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Abstract: Extreme and prolonged rainfall resulting from global warming determines a growing need
for reliable Landslide Early Warning Systems (LEWS) to manage the risk of rainfall-induced shallow
landslides (also called soil slips). Regional LEWS are typically based on data-driven methods because
of their greater computational effectiveness, which is greater than the ones of physically based models
(PBMs); however, the latter reproduces the physical mechanism of the modelled phenomena, and
their modelling is more accurate. The purpose of this research is to investigate the prediction quality
of the simplified PBM SLIP (implemented in the X-SLIP platform) when applied on a regional scale
by analysing the stability of rain forecasts. X-SLIP was updated to handle the GRIB files (format for
weather forecast). Four real-time predictions were simulated on some towns of the Emilia Apennines
(northern Italy) involved in widespread soil slips on 5 April 2013; specifically, maps of factors of
safety related to this event were derived assuming that X-SLIP had run 72 h, 48 h, 24 h and 12 h
in advance. The results indicated that the predictions with forecasts (depending on the forecast
quality) are as accurate as the ones derived with rainfall recordings only (benchmark). Moreover,
the proposed method provides a reduced number of false alarms when no landslide was reported
to occur in the whole area. X-SLIP with rain forecasts can, therefore, represent an important tool to
predict the occurrence of future soil slips at a regional scale.

Keywords: rainfall-induced shallow landslides; SLIP model; real-time instability predictions;
landslide risk management

1. Introduction

Global warming and climate change are directly affecting the pattern of precipitation
on our planet [1,2]. In recent times, intense rainfall occurred increasingly and triggered
other natural phenomena, among which the rainfall-induced shallow landslides (also called
soil slips) [3–6]. It deals with slope instabilities due to changes in soil saturation following
rainfall infiltration. When unsaturated soils reach full saturation, they experience a loss in
strength that can cause a sudden triggering of soil slips under specific geomorphological
conditions [7–11]. Soil slips of even limited sizes could cause direct and indirect damage,
such as life losses, disruption of the built environment, road closures, etc. [12,13]. Hence,
the need for the identification of susceptible areas where to introduce mitigation measures,
e.g., based on vegetation [14–16] or for the real-time prediction of phenomena occurrence
to raise alarm and respond to emergency situations in time. The latter aspect is the focus of
the so-called Landslide Early Warning Systems (LEWS), which detect hazardous events
in advance thanks to space–time predictive models and are adopted for civil protection
purposes. Relevant reviews on this topic can be found in [17–24]. LEWS are classified
according to the scale of application: slope, catchment or regional; in the following, regional
LEWS are referenced.

Most regional LEWS provide space–time information via data-driven methods, e.g.,
based on rainfall thresholds (empirical relationships between rainfall and landslide occur-
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rence derived from past events) [25–28] or on artificial intelligence [29–33]. The mentioned
methods are applied for real-time predictions thanks to the rain forecast. Recent progress
was made by including non-landslide data when developing the data-driven models to
reduce the false alarms, i.e., positive points according to the adopted method but no real
occurrence [34–37].

Other than data-driven methods, PBMs for the prediction of the triggering of rainfall-
induced shallow landslides are formulated on the understanding of the physical problem
and the soil’s mechanical and hydraulic behaviour [38–42]. Slope stability is commonly
analysed using the Limit Equilibrium Method (LEM), combining the statics with hydro-
logical models for the effects of infiltrated rainfall on soil shear strength. For shallow
landslides, one-dimensional (1D) LEMs are widespread, based on the infinite slope scheme;
literature presented several 1D-LEMs implementing hydrological models of different
complexity [43–50]. However, the computational demand makes the application of so-
phisticated PBMs prohibitive over large areas and, therefore, for regional LEWS. To this
purpose, a compromise of the modelling complexity needs to be achieved.

One of the most effective PBM, even simplified, is SLIP (Shallow Landslides Instability
Prediction); its simplification is on the time-dependency of soil saturation on rainfall:
saturation immediately increases because of infiltration (static rate) but then decreases due
to runoff (dynamic rate). Despite its simplicity, SLIP showed interesting predictive skills
in different territories and at different scales of analysis [51–57]. It was even adopted by
DEWETRA, i.e., the multi-risk platform of the Italian Department of Civil Protection, for
pre-alert purposes (analyses with recorded rainfall related to past events) [54]. Gatto and
Montrasio [58] presented a MATLAB platform named X-SLIP, where the SLIP model is
implemented, and stability can be assessed over large areas with easily available territorial
data. However, until now, X-SLIP showed its effectiveness when applied with recorded
rainfall; to use it in regional LEWS, it must be enabled to perform real-time predictions of
future events, with stability analyses based on rainfall forecasts.

