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Abstract: Our research focuses on the reconstruction of turbidity paleocurrents of the Cilento Group
in the Cilento area (southern Apennines, Italy). These deposits were formed in the wedge-top
basin above the oceanic Ligurian Accretionary Complex, the early orogenic wedge of the southern
Apennines. The Cilento Group succession, whose age ranges between the uppermost Burdigalian and
lowermost Tortonian, consists of a thick pile of sandstones, conglomerates, marls and pelites grouped
in two formations (Pollica and San Mauro Fms). We retrieved information on the turbidity current
directions through sedimentary features such as flute and groove casts, flame structures and ripple
marks. The aim of this study is to shed light on the early tectonic evolution of the southern Apennines
by reconstructing the geometry of this basin, the source areas that fed it and the paleogeography of
the central Mediterranean area in the Miocene. We analyzed 74 sites in both formations and collected
338 measurements of paleocurrent indicators. Because the succession was affected by severe thrusting
and folding, every paleocurrent measurement was restored, reinstating the bedding in the horizontal
attitude. Results indicate a complex pattern of turbidity current flow directions consistent with a
basin model fed by a spectrum of sources, including recycled clasts from the Ligurian Accretionary
Complex, Calabria–Peloritani Terrane and the Apennine Platform units and volcaniclastics from the
synorogenic volcanoes located in the Sardinia block.

Keywords: paleocurrent analysis; Cilento Group; southern Apennines

1. Introduction

Wedge-top (or thrust-top) basins form above the active orogenic wedge, and together
with foredeep, forebulge and back-bulge depozones, located ahead the thrust front, com-
pose the Foreland Basin System [1]. Wedge-top and foredeep basins are the places where
thick piles of sediments accumulate, eroded from the allochthonous thrust sheets and the
surrounding rocks, including the overriding and downgoing plates. The detrital modes
of foreland basins are primarily influenced by tectonics, climate and eustasy (e.g., [1,2]).
The standard stratigraphic succession consists of upward coarsening sequences uncon-
formable onto a deformed basement, frequently sealing tectonic contacts between major
thrust sheets [1]. Wedge-top deposits have varying characteristics, with significant lateral
facies variations, multiple local unconformities and complex paleogeographic features
due to the neighboring topographic reliefs that developed with the advancing front of
the fold–thrust belt [1]. Generally, wedge-top basins form in morphological depressions,
frequently originating from tectonic structures, like synclines (e.g., [3]) or graben (e.g., [4]).
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Understanding the stratigraphy and the sedimentary features of the Foreland Basin System
is crucial for constructing the tectonic evolution of the orogenic chains. By determining the
ages of the deposits in the foredeep basin and the first wedge-top basin, we can estimate
when the orogenic pulses occurred [5]. Additionally, studying the detrital modes and
their changes over time can provide valuable information about the source areas, aiding
in paleogeographic reconstructions. Generally, wedge-top basin deposits are vulnerable
to erosion because of their high structural elevation, and usually, they are preserved in
post-orogenic structural depressions, such as the Cilento area in the southern Apennines
(Figure 1) along the Tyrrhenian side of the orogenic chain. Here, the Cilento Group (CG)
deposits [6], the subject of this study, are exposed.
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The CG is one of the best-preserved wedge-top basin deposits in the southern Apen-
nines, recording the first stages of orogenic construction. It consists of widespread outcrops
of turbiditic successions, generally unconformably covering the oceanic Ligurian Accre-
tionary Complex (LAC) formed by the Nord-Calabrese, Parasicilide and Sicilide thrust
sheets, including Cretaceous–Lower Miocene successions affected by a complex polyphasic
deformation [8,9]. In the southern sector of the southern Apennines (Basilicata region),
the CG, at places, covers the Meso–Cenozoic successions of the Apennine Platform do-
main [10]. The uppermost Burdigalian–lowermost Tortonian CG [6,11,12] is characterized
by siliciclastic, calciclastic and volcaniclastic deposits. In the Cilento area [13–17], the CG
includes two turbiditic units: (1) the Pollica Fm, encompassing thin beds of siltstones and
sandstones at the base, and prevailing sandstones in the middle-upper part; and (2) the
San Mauro Fm, formed by sandstones and conglomerates with some characteristic levels
of whitish marls (“Fogliarina” Auctt.). In the southern sector of the Cilento area, both
formations laterally evolve into coarse clastic deposits, frequently hosting conglomerates
(Torrente Bruca facies; [18]). More southward, the CG is replaced by the undifferenti-
ated Albidona Fm, consisting of siliciclastic turbidites with intercalations of calciclastic
megaturbidites [6,19–21].

