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Abstract: In the report he submitted to the Académie des Sciences, Poisson imagined a set of
concentric spheres at the origin of Earth’s magnetic field. It may come as a surprise to many that
Poisson as well as Gauss both considered the magnetic field to be constant. We propose in this study
to test this surprising assertion for the first time, evoked by Poisson in 1826. First, we present a
development of Maxwell’s equations in the framework of a static electric field and a static magnetic
field in order to draw the necessary consequences for the Poisson hypothesis. In a second step, we
see if the observations can be in agreement with Poisson. To do so, we choose to compare (1) the
polar motion drift and the secular variation of Earth’s magnetic field, (2) the seasonal pseudo-cycles
of day length together with those of the sea level recorded by different tide gauges around the globe
and those of Earth’s magnetic field recorded in different magnetic observatories. We then propose
a mechanism, in the spirit of Poisson, to explain the presence of the 11-year cycle in the magnetic
field. We test this mechanism with observations, and finally, we study closely the evolution of the
g1,0 coefficient of the International Geomagnetic Reference Field (IGRF) over time.

Keywords: Poisson theory; Earth’s magnetic field; constant intensity; length of day; polar motion

1. Introduction

The birth of geomagnetism as a science can be dated to 8 August 1269 on that day,
Petrus Peregrinus wrote three letters ([1]; see f.i. Courtillot and Le Mouël [2]) during the
siege of the city of Lucera in the Italian region of Puglie. The letters can be considered
the first scientific article on geomagnetism, 331 years before the famous De Magnete by
Gilbert ([3]). Expressed in modern terms, Peregrinus wrote that Earth has a magnetic field
with a dipolar structure and that some rocks or minerals are magnetized. One could carve
a sphere out of magnetite, pierce a hole through its center, and it would oscillate around
the northward direction, a thought experiment that announced the compass.

In the three centuries that unfurled since then, a lot has been discovered: the variation
of inclination with latitude, the daily, annual and other periodic variations ([4–6]), irregular
variations, such as events linked to solar activity, the secular variation and its sudden
jerks ([7–9]). In order to handle an ever increasing data base, magnetic indices (e.g., aa, Dst,
Kp, etc.) were introduced (e.g., [4,6,10–17]). It was found that quasi periodical variations
of the magnetic field ([4–6]), and also sun spots ([18]) followed a [19] power law with
exponent −5/3.

In a series of papers that started with Le Mouël in 1984 ([20]) and continued with
Jault et al. ([21]), and Jault and Le Mouël ([22–24]), these authors found that the trends of
(1) magnetic secular variation, (2) polar motion and (3) length of day (lod) are strongly
correlated. They proposed to explain these observations with a coupling mechanism, in
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which flow in a cylinder tangent to the core and the rotation axis exchange torques at the
core–mantle boundary. The solution for flow on the cylinder (see [24], system 6) is the
same as that generated by an internal gravitational wave in a rotating fluid (e.g., [25]) also
known as Proudman ([26]) flow. But this mechanism encounters serious difficulties with
the orders of magnitude of physical parameters, such as the core–mantle boundary (CMB)
topography. Also, the torque exerted by the fluid pressure and the electromagnetic torque
are too weak to validate the model as concluded by Jault and Le Mouël ([24]).

Actually, the model of a cylinder tangent to the core is very close in spirit to that
envisioned by Poisson ([27]). In the report he submitted to the Académie des Sciences,
prior to an oral communication, Poisson imagined a set of concentric spheres in place of a
cylinder. Poisson ([27]) was the first scientist to describe the magnetic field as a series of
spherical harmonics, a decade before Gauss did ([28]), Part 5, chapter 1, Allgemeine Theorie
des Erdmagnetismus). He also invented a technique to measure the absolute value of the
horizontal component of the magnetic field ([29,30]), seven years before Gauss ([31]) did.

It may come as a surprise to many that Poisson ([27]) as well as Gauss ([28]) both con-
sidered the magnetic field to be constant. This was an axiomatic basis for the development
into spherical harmonics. There are very clear statements to this effect in the writings of
both scientists. In the work of Poisson ([27]), page 49, one reads (our translation from the
French): “We will assume that the hollow sphere be magnetized under the influence of a force that
be the same in magnitude and direction for all its points, such as the magnetic action of Earth, for
instance”. And in page 54: “Since time does not enter these formulae, a consequence is that, after
the first instants of rotation, that we did not mention, the action of the rotating sphere on a given
point will be constant in magnitude and in direction”. Gauss ([28]), part 5, chapter 1, paragraph
2, page 6, writes (our translation from the German): “. . . magnetism consists only in galvanic
currents (that is, constant currents) that persist in the smallest parts of the bodies . . .”. Gauss
develops his theory very quickly (pages 18 to 23, paragraphs 14 to 27), without any physical
proof. And his mathematical proof is exactly that found by Legendre ([32]) or Laplace ([33])
for the gravitational field. In contrast, the 130 pages of Poisson’s memoir ([27]) are devoted
both to the full physical and mathematical proofs of the magnetic field description.

