, ∆θ increases with increasing median
moisture content and thus with decreasing distance to groundwater, additionally depend-
ing on the groundwater recharge rate. Maximum values of 0.08 cm3/cm3 are reached. In
general, higher fluctuations are observed in scenario A due to the higher recharge rate from
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precipitation. At groundwater distances < 2 m from the considered depth, no differences
between the two scenarios can be observed due to the groundwater influence.

Due to the surface influence of precipitation, high values of ∆θ generally occur at
1.5 m b.g.l. At 2.2 m b.g.l., significantly higher fluctuations occur at B5, since the groundwa-
ter rises to 2.1 m b.g.l. at times, and thus fully saturated conditions also prevail.

At 2.9 m and 3.4 m b.g.l., fully saturated conditions exist intermittently at B3, B4 and
B5 and additionally at 2.2 m b.g.l. at B5. Therefore, high ∆θ and θmed values for silt loam
are generally observed here. However, the range of variation decreases with increasing
moisture content and thus with decreasing groundwater distance (r = −0.84). Since high
moisture contents are already present due to the very low groundwater distance, the
difference between the moisture content in the temporarily partially saturated conditions
and the fully saturated moisture content is lower.

4. Discussion
4.1. Derived Thermal Conductivities from Simulated Moisture Contents at Monitoring Wells B1 to B5

The derived site- and depth-dependent annual trends in thermal conductivity are
shown in Figure 9a-d. Since the derived values are based on an annually repeating cycle of
simulated moisture contents and on exemplary laboratory measurements of λ, the actual
thermal conductivities may deviate from them. In addition, temporary icing caused by
the LSC, as can be seen in the observed moisture contents in Figure 5, was not considered.
Frozen soils generally have a significantly increased thermal conductivity [51].
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Figure 9. (a–d) Thermal conductivities derived from the simulated moisture contents with the
equations from Table 5 for scenario A and (e–h) the difference in the derived thermal conductivities
for scenario A (λA) and scenario B (λB) at monitoring wells B1 to B5 and their specific groundwater
levels and soil structures at the depths 1.5 m, 2.2 m, 2.9 m and 3.4 m b.g.l. Only fine-grained silty
layers are considered for (a–d). Time = 0 corresponds to January 01.

Medians of λ between 1.52 W/(m·K) at B1 and 1.68 W/(m·K) at B5 were derived for
the silt loam layers at the considered depths. Due to the deviating thermal properties of
the silty clay loam, the medians in this layer at 1.5 m b.g.l. range between 1.32 W/(m·K)
and 1.35 W/(m·K) (Figure 9a). The derived values largely agree with the mean thermal
conductivities determined by Rammler et al. [22].
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Looking at the medians, differences of up to 0.21 W/(m·K) at 1.5 m b.g.l. result, which
can mainly be attributed to the different thermal properties of silt loam and silty clay loam.
Using the maximum differences at this depth with 1.34 W/(m·K) at B2 and 1.55 W/(m·K) at
B1 in scenario A for the exemplary DELPHIN simulations, the different thermal properties
of the fine-grained soils result in maximum spatial variations in theoretical heat extraction
of 13% to 14% at this depth.

Figure 9e–h show the differences between the derived values for scenarios A and
B. As with the moisture content, the differences generally decrease with depth, as the
groundwater influence increases and the precipitation influence decreases. Due to the
comparatively high groundwater distances at B1 and B2, the differences are greatest there,
with values of up to 0.05 W/(m·K). The maximum values occur mainly in the rainy period
and then appear with a certain time delay as the depth increases. In the area with high
groundwater levels (B3 to B5), there are no or only minor differences, particularly at 2.9 m
and 3.4 m b.g.l.

The high ∆θ values of the loam/gravel layer also cause the derived thermal con-
ductivity to vary by up to 0.92 W/(m·K) at 3.4 m b.g.l. (Figure 10). With a maximum
thermal conductivity of 2.36 W/(m·K), higher values are obtained in this layer than in the
fine-grained soils at the same depth by up to 0.82 W/(m·K) when comparing medians.
For this layer, there is no significant difference between scenarios A and B due to the low
groundwater distance and long-time full saturation.
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Figure 10. Thermal conductivities derived from the simulated moisture contents with the equa-
tions from Table 5 for (a) scenario A and (b) scenario B at monitoring wells B1 to B5 and their
specific groundwater levels and soil structures at 3.4 m b.g.l. considering fine-grained silts and the
loam/gravel layer. Time = 0 corresponds to January 01.