The aim of this work is to reconstruct, through the analysis of paleocurrents in the CG
turbidites, the geometry of this wedge-top basin and the source areas that fed this basin,
shedding light on the early geodynamic evolution of the southern Apennines. Paleocurrent
analysis in the Cilento area has already been the objective of several studies in the past
few decades [22,23]. However, these works analyzed only a small area of the Cilento,
not differentiating the LAC from the wedge-top basin deposits. Hence, in the present
study, we analyzed the CG deposits in a broader area of Cilento, reconstructing the original
paleocurrent attitudes and analyzing the different formations.

2. Geological Framework
2.1. Regional Geology

The Cilento area is located in the southern Apennines (Figure 1), a segment of the
Alpine circum-Mediterranean chains (e.g., [24–27]). Currently, four first-order geological
elements may be distinguished in the central Mediterranean area [28]: (1) the Tyrrhenian
Sea, characterized by oceanic and thinned continental crust, representing the back-arc
basin developed at the rear of the Apennine–Calabrian Arc system since the Serravallian
time; (2) the southern Apennine chain, formed by the superposition of several thrust
sheets, including the oceanic (LAC) and platform-to-pelagic basin successions of the Adria
Plate of Lower Miocene to Middle Pleistocene in age; (3) the Bradanic foredeep basin,
corresponding to the youngest (Pliocene–Pleistocene) flexural depression developed at
the front of the thrust belt; and finally (4) the Adriatic–Apulia foreland, constituted of
exposed Mesozoic–Tertiary carbonates. The fold-and-thrust belt of the southern Apennines
(Figure 1a) consists of a tectonic pile of thrust sheets (Figure 1b) referring to different
paleogeographic domains [5,7–9,24–27]: (1) the Ligurian Ocean (2); Apennine Platform;
(3) Lagonegro–Molise Basin; and (4) Apulian Platform.

The pre-orogenic stratigraphic architecture of the Adria Plate is made by deposits
formed in shallow-water to deep-basin passive margin environments affected by different
extensional events [26,29,30]. These include the Late Triassic–Lower Jurassic rifting stage
that led to the opening of the Ligurian Ocean and the dismembering of the shallow-water
carbonate domain, with the formation of the Apennine and Apulian platforms partially
separated by the pelagic Lagonegro–Molise Basin. Subsequently, the Late Cretaceous–
Eocene abortive rifting affected these realms, further dismantling the carbonate platforms.
According to this pre-orogenic paleogeographic model [5,8,9,20,26], the LAC includes
remnants of the Ligurian Ocean (Nord-Calabrese, Parasicilide and Sicilide nappes), which
separated the continental part of the Adria Plate (Apennine and Apulian Platform units
and the intervening Lagonegro–Molise Basin) from the Europe/Calabria Peloritani Terrane
(CPT) [31,32]. The orogenic crustal shortening started with the subduction of the Ligurian
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lithosphere under the Europe/CPT in the Paleocene/Eocene [5,33], with the complete
closure of the Ligurian Ocean in the Early Miocene, and the onset of the LAC formed
through frontal accretion of the easternmost oceanic successions. Subsequently, in the
Middle-to-Late Miocene, the tectonic prism migrated to the E/NE with the inclusion
of several thrust sheets composed of successions belonging to the Apennine Platform
and the Lagonegro–Molise Basin. The orogenic stacking of the latter successions was
mainly ruled by thin-skinned tectonics characterized by dominant flat-lying thrust faults.
Following the docking of the allochthonous wedge with the Apulian Platform in the Early
Pliocene, the orogenic wedge superposed onto the Apulian carbonates. After that, the
Pliocene–Pleistocene orogenic tectonic style was controlled by ramp-dominated thrust
faults enucleated at depth within the Apulian succession, which presently forms a buried
para-autochthon wedge [5,7]. During the orogenic evolution, several unconformable clastic
deposits formed on top of the allochthonous units (wedge-top basin deposits), including
the Lower-to-Middle Miocene CG (Figure 2), mainly covering the LAC units, the Upper
Miocene Castelvetere Group, which is widespread in the whole chain, the upper Messinian–
lowermost Zanclean Altavilla Group and Pliocene Baronia and Sferracavallo Fms, which
are exposed primarily on the external sector of the chain [5,29,30].
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In the Pliocene–Pleistocene time, the crustal shortening produced an out-of-sequence
thrusting that involved the tectonic prism, including the wedge-top basin deposits [34–37].
From the upper part of the Early Pleistocene, the orogenic chain was affected by the post-
orogenic extension, starting from the Tyrrhenian side and migrating to the East, with the
formation of several intramontane basins and coastal plains, including the Campania Plain,
where extensive back-arc volcanism occurred [38].