Given that Poisson’s work ([27]) precedes and is more complete than that of Gauss ([28]),
it is only fair to recognize that the former was the first to develop the magnetic field in
spherical harmonics and to state that this magnetic field was constant.

We do not propose to follow, as Poisson ([27]) did, the description of a magnetic field
based on Maupertuis’ ([34]) principle of least action but rather to pursue our previous
presentation of the laws of gravitation of Lopes et al. ([35]) following Lagrange ([36]) and
extend it to the case (and consequences) of the constancy of the electric and magnetic
fields, giving their full physical meaning to the moments. This is the aim of Section 2.
In Section 3, we try to explain the variations that one can measure within the frame of
Poisson’s paradigm ([27]). We confront the previous theoretical developments with modern
observations in Section 4 and conclude in Section 5.

2. On the Constancy of the Magnetic Field
2.1. Some Consequences of Maxwell’s Equations

A part of the demonstrations and results are known and detailed in various textbooks
(see Landau and Lifshitz [37]).

One can learn a lot from the Lagrangian approach to the derivation of Maxwell’s
equations. Following Maupertuis ([34]), one only needs to know the action of a moving
charged particle in an electromagnetic (EM) field, associated with the action of its interaction
with that field, to derive the first pair of equations:

rotE = −1
c

∂H
∂t

(1a)

divH = 0 (1b)
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Adding the action of field EM, one obtains the second pair:

rotH =
1
c

∂E
∂t

+
4π

c
j (1c)

divE = 4πρ (1d)

Equations (1a)–(1d) link in a symmetrical way the magnetic field (H) to the electric
field (E). c is the light velocity, and ρ is the charged particle associated with the current
density j. It is important to note that, without knowing the action of EM, one has access to
important properties: the space component, which is actually the field H, is conserved (1b).
By analogy to Euler’s (the continuity equation from fluid mechanics) equation, “magnetic
charges” do not exist. Equation (1a) implies that as soon as H varies with time, a field E that
is perpendicular (rot) and in quadrature with H is created (instantly, hence the term 1/c).
The second pair of equations is fully symmetrical. Equation (1d) implies that there exists an
"electric charge" (ρ) that locally deforms the field E. In a vacuum, (1d) has exactly the same
physical meaning as (1b). But one must add a current density to the time variation of E to
propagate the field H (1c). A side note on (1c), it is also known as the Maxwell–Ampere
equation. The classical understanding is that magnetic fields can be generated in two
different ways, either by electrical currents (Ampere’s theorem), or by time changes of
field E, or the sum of both. The Lagrangian approach clarifies the picture. An EM field
is defined by its 4-vector potential Ai(= ϕ, A), where ϕ is the time component (called the
scalar potential, linked to E) and A is the space component (called the vector potential and
linked to H). Charges that move in the magnetic field must obey the same decomposition;
one, therefore, introduces a 4-vector current density ji(= cρ, j), with a scalar charge density
(ρ) found in (1d) and a vector current density (j).

The EM field described by the Maxwell equations must be in one of the three following
forms: electrostatic, magnetostatic or a propagating field (wave propagation). This will not
be discussed further in this paper.

The tradition is firmly established in geomagnetism to use electromagnetic units in the
CGS system. A real advantage is that in vacuum and approximately in air, the magnitudes
of the vectors B and H, which are only truly distinct in magnetized material, are measured
by the same number.

2.2. The Electrostatic Field

Equations (1a) and (1d) reduce to

divE = 4πρ (2a)

rotE = 0 (2b)

E derives from scalar potential (ϕ):

E = −grad ϕ

leading to the Poisson equation:

div(grad) ϕ = ∆ϕ = −4πρ (2c)

In a vacuum (ρ = 0), the scalar potential verifies the Laplace equation:

∆ ϕ = 0

The field produced by a point charge (e) is directed along the vector, having the charge
as one of its extremities. E is a radial field. The absolute value of E depends only on the
distance R to e. Applying the divergence theorem to (2a),

divE 7−→
∫∫∫

V divE dV =
∫∫

S E.dS

The flux of E across a spherical surface with radius R centered on e is 4πR2E and also
equals 4πe from Gauss’s theorem,
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∮
Edf = 4π

∫
edV, df being the surface integration element.