How should X-SLIP include rainfall forecasts to perform real-time stability analyses?
What is the relationship between the forecast time and the prediction accuracy? This study
answers these questions via the development of a feature in the X-SLIP platform specific
for such space predictions in real time. Section 2.1 briefly summarises the SLIP model
and X-SLIP platform, while Section 2.2 describes how GRIB data (a common format for
weather forecast) are imported and managed by X-SLIP. Section 3 shows the validation
of the new feature on an area of Emilia Apennines (northern Italy), where some soil slips
were triggered after intense and prolonged rainfall on 5 April 2013; in this area, X-SLIP
already demonstrated its prediction capabilities when applied with recordings only [58,59].
Real-time hindcasts are, therefore, conducted on 5 April 2013 at 12 p.m. (survey time of the
reference events), assuming to have run X-SLIP 12, 24, 48 and 72 h in advance. To this aim,
rain forecasts provided by the Italian Air Force Weather Service are used. Section 4 presents
the factors of safety and the prediction qualities computed with forecasts in comparison
with the ones related to only recordings (Section 4.1). Finally, Section 4.2 presents a real-time
prediction conducted on 2 April 2013 at 12 a.m., a time event when rainfall was comparable
to the one which triggered the soil slips on 5 April, but there is no evidence of occurred
phenomena; this allows us to assess the effectiveness of X-SLIP real-time predictions even
on non-landslide days.

2. Materials and Methods
2.1. The SLIP Model and X-SLIP Platform

SLIP (Shallow Landslide Instability Prediction) is a simplified physically based model
formulated by Montrasio [44] to predict the triggering of soil slips. Such phenomena are
typically characterised by planar failure surfaces established at the depth of the topsoil, i.e.,
the shallow soil characterised by extensive macropores where the rainfall infiltrates [60,61];
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coherently, SLIP evaluates the one-direction factor of safety FS of the topsoil via the infinite
slope scheme, as follows:

FS(t) =
tan ϕ′
tan β

+
2·
[
c′ + cψ(t) + cr

]
γHsin 2β

(1)

According to Equation (1), FS depends on morphology (slope angle β), the thickness
H, and the physical and mechanical parameters of the topsoil (unit weight γ, effective
cohesion c′, apparent cohesion cψ, and friction angle ϕ′). The term cr has recently been
introduced by Montrasio et al. [59] to model the root reinforcement provided by vegetation.

As it is known, the topsoil’s stability is physically related to the soil’s apparent cohesion
cψ, which varies with time depending on rainfall and is zero when full saturation is
reached. SLIP evaluates cψ via a time-dependent relationship experimentally derived by
Montrasio [44] as follows:

cψ(t) = ASr (1 − Sr)
λ[1 − m(t)]α (2)

Sr is the soil’s degree of saturation, while A, λ and α are modelling parameters. m(t) is
the rainfall-dependent variable, in which its expression is based on some simplification;
it represents the thickness of the fully saturated horizontal layer in the topsoil, having an
area equivalent to the saturation bubbles created after rainfall infiltration. Considering the
rate 1 − β* of rainfall hj infiltrating the topsoil, m(t) is computed as follows:

m(t) =
1− β∗

nH(1− Sr)

ω

∑
j=1

hje
−kt(t−tj) (3)

n is the soil’s porosity. kt is the slope drainage allowing us to introduce the dy-
namic variation of rainfall hj (occurred at time tj) in consecutive time steps (t > tj). β*
takes into account the reduction of infiltrated rainfall because of steep slopes or plant
interception [58,59]. In summary, Equations (2) and (3) consider both the increase in soil’s
saturation provided by rainfall and the decrease due to runoff. Sr represents an initial
saturation and is updated according to the rainfall in a specific window (set of ω data).
Losi [62] demonstrated that a 30-day rainfall window is significant enough to capture some
of the occurred events. In such a way, Sr is related to a month before the event when
stability is analysed, and the rainfall is collected over a period of 30 days (ω = 30 days). A
detailed description of the SLIP model is presented by [44,51,55,59].