2.2. The Cilento Group
2.2.1. Stratigraphy

The wedge-top basin deposits of CG comprise large exposure of turbiditic sediments
with ages ranging from the uppermost Burdigalian to the lowermost Tortonian [6,8,32].
It presents thicknesses ranging from 1200 to 2400 m and crops out extensively in the
Cilento area (Figure 2). Here, this coarsening-upward mega-sequence unconformably
covers the LAC units and, in turn, is unconformably covered by the Monte Sacro Fm
(Castelvetere Group; [30]) of the upper Tortonian–lower Messinian age. The sedimentary
facies associations of the CG suggest a paleoenvironment characterized by submarine fan
successions made of turbidite sequences [39,40] formed by sediment gravity flows [41–45].
In the northwestern Cilento area, the CG comprises different turbidite depositional systems
grouped into two sedimentary units: the Pollica and San Mauro Fms.

The Pollica Fm (Figure 3), ~800 m thick [6], is characterized, at the base, by thin-
bedded shaly fine-grained arenaceous distal turbidites (Cannicchio Mb), followed by
more proximal turbidites consisting of coarse-grained sandstones locally interbedded with
conglomerates [46]. The Cannicchio Mb is characterized by regular and laterally continuous
bedding, as well as the presence of thin hemipelagic intercalations. These features are typical
of the basin plain thin-bedded turbidites [47] or lobe fringe [46]. The remaining part of Pollica
Fm sediments has been deposited in a transitional and/or marginal area at the distributary
channels and the suprafan lobes [48] or at the middle-outer fan sequences [49,50]. The base of
the strata is often erosional, and chaotic levels, which are associated with intraformational
landslides, are frequent [46].

The San Mauro Fm (Figure 3), ~1600 m thick [6], was formed, from bottom to top, by a
thick sedimentary succession consisting of pelitic–arenaceous and arenaceous–pelitic layers
with frequent carbonate intercalations, even in megabeds. In the higher sections, there are
still intervals of sandy and muddy sediments, but there is an increase in conglomerate–
sandstone and conglomerate fractions. The vertical evolution of the sedimentary facies
highlights progressively more proximal features, showing a progradational sequence of the
thickening and coarsening-up type [51], passing from outer fan deposits (fan fringe and
depositional lobes) to inner fan deposits (channelized deposits and mouth and of channel
embankment). The sedimentary succession also includes two carbonate–clastic megabeds
(“Fogliarina” layers), respectively ~65 and ~35 m thick, and others of a lower thickness
(from 10 m to 50 cm), exposed in the lower part of the sequence. A thick conglomerate–
sandstone portion caps the succession [52].

In the southeastern sector (from Pisciotta to Mt Sacro and Mt Centaurino, Figure 2a),
the sedimentary facies of both formations become coarser with the dominance of con-
glomerates (Torrente Bruca facies of [18]), consisting of a few tens of meters of thinly
bedded sandstones and micaceous siltites followed by an arenaceous–conglomeratic suc-
cession with frequent thick beds of rudites made of crystalline clasts and frequently eroded
clay balls and chips, enclosed in an arenaceous matrix. Some marly beds and megabeds
are present.
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2.2.2. Detrital Mode Evolution and Clastic Sources