Finally, in vector form,

E =
eR
R3 (2d)

Thus, the field produced by a point charge is inversely proportional to the square of
the distance to e (Coulomb’s law). The potential associated with this field is

ϕ =
e
R

(2e)

and for a system of charges,

ϕ = ∑
i

ei
Ri

(2f)

Let us observe this field (2f) at a distance that is large compared to the charge system’s
dimension and that is far enough so that their relative motions can be considered constant
(in the sense of Lagrangian mechanics). This allows one to use the concept of "moment".

Let us choose a coordinate system whose origin lies within the charge system and let
ri be their respective vector radii. The total observed potential at point Ro is

ϕ = ∑
ei

|Ro − ri|
(3a)

For Ro � ri and thanks to the generalized Maclaurin expansion given by [32], we can

develop (3a) in a series of powers of
ri
Ro

, using the first-order formula:

f (Ro − r) ≈ f (Ro)− r grad f (Ro)

thus, (3a) becomes

ϕ =
∑ ei
Ro
−∑ eirigrad

1
Ro

(3b)

The sum d = ∑ eiri is the dipolar moment of the charge system. By analogy with
a system of masses, this dipolar moment is the mathematical equivalent to the tensor
of moments of inertia of order 2 in geodesy. If the sum of charges is zero, the dipolar
moment does not depend on the choice of the origin (r

′
= r + k), k constant, ∑ ei = 0, then

d
′
= ∑ eir

′
i = ∑ eiri + k ∑ ei = d).

The potential at large distances can be written as

ϕ = −d∇ 1
Ro

=
dRo

R3
o

(3c)

and

E = −gradϕ (= (d∇)∇ 1
Ro

)

= −grad
dRo

R3
o

= − 1
R3

o
grad(dRo)− (dRo)grad

1
R3

o

= − d
R3

o
∇Ro −

Ro

R3
o
∇d− dRo∇

1
R3

o

= − d
R3

o
− 0 +

3(nd)n
R3

o

=
3(nd)n− d

R3
o
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where n is the unit vector oriented towards Ro. At large distances, the potential is inversely
proportional to the square of distance and E to its cube. E is axially symmetrical about d. In
a plane where the direction of d is that of the z axis, the Cartesian components of E are

Ez = d.
3cos2θ − 1

R3
o

, Ex = d.
3sinθcosθ

R3
o

(3d)

and the radial and tangential components are:

Er = d.
2cosθ

R3
o

, Eθ = −d.
sinθ

R3
o

(3e)

θ being the angle between z and Ro. We note that Equations (3d) and (3e) are the same

as those of the components of a dipolar magnetic field, with d being replaced by
µ0

4π
(e.g.,

LeMouel in [38], chapter 26, page 40, system 24).
As in [33], one can always develop the scalar potential ϕ as a sum of contributions in

ascending powers of
1

R0
, the term ϕ(n) being proportional to

1
Rn+1

o
:

ϕ = ϕ(0) + ϕ(1) + ϕ(2) + . . . (4a)

The first term ϕ(0) is determined by the sum of all charges or masses for Laplace ([33]),
for whom this term can never be zero. As we saw, when the sum of electric charges is
zero, one is led to the electrostatic components (3d) and (3e). The second term, ϕ(1) is the
dipolar one, determined by its dipolar moment d. One can continue the development in a
Legendre ([32]) series. The next term would be

ϕ(2) =
1
2 ∑ exixj

∂2

∂Xi∂Xj

1
Ro

(4b)

where the sum is extended to all charges and where the x coordinates are the components
of r and the X coordinates are those of Ro. We note that

∆
1

Ro
≡ δij

∂2

∂Xi∂Xj

1
Ro

= 0

One can then write (4b) as

ϕ(2) =
1
2 ∑ e(xixj −

1
3

r2δij)
∂2

∂Xi∂Xj

1
Ro

The tensor Dij = ∑ e(3xixj − r2δij) is the quadrupolar moment of the charge system. Thus,

ϕ(2) =
Dij

6
∂2

∂Xi∂Xj

1
Ro

(4c)

or, as done for the dipolar term in (3c),

∂2

∂Xi∂Xj

1
Ro

=
XiXj

R5
o
−

δij

R3
o

and since δijDij = Dii = 0, we have

φ(2) =
Dijninj

2R3
o

(4d)
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ni and nj are the unit vectors starting from Ro and oriented along the two axes of the
quadrupolar moment. The eigenvalues of the tensor are such that Dii = 0 and are, therefore,
linked by

Dxx = Dyy = −1
2

Dzz

If we write D for component Dzz, the quadrupolar potential becomes

ϕ(2) =
D

4πR3
o
(3cos2θ − 1) =

D
2R3

o
P2(cos θ) (4e)

in which one introduces the P2 Legendre ([32]) polynomial. One can generalize this
construction; the l-order term is determined by a tensor of order l, the 2l-polar moment.