The time-dependent SLIP formulation was recently implemented in the MATLAB fully
implemented platform X-SLIP [58]. The platform is based on a multi-approach algorithm
consisting of different techniques allowing us to evaluate the space–time stability with all
the parameters required by SLIP derived from easily available territorial data (Figure 1).
First, the reference grid, i.e., the group of pixels where SLIP is applied, comes from the
Digital Terrain Model (DTM). These territorial data are also used to build the matrix of
slope angles using the MATLAB gradientm function, which is based on finite difference
method and Lagrange interpolation. Matrices of soil parameters (user defined) can include
homogeneous parameters (approach suggested for small areas) or lithology-dependent
parameters, varying with space according to the lithology map (or the map of soil texture,
when available). In the latter case, a problem of point-in-polygon is solved using the inpoly
function, which identifies the lithology polygon, including each pixel [58,63,64]; a set of soil
parameters is then assigned with each lithology type according to a user-defined association.
A similar approach is followed for the matrices of vegetation parameters, built according to
the vegetation map and user-defined set of species-dependent parameters. Finally, rainfall
matrices must be created to apply the simplified hydrological model. Until now, only
data recorded by rain stations have been considered. They are related to unregular spaced
points and distributed via interpolation on the pixels of the reference grid. To this purpose,
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the Natural Neighbour algorithm is adopted [65] and implemented in MATLAB using the
scatteredInterpolant function.
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2.2. A New Feature of X-SLIP Platform for Real-Time Prediction through Rainfall Forecasts

X-SLIP platform could be implemented in any LEWS if stability of the topsoil were
analysed in real time; this is possible by integrating rain forecast in SLIP runs so that any
critical situation can be predicted well in advance. In Europe, weather forecasts are based on
the ECMWF (European Centre for Medium-Range Weather Forecasts) model, considered
as one of the most reliable [66]. Some countries, among which Italy, adopt COSMO
(COnsortium for Small-scale MOdeling); based on ECMWF model, COSMO integrates
details with higher resolution and allows us to predict localised weather events [67]. Both
ECMWF and COSMO data are stored in GRIB2 (.grib) file. To this study’s aim, how such
data are contemplated in X-SLIP is here described. The description is related to COSMO,
being the study area where this research is validated in Italy.
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MATLAB (development environment for X-SLIP) allows us to import the .grib files
using the ncdataset function, included in the NCToolbox; such function returns a Netcdf
(Network Common Data Form) Dataset, with variables included in it. The ones of major
interest are the forecast times, the forecast values and the coordinates of points to which
predictions are related. Typically, COSMO performs two runs every day, one at 00 UTC and
another at 12 UTC. For each jth run, forecasts are hourly provided up to 15 days later; in this
study, a maximum forecast window of 72 h (three days) is considered, being this time gap
is commonly recognised as accurate for weather forecasts [68]. When imported in X-SLIP,
the jth GRIB file, therefore, returns a 72-by-m-by-n matrix, with data of 72 forecast events
(hourly spaced) evaluated at the points of an m-by-n grid. Grids considered by COSMO
have a resolution lower than the morphological data of the national/regional database,
representing the reference grid for X-SLIP. Interpolation is, therefore, performed to estimate
values of rainfall predictions at the X-SLIP grid; for this purpose, the scatteredInterpolant
function is applied (see Section 2.1). Note that the COSMO mesh must completely cover the
study area to obtain reliable interpolations through scatteredInterpolant [58]. The procedure
of import and interpolation of GRIB data is schematised in Figure 2.
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As previously discussed, SLIP analyses are based on a simplified hydrological model,
expressed by Equation (3); this evaluates the soil’s saturation varying with time depending
on the rainfall occurred on a rainfall window RW preceding the generic event eP when
stability is analysed (RW = 30 days, according to [62]). For real-time predictions of future
events, such RW must include forecasted data, as well as recorded ones; the final structure
of the rainfall array is illustrated in Figure 3. Note that it deals with a “cell” array, storing
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matrices in each position. To investigate the influence of the forecast window in X-SLIP
real-time predictions of past events, the final part of the rainfall array must be, therefore,
filled with forecast data i of the jth COSMO run suitably selected (rain forecast from tfj,1 to
tfj,i, with i depending on the chosen forecast window).
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The approach here described can be adapted for hourly predictions by moving prop-
erly the RW array and updating the m value accordingly (See Equation (3)).