CG sandstones are quartzolithic, volcanolithic and quartzofeldspathic [54]. In addition,
the upper part (San Mauro Fm) contains numerous calcarenites and marly megabeds
and some olistostromes with thicknesses ranging from a few tens to hundreds of meters.
Plutonic, metamorphic and volcanic debris is found in the upper part of the Pollica Fm
and the lower part of the San Mauro Fm. The latter deposits include abundant felsic
calc-alkaline clasts, including rhyodacites and rhyolites [54].
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The Miocene sandstones show a detrital evolution (Figure 4a), indicating a recycled
orogen provenance related to the emplacement of CPT and LAC thrust sheets. In contrast,
volcaniclastic sandstones in the median part of the CG (Figure 4a) show a magmatic arc
provenance, such as the synchronous orogenic volcanism that occurred in the Sardinia
block and Tyrrhenian basin [38,55]. The debris deriving from the LAC appears only in the
upper-middle part of the CG (Figures 3 and 4a), consisting of sandstones and olistostromes
of pillow lavas and gabbros (Mt Centaurino, Figure 2a) and varicolored argillites and
radiolarites (Mt Sacro, Figure 2a). However, the detrital mode evolution of the LAC
quartzolithic sandstones (Figure 4a) is also related to the erosion of the CPT rocks with an
andesitic volcano-lithic supply [54,56]. On the contrary, carbonate–clastic mega layers of
“Fogliarina” [22,57] are well distinguished by large volumes of calcareous sands and muds,
likely deriving from the orogenic deformation of Apennine Platform carbonates located to
the east [54,58,59].

Recently, ref. [60] analyzed the fine-grained portion of the CG to determine pale-
oweathering, provenance and recycling information. The Authors state that the source area
primarily comprises felsic rocks with a smaller number of mafic rocks, mostly correspond-
ing to an upper crust composition evidenced by the Ni-La*4-V ternary plot (Figure 4b).
Furthermore, the Chemical Index of Alteration (CIA) estimations suggest that moder-
ate chemical paleoweathering processes accompanied the erosion. Finally, the analyzed
sediments indicate poor sorting and rapid deposition.
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2.2.3. Deformation

The CG succession recorded the deformation stage that affected the orogenic chain
in the lower Pliocene [36,37]. The deep structure of the Cilento area is defined by some
out-of-sequence ramp-dominated blind and emerged thrust faults that formed the tectonic
windows of Castel Nuovo Cilento and Roccagloriosa (Figure 2b; [8]) and the overthrusting
of Mt Bulgheria onto the LAC ([62]; Figure 2a). The CG deposits host several structures,
including thrust faults and folds, indicating a roughly NW–SE shortening and a vergence
toward the SE; however, in the Orria–Piano Vetrale area (Figure 2a), an SW-verging over-
turned synclinal occurs [63].

Generally, the mesoscale folds are tight to open with a kink shape, such as in the
Cannicchio Mb (Figure 5a) and the middle-upper part of the Pollica Fm (Figure 5c). Brittle
shortening structures appear as pre-buckle thrust (Figure 5b) and thrust faults (Figure 5d–f)
with centimetric-to-metric displacements and associated drag folds.
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verging to SW (Piano Vetrale).

3. Materials and Methods

For the assessment of turbidity paleocurrent directions, 74 different locations in Cilento
were analyzed, spanning from the southern Pisciotta–Mt Sacro ridge to the northern town
of Agropoli (Figure 2a), resulting in the collection of a total of 338 paleoflow directions. An
average of 4–5 paleocurrent indicators per site were measured, with data distinguished
according to their formations. As the succession was heavily deformed, especially in the
lower part, for every paleocurrent orientation, the bedding attitude was recorded to allow
the retro-deformation of the paleocurrent lineation, restoring the bedding in the horizontal
attitude, assuming that the original paleocurrent plunge, which is lesser or equal to the
turbidite bed dip angle, measures a few degrees. The retro-deformation of the paleocurrent
and plotting of bedding orientation data was performed using the software TectonicsFP©
1.7.9 [64]. Subsequently, the retro-deformed data were analyzed as rose diagrams for the
final evaluation of the mean azimuth. Finally, paleocurrent lineations were plotted in a
geological map of Cilento as arrows for each site, according to their original turbidity
paleocurrent directions.
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4. Results
4.1. Field Observations