4.2. Influence of Spatial Differences in Groundwater Distance on the Very Shallow Geothermal
Potential (vSGP)

The comparison of the derived thermal conductivities with the distances to ground-
water at the respective depths shows a clear correlation in the form of a power function
with coefficients of determination (R2) between 0.85 and 0.99 (Figure 11).

As the groundwater distance increases, λmed decreases due to the moisture content
also decreasing (Figure 7). Looking at medians, the thermal conductivity of the silt loam
soil texture class shows differences of up to 0.16 W/(m·K). As the distance to groundwater
increases, the difference between scenarios A and B increases to 0.03 W/(m·K) when com-
paring median values, as the influence of groundwater on the moisture content decreases
and that of precipitation increases. The resulting higher moisture contents in scenario A
lead to higher thermal conductivities. The lower groundwater recharge rate also leads to
a steeper decrease in λmed with increasing groundwater distance in scenario B. However,
at low groundwater distances, the very shallow geothermal potential in the form of λ is
mainly influenced by capillary rise and temporary full saturation.

For the same depth and the same soil texture class, differences in thermal conductivity
of up to 0.14 W/(m·K) result from the spatial variation in groundwater levels, considering
medians. The largest differences occur at 2.9 m b.g.l. in the silt loam layer. Using this
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maximum spread of thermal conductivity for the exemplary DELPHIN simulations, with
1.54 W/(m·K) at B1 and 1.68 W/(m·K) at B5 in scenario B, this results in a maximum spatial
variation in heat extraction of 7% to 9%.
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Figure 11. Comparison of distances at 1.5 m, 2.2 m, 2.9 m and 3.4 m b.g.l. at B1 to B5 to the median
groundwater level (GWLmed) with the median thermal conductivity (λmed) for scenarios A and B
and fine-grained soil texture classes. Additionally shown are trend lines of power functions with an
indication of the coefficient of determination (R2).

4.3. Influence of Groundwater on the Seasonal Variation in the Very Shallow Geothermal Potential
(vSGP)

A comparison of the maximum annual range of thermal conductivity (∆λ) at a given
depth and location with λmed for different partially saturated soil texture classes and depths
shows a clear linear correlation, with Pearson’s correlation coefficients (r) between 0.87 and
1.00 (Figure 12).
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Figure 12. Comparison of the maximum range of annual variation in thermal conductivities (∆λ) for
different sub-domains considering scenarios A and B with the median thermal conductivity (λmed).
In addition, linear trend lines indicating Pearson’s correlation coefficient (r) are shown. Therefore,
only fine-grained soil layers were considered.

Depending on the depth and soil texture class, ∆λ increases with increasing moisture
content and thermal conductivity and thus with decreasing distance to groundwater with a
maximum of 0.14 W/(m·K). As with the moisture content, the variations are smaller for
scenario B due to the lower recharge rate from precipitation. There is no difference at low
groundwater distances, where the influence of the groundwater dominates.

Due to the groundwater-induced high moisture content and temporary full saturation,
there is also a decrease in ∆λ with increasing λmed for the affected soils (r = −0.85).

The maximum ∆λ value of 0.14 W/(m·K) occurs, for example, at B5 at a depth of
2.2 m b.g.l. Here, the thermal conductivity varies between 1.57 W/(m·K) and 1.71 W/(m·K),
mainly related to the annual groundwater fluctuation. Based on these values, the exemplary
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DELPHIN simulations result in a maximum annual variation in theoretical heat extraction
of 7% to 8%.

5. Conclusions

The validation of the simulations based on the observed moisture contents at the
measuring points “Reference” and “mLSC” showed the general suitability of the quasi-
one-dimensional model setup and of the assigned material properties to simulate actual
moisture contents. The methodology can thus also be transferred to other applications or
issues concerning vertical water movement in a soil column. The extent to which scenario
A or B corresponds more to the actual surface influences could not be conclusively assessed
due to the small differences between the simulated moisture contents.

The simulations at monitoring wells B1 to B5 resulted in the following influencing
factors and effects on moisture content and on the very shallow geothermal potential in the
form of the thermal conductivity in the area around the LSC (Table 7).

Table 7. Maximum differences (∆max) in moisture content (θ) and thermal conductivity (λ) at the LSC
site with respect to different main influencing factors. Here, median values are referred to, except for
seasonal variations.