3. Application of the Updated X-SLIP Platform in Some Towns of the Emilia
Apennines (Northern Italy) Involved by Soil Slips on 5 April
3.1. Case Study Description

The Emilia Apennines, i.e., the northern Apennines located in the Emilia Romagna
region (north of Italy), are particularly landslide-prone due to the weak lithology (mainly
arenaceous and calcareous flysch, with widespread clayey components) and the presence
of groundwater [69]. In April 2013, about 1500 events were detected in this area, triggered
after a long and intense rainy period from March to the first ten days of April; such
phenomena caused major inconveniences, such as damage to crops, settlements and road
disruptions, so that a state of emergency was declared to guarantee the essential level of
public services. Based on well-recognised classifications, types of rainfall-induced shallow
landslides can be debris slides or debris/earth flow. In the former, slides occur along only
one interface, whilst in the latter, there are relative movements in numerous layers of the
involved mass. The SLIP model, based on the infinite slope scheme, is suitable to analyse,
with good approximation, the initiation mechanism of all the mentioned types. To validate
the proposed update of the X-SLIP platform, real-time predictions are simulated on four of
the involved towns, all located in the Parma province: Neviano degli Arduini, Corniglio,
Tizzano Val Parma and Palanzano. There, Terrone [70] detected 43 soil slips on 5 April 2013
at 12 p.m.; such information is used to evaluate the prediction quality of X-SLIP hindcasts.
Figure 4 shows the study area and the positions of the surveyed phenomena, together with
some photos representative of the types of phenomena that occurred.

3.2. Real-Time Hindcasts on April 2013 through X-SLIP

X-SLIP is applied to space predictions in real time, performed some days preceding
the events that occurred on 5 April 2013. For the spatial application of the SLIP model,
the morphological, lithological and vegetation data are downloaded from the open-source
database of the Emilia Romagna region. Territorial limits and the DTM have projected
system EPSG 25832 (ETRS 89 UTM 32N), while the Lithology and Vegetation Map is in
EPSG 32632 (WGS84 UTM 32N). EPSG 25832 is considered a reference system for all the
analyses. 23 tiles (each of extension 7320 m × 6280 m and resolution 5 m × 5 m) of the
regional DTM cover the area in question; to enhance the computational effectiveness, the
resolution is reduced to 20 m, and only pixels within the territorial boundaries of the
towns are taken. Overall, stability is analysed on more than one million pixels (1,319,976).
From elevations included in the DTM, the array of slope angles is derived (Figure 5a).
Soil parameters are assigned based on the lithology map illustrated in Figure 5b. A set
of parameters coming from previous back analyses is associated with each lithological
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class [47]; Table 1 summarises the user-defined lithology–soil parameters association. The
topsoil’s thickness H is set constant to 1.2 m for the whole study area, being the average
observed during the occurred phenomena [70]. The initial degree of saturation Sr is set
to 0.8 for the whole study area; this is a seasonal value typical of previous experimental
observations in this area [47]. Regarding the vegetation parameters, the starting point is
the vegetation map shown in Figure 5c; to each vegetation species, literature values of root
cohesion cr and rainfall interception β* are attributed [59]. These are reported in Table 2.
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(d) points of COSMO grid and rain stations, respectively, related to forecasted and recorded rainfall.

Table 1. Lithology–soil type association, after [47].

Lithology
Abbreviation Description Soil Type n

(-)
ϕ′

(◦)
c′

(kPa)
kt

(h−1)
A

(kPa)

Bl Rocks made up of alternation with stone dominant levels Sand 0.40 35 0 0. 0180 40
Blp Rocks made up of an alternation of stone and pelitic levels Sand 0.40 35 0 0. 0180 40
Bp Rocks made up of alternation with pelitic dominant levels Sand 0.40 35 0 0. 0180 40
Cc Conglomerates and clast supported breccias Sand 0.40 35 0 0. 0180 40

Dm Marlstone Deposits 0.45 30 5 0.0250 40
Dol Claystone breccias Clayey silt 0.46 25 0 0.0180 80
Dsc Scaly clays Clay 0.50 20 10 0.0007 100
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Table 2. Vegetation parameters adopted for each species, according to [59].