Various paleocurrent indicators [65,66] were identified in the field (Figures 6 and 7).
These structures mainly consist of flute casts (Figures 6e,f and 7a) and, to a lesser extent,
groove casts (Figure 7b), flame structures (Figure 7c) and ripple marks (Figure 7d). Most of
these structures were preserved within the more resistant lithologies, such as sandstones,
especially those with larger thicknesses. Flute casts are structures formed by a paleocurrent
flow that erodes and widens downstream from a specific point known as the “nose”.
These structures suddenly deepen before gradually becoming shallower toward their
end [66]. Flute casts form when a substrate erodes and is then typically filled with sand.
These marks are recognizable as indentations on the bottom of beds. The quality of the
paleocurrent indicators depends not only on the movement of the sedimentary material
but also on the depositional dynamics; in fact, during the deposition of the turbidity
currents, the more energetic ones dig furrows at the bottom. However, in several cases,
such as those shown in Figures 6e,f and 7e,f, the presence of ichnofossils (Thalassinoides
and Helminthorhaphe [67]) has perturbed the layers, partially or fully eliminating the
footprints of paleocurrents; as a result, several outcrops were not considered reliable and
therefore prudently discarded or cautiously analyzed. In some cases, flame structures
(Figure 7c) and ripple marks (Figure 7d) were used to evaluate the paleocurrent direction
as the line orthogonal to the lineation that these structures form when crosscutting the bed
surface. The best-preserved turbidity paleocurrents were observed in the northern sector of
the Cilento due to the occurrence of fine-grained sediments compared to the southern part,
where Pollica and San Mauro Fms show a dominance of conglomerates (Torrente Bruca facies).
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Figure 6. Examples of paleocurrent indicators. Pollica Fm (Punta Licosa): (a) bulbous and (b) spindle
flute casts sensu [66]. Flute casts in San Mauro Fm: (c) Punta Tresino and (d) Baia di Trentova.
(e,f) Flute casts and ichnofossils (Thalassinoides) in San Mauro Fm (Baia di Trentova).
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Figure 7. Examples of paleocurrent indicators. (a) Flute casts in the San Mauro Fm (Baia di Trentova).
(b) Groove cast indicators in the San Mauro Fm (Galdo). (c) Flame structure in the San Mauro
Formation (Punta Tresino). (d) Ripple marks in the San Mauro Fm (Agropoli). (e) Ichnofossils
(Helminthorhaphe) superposed on flute clasts in the San Mauro Fm (Punta Tresino). (f) Ichnofossils
(Helminthorhaphe) in the San Mauro Fm (Agropoli).

4.2. Restored Paleocurrent Lineations

For each site, the mean trends of the restored paleocurrent directions have been
calculated and plotted as arrows in the geological map (Figure 8a). It is worth noting that
the paleocurrent directions form a generally consistent pattern where parallel lineations
are dominant in some areas, and orthogonal sets occur in others. Furthermore, in several
places, opposite trends are present.
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Figure 8. (a) Geological map of Cilento (modified after [30]) with oriented indicators of the mean
paleocurrents. Rose diagrams of the directions of the restored paleocurrents: (b) Pollica Fm; (c) San
Mauro Fm. After 60◦ clockwise (CW) rotation: (d) Pollica Fm; (e) San Mauro Fm.

We grouped all restored paleocurrent lineations according to the hosting rock nomen-
clature (formations). The rose diagram of Pollica Fm (Figure 8b) indicates the main preferred
trends toward the SSW and NE and, secondarily, the SW, ESE and NW.

The rose diagram of San Mauro Fm (Figure 8c) shows the main directions toward the E,
S, SW and NE. To restore the flow directions with the correct orientation in the uppermost
Burdigalian–lower Tortonian period (age of the CG), we must consider that the Cilento
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area rotated counterclockwise at an average angle of 60◦ from the Miocene, according to
the studies on magnetic lineations in the carbonates of Alburno and Bulgheria Mts [68]
located nearby the study area (Figure 2a). Therefore, we rotated all the data clockwise
around a vertical axis of 60◦. The resulting rose diagrams (Figure 8d,e) indicate that the
restored turbiditic flows were directed mainly toward the WSW, NW, SE, SSE and NNE for
the Pollica Fm and the SSE, ESE, WSW and WNW for the San Mauro Fm.

5. Discussion

The paleocurrent analysis performed on the CG deposits provides some valuable
information that is helpful in reconstructing the geometry of the wedge-top basin formed in
the early stages of the southern Apennine orogeny. As previously stated, the paleocurrent
pattern exhibits large heterogeneity. In neighboring areas, the turbidity paleocurrents are
typically nearly parallel with consistent flow directions. However, in other areas, they
form orthogonal sets or show opposite flow directions, a common feature in confined
turbidite settings [69,70], such as in structurally controlled elongated basins like wedge-
top basins [3,71]. Based on the paleocurrent analyses for the two formations, preferred
orientations have been observed. Generally, both formations show different preferred flow
directions, suggesting a non-uniform basin architecture made of the superposition of several
turbidite lobes [47,53,54,72]. We suggest that the well-represented restored flow directions
toward the S, SSE and NNE (Figure 8d,e) are related to the turbidites that flow parallel to
the depocenter axis, with a mean N-S direction, accordingly with other paleogeographic
reconstructions, e.g., [72]. It is possible to interpret other preferred directions as being at a
high angle, converging toward the depocenter axis.