The mathematical development above is independent of the physical problem (gravity,
magnetism, and electricity) one is interested in. It serves to illustrate the fundamental
result from Legendre ([32]) regarding the theory of the gravitational attraction of masses
as generalized by Laplace ([33]): as far as one observes from the far enough sources,the

inverse of distance (
1

Ro − r
) is given by

1
|Ro − r| =

1√
R2

o + r2 − 2rRocos χ
=

∞

∑
l=0

rl

Rl+1
o
Pl(cos χ) (5a)

Let us introduce the pairs of spherical angles Θ, Φ and θ, ϕ formed respectively by
vectors and with the given coordinate axes, and apply the addition theorem of spherical
functions:

Pl(cos χ) =
l

∑
m=−l

(l − |m|)!
(l + |m|)!P

|m|
l (cos Θ)P |m|l (cos θ)e−im(Φ−ϕ) (5b)

where Pm
l are associated Legendre polynomials. Let us also introduce the spherical

functions:

Ylm(θ, ϕ) = (−1)mii

√
(2l + 1)(l −m)!

4π(l + m)!
Pm

l (cos θ)eimϕ, m ≥ 0. (5c)

Integrating (5b) and (5c) in (5a), one finally obtains the expression for the inverse of a
distance on the sphere:

1
|Ro − r| =

∞

∑
l=0

l

∑
m=−l

rl

Rl+1
o

4π

2l + 1
Y∗lm(Θ, Φ)Ylm(θ, ϕ) (5d)

Developing each term in Equation (3a), one obtains the expression for the term of
order l of the potential:

ϕ(l) =
1

Rl+1
o

l

∑
m=−l

√
4π

2l + 1
Q(l)

m Y∗lm(Θ, Φ) (5e)

where the 2l + 1 quantities Ql
m constitute the 2l-polar moment of the system of charges,

defined by

Ql
m = ∑

i
eirl

i

√
4π

2l + 1
Ylm(θi, ϕi) (5f)

At this point, let us underline why we have taken the trouble to recall this (at least in
large part) classical derivation, which is likely taught in all graduate and even undergradu-
ate physics programs. In this section, we saw that in the case of a static field E, Coulomb’s
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law (2e) imposes itself, and the field is radial. In the case of a system of charges, if one is
too close to the system, the interactions of the charges forbid one to use the Lagrangian concept
of moment. Thus, one must remain far from the system. But as found by Legendre ([32]) and
Laplace ([33]), when attempting to define the shape of the attraction field of masses, it is
seen that the E field involves the same constraints, i.e., is electrostatic. It is only because we
are with a static field that the notion of the inverse of a distance takes its full meaning and
that we can develop it into spherical harmonics.

We can now undertake the same analysis in the case of the magnetic field.

2.3. The Magnetostatic Field

As we have seen above, Maxwell’s Equations (1b) and (1c) imply that the magnetic
field H, created by charges in finite motion, remaining in a finite region of space (1b),
whose impulses always retain finite values, has a stationary character that we wish to
analyze further.

The two equations are now

div H = 0 (6a)

rot H =
4π

c
j (6b)

The vector potential A associated with H is defined by rot A = H. Carried into (6b),
it becomes

grad divA− ∆A =
4π

c
j

A being defined in a non-unequivocal way, one can impose an arbitrary condition,
such as div A = 0. The previous line then becomes the Poisson equation:

∆A = −4π

c
j (6c)

(6c) is analogous to (2c), charge density ρ being replaced by current density
j
c

. By
analogy with the electrical potential, we can write

A =
1
c

∫ j
R

dV (6d)

where R is the distance from the observation point to the volume element dV. The integral
in (6d) can be replaced by a sum and the current density by ρv. By analogy with the scalar
potential (3a), the vector potential becomes

A =
1
c ∑

eivi
Ri

(6e)

This is how charges are introduced in a vector linked to the magnetic field, without
risking the mistake of writing that the magnetic field derives from a scalar potential.