Vegetative Species cr (kPa) β* (-)

Hay Meadow/Extensive
Farming - 0.40

Fagus sylvatica 21.26 0.30
Quercus pubescens 0.2 0.17

Quercus cerris 25.9 0.21
Ostrya carpinifolia 14.4 0.20

Castanea sativa 14.0 0.45
Non-native conifers 0.2 0.30

Four hindcasts of real-time predictions are conducted; the term “hindcast” is used
because the real-time analysis is referred to a past event. Being the occurrence of the
43 phenomena associated with 5 April 2013 at 12 p.m., stability at that point in time is
investigated assuming to have run the analyses: (i) 12 h; (ii) 24 h; (iii) 48 h; and (iv) 72 h
in advance of the occurred event. Each case corresponds to a specific run of the COSMO
model and a different forecast window; the forecast data have been provided by the Italian
Air Force Weather Service. As discussed, SLIP requires rainfall to fall 30 days before the
stability analysis is performed. Other than rain data in the forecast window immediately
preceding the analysis event, rain recordings are considered for the remaining part of the
rainfall window (see Figure 3). Hourly rainfall data, recorded at 18 stations surrounding
and inside the study area, has been supplied by Dexter Arpae; recordings from 4 March
2013 to the date of the COSMO model running (depending on the forecast case) are adopted.
Figure 5d shows the positions of the rain stations and the points of the COSMO mesh to
which the provided rain forecasts are related. Table 3 summarises the cases investigated,
the times of COSMO run, the forecast and the recording hours (rainfall window of total
amplitude 720 h, i.e., 30 days by 24 h).

Table 3. Summary of the simulated real-time predictions.

Case Analysed Run of COSMO Model Forecast Hours Recording Hours

12 h 5 April 12 a.m. 12 708
24 h 4 April 12 p.m. 24 696
48 h 3 April 12 p.m. 48 672
72 h 2 April 12 p.m. 72 648

4. Results
4.1. Cumulative Rainfall of Forecasts and Recordings

Figure 6 shows a comparison between the forecast and recorded precipitation, inter-
polated on the reference grid and cumulated in the forecast windows of amplitude 72 h
(Figure 6a,b), 48 h (Figure 6c,d), 24 h (Figure 6e,f) and 12 h (Figure 6g,h). In almost all cases,
recordings are greater than the forecasts over the whole study area. An exception is made
for the recorded rainfall cumulated 12 h before the reference event, which is smaller in
some zones. To better visualise the differences, the relative error RE between forecast hw,f
and recorded rain hw,r is computed, assuming the latter as reference:

RE =
hw, f − hw,r

hw,r
(4)

Maps of RE for the four cases are illustrated in Figure 7. In 24 h and 12 h cases, there
are areas where RE is greater than 1 (yellow to red) (Figure 7c,d); there, reduced values of
factor of safety are expected from X-SLIP predictions.
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Figure 7. Relative Error (RE) evaluated between the forecast and recorded rainfall (reference value)
cumulated on (a) 72 h; (b) 48 h; (c) 24 h and (d) 12 h before the occurred event.