The detrital evolution of the CG deposits indicates a mixed provenance from the CPT,
LAC and Apennine Platform, as well as the volcaniclastics from the Miocene synorogenic
volcanic arc located westward of the Cilento Basin [56]. It is worth noting as the Numid-
ian sandstones, extensively occurring in the Apennine Platform foredeep deposits and
Lagonegro–Molise Basin succession [26,30] and coeval with the Pollica Fm, show a detrital
evolution (Figure 4a), indicating a continental block provenance, being very different from
CG sandstones, which are characterized by a recycling provenance. Based on this feature, it
appears that during the uppermost Burdigalian–Langhian, the Cilento Basin was separated
from the Apennine Platform foredeep basin and that any sediment material came from the
recycling of the LAC and CPT. Considering the paleocurrent data and clastic provenance,
we suggest a simplified model of the CG basin (Figure 9) defined by a linear depocenter
with a roughly N-S trending axis and clastic supply mainly from the LAC and Apennine
Platform carbonates (to the E), LAC and CPT (to the W) and volcaniclastics from a volcanic
arc located to the west, likely belonging to the Sardinia block [38].

The petrography of the clastic content of the CG indicates a detrital evolution from
metamorphic-bearing sandstones, including abundant volcanic and sedimentary detritus in
the lower part, to plutoniclastic-bearing sandstones in the upper part of the succession [56].
This abrupt change is consistent with the first clastic recycling from the LAC itself and
an unroofing of the CPT, with erosion shifting from the uppermost rocks, such as the
sedimentary cover, to the deeper plutonic rocks over time.

According to [8], the formation of the CG wedge-top basin can be attributed to
the extensional collapse of the LAC. This event likely occurred due to the buttressing
of the over-thickened orogenic prism against the Apennine Platform in the uppermost
Burdigalian. Low-angle extensional detachments associated with synorogenic extension
favored the development of accommodation space in wedge-top basin depocentres. This
hypothesis has been supported by [60], the Authors of which analyzed the thermal
maturity of organic and inorganic fractions of fine sediments of the CG. Their results
indicate two rapid sediment accumulation phases during the CG deposition. The first
has an age ranging between 16 and 13 Ma (uppermost Burdigalian–Langhian), and the
second has an age ranging between 6 and 3 Ma (upper Messinian–Pliocene). A lower
accumulation rate separated these two phases. The high accumulation rate of 2.7 mm/yr
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for the first stage of CG sedimentation is consistent with rapid subsidence, such as
that occurring in an extensional rather than a compressional setting [60]. On the other
hand, the lower rate (1.1 mm/yr) of the second phase could be associated with the
out-of-sequence deformation that affected the CG deposits in the lower Pliocene, which
featured a renewed orogenic thickening due to the diffuse thrust faults and folds. This
possibly includes the regional SW-verging recumbent fold in the Orria–Piano Vetrale area
(Figure 2a; [39]), probably associated with the back thrusting of the Apennine Platform
carbonates onto the CG deposits.
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To better explain the sedimentary evolution of the Cilento Basin within the frame-
work of the orogenic evolution of the southern Apennines, we illustrate in the cartoons
of Figure 10 the first stages of the Apennine construction from Oligocene to Tortonian.
In the Oligocene–Aquitanian (Figure 10a), the ophiolitic successions of the Ligurian
Ocean were subducted and added to the subduction channel [73]. In this period, the east-
ernmost sector of the Ligurian Ocean (Nord-Calabrese, Parasicilide and Sicilide units)
experienced a foredeep stage. In the early Burdigalian (Figure 10b), the Ligurian suc-
cessions were piled up by frontal accretion forming the LAC, subsequently (Figure 10c)
overthrusted onto the Apennine Platform domain, the latter forming a buttress that
caused the over-thickening of the LAC followed by a collapse (Figure 10d). On the
extended orogenic prism, the Cilento Basin formed and was first filled by the Pollica Fm
sediments (Figure 10d) and subsequently by San Mauro Fm sediments (Figure 10e). The
latter included a calciclastic supply (“Fogliarina” megabeds) originating from the Apen-
nine Platform units that, in the Langhian–Serravallian, were included in the orogenic
prism. Finally, in the upper Tortonian–lower Messinian (Figure 10f), the whole chain
was covered by the wedge-top basin Castelvetere Group clastic deposits, including the
Monte Sacro Fm in Cilento and Gorgoglione and Oriolo Fms in the easternmost sectors
overlying the Lagonegro–Molise Basin thrust sheets. In the Calabria sector, to the south,
the coeval clastic deposits of the Amantea Group were deposited during the opening of
the Tyrrhenian back-arc basin [74].
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Figure 10. (a–f) Tectonic and sedimentary evolution of the Ligurian Accretionary Complex from
the Oligocene to lower Messinian. NCA: Nord-Calabrese Domain; PAS: Parasicilide Domain; SIC:
Sicilide Domain; LAC: Ligurian Accretionary Complex; POL: Pollica Fm; SMA: San Mauro Fm; AMA:
Amantea Group Basin; MSA: Monte Sacro Fm; ORI: Oriolo Fm; GOR: Gorgoglione Fm.