Influence Factor Expressed by ∆max (θ)
[cm3/cm3]

∆max (λ)
[W/(m·K)]

Groundwater

Spatial difference at the same depth for
the same fine-grained soil texture class 0.07 0.14

Annual variation in fine-grained soils 0.08 0.14
Annual variation in loam/gravel layer at 3.4 m b.g.l. 0.30 0.92

Soil
texture

Difference between silt loam and silty clay loam at 1.5 m b.g.l. 0.09 0.21
Difference between silt loam and loam/gravel layer at 3.4 m b.g.l. 0.17 0.82

According to exemplary simulations, groundwater-related spatial and seasonal vari-
ations in thermal conductivity can cause maximum changes in heat extraction of 7% to
9%. The determined differences represent maximum values due to the location of the
monitoring wells at the outer boundary of the LSC.

Due to the different soil texture classes of fine-grained soils and their thermal prop-
erties, variations in heat extraction of 13% to 14% are possible. Even larger grain-size-
distribution-related differences in thermal conductivity are particularly evident with respect
to the loam/gravel layer, which is present in the northeast of the LSC from 3 m b.g.l. down-
ward. Particularly high thermal conductivities are also expected in the purer gravel [50,52],
which is only immediately deeper. Due to the effective thermal conductivity, which is
influenced by the groundwater flow velocity [53], the bench gravel as a whole can thus have
a significant impact on the thermal regeneration capability of the subsurface, depending on
the location at the LSC.

Accordingly, a sufficiently detailed subsurface exploration is required in advance for
the design of an efficient LSC. In addition to determining the spatial and seasonal ground-
water conditions, the distribution of different soil textures and specific thermal properties
should be a primary focus. In practice, this can be achieved primarily through a higher
number of subsurface outcrops corresponding to the large area of an LSC. However, this
must also be determined site-specifically based on various factors, such as the slope of the
terrain or on the basis of hydrogeological, geological and pedological maps. A sufficiently
detailed subsurface exploration can potentially lead to smaller and more efficient collector
and distribution systems, thus increasing overall profitability.

The investigation has also shown that as groundwater recharge from precipitation
decreases because of climate change [53], differences in the very shallow geothermal
potential between areas at the LSC with high (east) and low (west) groundwater tables will
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become more pronounced. The resulting lowering of groundwater levels will also lead to
decreasing thermal conductivities.
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Appendix A

Table A1. List of soil samples for which hydraulic properties were determined using the HYPROP®

measuring device for each layer or soil texture class. The sampling sites are documented in
Rammler et al. [22]. In addition, further tests were conducted that are not listed here because they
were not used for this study. ρb_ini corresponds to the bulk density before saturation.

Layer/Soil
Texture Class Sample Point Depth

[m b.g.l.] Sampling ρb_ini [g/cm3]

Topsoil Distributed
around the LSC

0.0 Repacked 1.26
0.0 Repacked 1.46
0.0 Repacked 1.41
0.0 Repacked 1.45

Silt loam East of the LSC
0.3 Undisturbed 1.60
0.3 Undisturbed 1.53
0.3 Undisturbed 1.64

Silty clay loam

East of the LSC 0.3 Undisturbed 1.46
RCD1 1.1–1.5 Repacked 1.28
RCD2 1.3–1.5 Repacked 1.37

RCD3 + RCD4 1.5 Repacked 1.37
TP5 1.4 Undisturbed 1.43
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Figure A1. Water retention curves based on the Genuchten–Mualem model with soil moisture tension
(pF) and moisture content (θ) fitted to the evaluated values of the soil samples from Table A1 for
(a) topsoil, (b) silt loam and (c) silty clay loam with LABROS SoilView-Analysis. The resulting
parameters are listed in Table 3.
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Figure A2. Measurement series from Rammler et al. [22] on which the derivation of the thermal
conductivity (λ) was based for (a) fine-grained soils as a function of moisture content (θ) and (b) the
loam/gravel layer as a function of saturation (S) (Table 5). The series of measurements selected were
those of sample TP6 (1.6 m) for silty clay loam and those of sample TP2 (2.4 m) for silt loam. The
sampling sites are documented in Rammler et al. [22]. Also shown in (a) are the trend lines of linear
interpolation and extrapolation for θ > 0.15 cm3/cm3, as described in Table 5. For the loam/gravel
layer, a series of measurements on the corresponding layer at B1 from a master’s thesis [50] was
used. The trend line based on a second-degree polynomial function is also shown. The coefficient of
determination (R2) is given for all trend lines.
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