4.2. Factor of Safety on 5 April 2013 at 12 p.m.

Figure 8 reports the results of stability analyses performed via X-SLIP on 5 April 2013
at 12 p.m., grouped considering FS less than 1 (unstable pixels), between 1 and 1.5 (critical
pixels) or greater than 1.5 (stable pixels); soil slip points surveyed by Terrone [70] are
also plotted for a qualitative comparison. The target outcome is represented by factors of
safety FS evaluated with the recordings only (Figure 8a); as already observed by Montrasio
et al. [59], in this case, almost all the detected instabilities are captured (pixels with FS less
than 1). Figure 8b–e illustrate the maps obtainable if X-SLIP had been run on: 2 April
12 p.m. (72 h before, Figure 8b), 3 April 12 p.m. (48 h before, Figure 8c), 4 April 12 p.m.
(24 h before, Figure 8d), 5 April 12 a.m. (12 h before, Figure 8e). In some areas, instabilities
could be efficiently predicted three to two days before the occurred event; however, the
most encouraging result is derived a day before, when predictions are surely very close to
the target result for the whole study area. This means that for the case in question, 24 h
would have been adequate to enable authorities to raise an alert or take the necessary steps
to avoid inconvenience.
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Figure 8. Maps of FS evaluated on 5 April 2013 at 12 p.m. with (a) only recorded rainfall (X-SLIP
run after the event occurrence); (b) recorded and 72 h forecast rain (X-SLIP run three days before
the occurrence); (c) recorded and 48 h forecast rain (X-SLIP run two days before the occurrence);
(d) recorded and 24 h forecast rain (X-SLIP run one day before the occurrence); (e) recorded and 12 h
forecast rain (X-SLIP run 12 h before the occurrence).
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In Figure 9, the amount of unstable, critical and stable pixels is shown for each case;
specifically, unstable pixels are 28,752 with recordings only, 25,714 with 24 h forecasts and
43,033 with 12 h forecasts. This evidences that X-SLIP with forecasts is as effective as with
recordings only, provided that forecasts are accurate. The greater number of unstable and
critical pixels with 12 h forecasts reflects the result shown in Figure 7, where forecasted rain
is demonstrated to be higher in the whole study area.
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4.3. ROC Analysis from Predictions on 5 April 2013 12 a.m.

The prediction quality of X-SLIP real-time hindcasts is here quantitatively investigated
through the ROC (Receiver Operating Characteristic) curve [71]. This is based on the
concepts of True Positive Rate TPR and True Negative Rate TNR, both evaluated by knowing
the positions of soil slips detected by Terrone [70]. Specifically, according to X-SLIP results,
a pixel is: (i) “positive” if FS is less than or equal to a threshold value FS,TH; (ii) “negative” if
FS is greater than FS,TH. Such classification is “true” or “false”, depending on the belonging
of pixels to areas around the detected points or not. Conventionally, squares 45 m × 45 m
are taken as unstable polygons considering possible errors committed by the inspectors
or by the satellite in adverse conditions, as well as the typical extent of the phenomenon
under analysis. A positive pixel inside the unstable polygon is identified as True Positive
(TP), outside as False Positive (FP), while a negative pixel is True Negative (FP) if outside
the unstable polygon and False Negative (FN) when inside. TPR and TNR are therefore
computed as follows:

TPR =
TP

TP + FN
(5a)

TNR =
TN

TN + FP
(5b)

The ROC curve is defined by changing FS,TH from 0 to 70 and deriving the correspond-
ing TPRs and TNRs; then, the prediction quality is evaluated through the Area Under the
Curve (AUC), i.e., the integral of the ROC curve. Figure 10 shows the ROC curves for all
the cases analysed, together with the corresponding AUC. It is interesting to observe that
the curves derived from analyses with rain forecasts are quite coincident with the ones
with recordings only, and the AUC is greater than 80% in all cases. This proves not only
X-SLIP accuracy (already clear from previous studies conducted with only rain recordings)
but also the stability of the SLIP model itself even in real-time predictions, performed with
forecast rain. Note that the AUC is maximum with 72 h forecasts because of fewer unstable
pixels and consequently FPs.
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4.4. Factor of Safety on a Non-Landslide Event

X-SLIP accuracy in time prediction is, here, investigated on a non-landslide day, i.e.,
when it is not aware that soil slips were triggered despite intense rainfall. By analysing
the rainfall trend shown in Figure 11, related to three rain stations along a diagonal line
crossing the study area, a peak comparable with the triggering one (5 April) is noticed on
2 April. Further, X-SLIP hindcasts of real-time predictions are, therefore, conducted on
this event, with all data previously discussed, including the cases analysed (Table 1), but
with the run of the COSMO model and the dates of rain recordings properly shifted and
selected.
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Maps of the computed factors of safety are shown in Figure 12. It can be observed
that in all cases, most of the pixels have FS greater than 1; this confirms the absence of any
report of occurred events. There are small zones occupied by red pixels in the southwest
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and the east part, which can be attributed to a bad X-SLIP prediction or could actually have
been instabilities not detected because not involving the built environment. The amount of
unstable, critical and stable pixels (Figure 13) evidence that the unstable pixels are around
10 k, i.e., less than 1% of the total number of pixels (1,319,976). A majority of pixels are
stable, with a quite high percentage of critical pixels due to the temporal proximity of
the landslide day. Even in this case, there is a good agreement between the space-time
prediction derived via X-SLIP a posteriori (with recordings only) or a priori (with forecasts)
for early warning purposes.
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5. Discussion