Finally, Figure 11 shows the Langhian–Serravallian paleogeographic maps when
the Cilento Basin formed on top of the early Apennine orogenic chain. In the Langhian
(Figure 11a), the Cilento Basin was fed by different clastic sources, including the CPT
and synorogenic volcanoes located in the W and SW, and the LAC both from the W
and E, accordingly to the paleocurrent preferred directions of the Pollica Fm turbidites.
Synchronously, the whole western-central Mediterranean area was the location of the
Numidian sandstone deposition, beginning from the Rif and Betic chains and passing
to the Kabylides, Sicilian Maghrebides and finally to the Lagonegro–Molise Basin, and
the foredeep basin of the Apennine Platform [75]. In the Serravallian (Figure 11b), the
Cilento Basin was fed again by the CPT, LAC and synorogenic volcanoes with the addition
of sediments derived from a source located to the E of calciclastics, originating from the
erosion of the Apennine Platform thrust sheets that were forming in that period [32]. On
the map, the synchronous basin of the Amantea Group is shown. It was forming along the
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western side of the CPT, being related to the stretching of the chain and anticipating the
opening of the Tyrrhenian back-arc basin [74].
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6. Conclusions

We analyzed the turbidity paleocurrents of the uppermost Burdigalian–lowermost Tor-
tonian Cilento Group in the southern Apennines (Italy). This turbiditic succession consists
of sandstones, conglomerates, marls and pelites grouped in the uppermost Burdigalian–
Langhian Pollica Fm and the Serravallian–lowermost Tortonian San Mauro Fm. The CG
succession deposited in the first wedge-top basin of the southern Apennine orogeny formed
in an extensional environment resulting from the wedge collapse during the overthrusting
onto the western margin of the Apennine Platform.
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We analyzed flute and groove casts, flame structures and ripple marks. Due to the
intense deformation of the succession, we reconstructed the original attitude, restoring
the horizontal beds hosting the paleocurrent features. We collected 338 measurements
from 74 sites across the whole of Cilento. The results indicate that turbidity paleocurrents
form a complex spatial pattern, with some areas having parallel and concordant directions
and others having opposite or orthogonal flow directions. This feature is common in
tectonic-controlled depressions such as wedge-top basins. When analyzed as a whole,
the reconstructed paleocurrent flows show some preferred directions. Paleocurrents in
the Pollica Fm, restored to the Langhian paleogeography, are characterized by preferred
directions toward the W-NW and E to SSE. Paleocurrents in the San Mauro indicate the same
previous directions with a dominance of the SSE azimuth about parallel to the basin axis.

According to the detrital evolutions, paleocurrent directions and paleogeographic
reconstructions, the sources of the recycled siliciclastic sediments were the CPT, located
to the W, and the LAC, which hosted the Cilento Basin. The volcaniclastic source was the
synchronous volcanic arc located in the Sardinia block. Finally, the carbonate supply that
formed the “Fogliarina” megabeds in the San Mauro Fm originated from the Apennine
Platform units located to the E, recording the development of the first tectonic piling up of
the Apennine carbonates in the Serravallian.
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