The effects of global warming and climate change are more serious and more intense
than they have ever been. One of the major consequences of extreme rainfall, amongst
others, is the increasingly frequent triggering of shallow landslides. It follows that the
prediction and mitigation of such phenomena are highly important. Although the anal-
yses of physically based models (PBMs) are more reliable, PBMs are mainly adopted in
susceptibility assessment [38,72], being statistical approaches based on rainfall thresholds
predominant in regional Landslide Early Warning Systems (LEWS) [25–28]. The results of
this study have shown that SLIP, i.e., simplified PBMs implemented in the X-SLIP platform,
can provide accurate real-time predictions when the stability analyses integrate rainfall
forecasts.

The demonstrated prediction quality is totally in line with previous studies based
on such a model [47,58,59]; the absolute novelty is that such quality is now derived from
forecasted rainfall, making this model and the related platform suitable for real-time
predictions in regional LEWS. Compared to Ho et al. [50], who proposed similar analyses
with another PBM, X-SLIP accuracy is even better (AUC greater than 80%), and the “lead
time”, i.e., the time in advance for raising alerts, is longer (24 h in this study, 6 h in [50]).
X-SLIP lead time is in good agreement with [18], who proposed a model based on 24 h
imminent rainfall. It is worth noting that such authors included the effects of antecedent
rainfall in their analysis, as also carried out by [28], but with a statistically derived soil
saturation. Although this can be assimilated to SLIP, statistical correlation cannot be equal
to a hydrological model, even simplified. SLIP formulation considers directly the soil’s
hydraulic permeability, and this allows us not only to have a more general model (just
select the proper parameter) but also to overcome the uncertainty on the antecedent days of
rainfall affecting saturation, being the 30 days included in the SLIP analyses representative
enough.

The encouraging result of this study enables X-SLIP analyses based on rainfall forecasts
to be adopted in regional LEWS. This is also supported by the computation times of X-SLIP
discussed in [58]. The rainfall interpolation is the slowest algorithm, but the reported time
to derive 720 rainfall maps (24 hourly maps for 30 days) in the study area of this research is
1925.83 s (with a common laptop equipped with AMD Ryzen 7 4700U, Radeon Graphics
2.00 GHz, 16 Gb RAM and no dedicated GPU). It deals with a very low computation time
for a PBM, if compared to others: e.g., TRIGRS requires about 12 min to simulate the
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infiltration of a single rainfall in one million pixels [73]. By imaging to use X-SLIP in LEWS
for hourly/daily real-time predictions, most of the 30-day antecedent rainfall recordings
will be already interpolated; it will be just the import and interpolation of 72 h forecasts
(provided twice a day by the COSMO model) that take only a few minutes. This confirms
the suitability of the proposed method for civil protection purposes.

6. Conclusions

This study highlighted the effectiveness of the SLIP model when applied to predict the
space triggering of soil slips in real time. For this purpose, the X-SLIP platform was updated
to handle rainfall forecasts in GRIB format and to evaluate the effect of the infiltrated rainfall
on soil saturation from both forecasted and recorded rainfall. The main considerations
deduced by the results of this study can be summarised as follows.

• X-SLIP analyses based on the combination of rainfall forecast and recordings are as
accurate as the ones based only on recordings. This is observed both in landslide and
non-landslide events (when no landslide should have occurred).

• The quality of X-SLIP predictions in real-time is strongly dependent on the quality of
rainfall forecasts.

• Most of the instabilities that occurred in the Emilia Romagna region in April 2013
would have been well predicted by X-SLIP 24 h in advance.

Further studies will regard the refinement of the selected soil and vegetation parame-
ters to reduce the number of false alarms and the use of spatially distributed rainfall fields
(e.g., radar measurements) instead of rain gauge recordings because the interpolation of
the latter is a rough approximation. Moreover, how the reliability of forecasts themselves
affects X-SLIP accuracy in different times and areas, as well as how to assign different alert
levels depending on the forecast time and the number of unstable pixels identified via
X-SLIP will be investigated.
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