As done above for the electrostatic field, one can calculate the effect of the moving
charges in a reference system with its origin within the charge distribution, with the same
notations for vectors ri and distance Ro. (6e) becomes

A =
1
c ∑

eivi
|Ro − ri|

(7a)

The main difference between the scalar and vector potentials is that for E, one only
has the effect of fixed charges or motion as a rigid block, whereas for H, what counts is the
uniform velocity of charges imposed by (1b). This is the reason why Poisson [27]’s title is Du
magnétisme en mouvement (of magnetism in motion). And this is the main reason why one
cannot write a physical description of a magnetic field as a series of spherical harmonics.
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However, some remarkable consequences can be derived. For instance, one can always
write in a development as a Legendre ([32]) series analogous to (3b), to the first order:

A =
1

cRo
∑ ev− 1

c ∑ ev(r∇ 1
Ro

)

One can write ∑ ev =
d
dt ∑ er, but the mean value of the derivative varying in a finite

interval is 0.
A = −1

c ∑ ev(r∇ 1
Ro

) =
1

cR3
o

∑ ev(rRo) (7b)

Note that v = ṙ and since Ro is a constant vector,

∑ e(Ror)v =
1
2

d
dt ∑ er(Ror) +

1
2 ∑ e[v(rRo)− r(vRo)]

Carrying this expression in (7b), the mean value of the first term is again 0, thus,

A =
1

2cR3
o

∑ e[v(rRo)− r(vRo)] (7c)

One recognizes a vector product in (7c). Let us introduce the magnetic moment

m =
1
2c ∑ er× v. Equation (7c) becomes

A = ∇ 1
Ro
×m =

m×Ro

R3
o

(7d)

Whereas
1

Ro
verifies Laplace’s equation, its modification by the rotational of

m =
1
2c ∑ er× v does not. With the expression for the vector potential (7d), one can derive

the magnetic field. Given the formula rot a× b = (b∇) a− (a∇) b + a div b− b div a,
one finds

H = rot m× Ro

R3
o
= m div

Ro

R3
o
− (m∇)Ro

R3
o

Since with Ro 6= 0,

div
Ro

R3
o
= Rograd

1
R3

o
+

1
R3

o
divRo = 0,

and

(m∇)Ro

R3
o
=

1
R3

o
(m∇)Ro + Ro(m∇

1
R3

o
) =

m
R3

o
− 3Ro(mRo)

R5
o

,

then

H =
3n(mn)−m

R3
o

, (7e)

where n is the unit vector along direction Ro. If the ratio of mass to charge is the same for
all charges in the system, then

m =
1
2c ∑ er× v =

e
2mc ∑ mr× v

Finally, if all velocities of all charges are such that v� c, then mv is the impulsion p of
the charge and

m =
e

2mc ∑ r× p =
e

2mc
M (8a)

whereM = ∑ r×p is the angular momentum of the system. Here, the ratio of the magnetic
moment to the angular momentum is a constant.
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Let us now consider a system of charges placed in a uniform and constant, external
magnetic field H. The (time-averaged) force exerted on the system (by the field H) over

time is 0. Indeed, according to the Lorentz force ([39]) F = ∑
e
c

v×H =
d
dt ∑

e
c

r×H, F is
the temporal derivative (taken between two finite times) of a quantity involving H. It is
known as Maxwell’s 5th equation. On the other hand, the time average of the moment of

forces is K = ∑
e
c

r× (v×H) which is not 0. Writing explicitly the double vector product,

K = ∑
e
c
{v(rH)−H(vr)} = ∑

e
c
{v(rH)− 1

2
H

d
dt

r2}

one obtains simply
K = m×H

The Lagrangian of a system of charges placed in an external, constant and uniform
magnetic field is

LH = ∑
e
c

Av = ∑
e

2c
(H× r)v = ∑

e
2c

(r× v)H (8b)

Introducing the magnetic moment (8b) becomes simply,

LH = m.H (8c)

By analogy, in a uniform electric field, the Lagrangian of a system with 0 total charge
and a dipolar moment includes the term

LE = d.E (8d)

Let us consider a system of charges undergoing a finite motion in a field E with central
symmetry, due to a motionless particle. Let us shift from a motionless system of coordinates
to a system undergoing a uniform rotation about an axis passing through the motionless
particle. The velocity v of the particle in the new system is linked to its velocity v in the old
system by v

′
= v + Ω× r, where r is the particle’s vector radius and Ω the angular velocity

of the rotating coordinate system. In the fixed system, the Lagrangian of charges is

L = ∑
mv

′2

2
−U ,

where U is the potential energy of charges in the external field E. In the new system, the
Lagrangian becomes

L = ∑
m
2
(v + Ω× r)2 −U .

If the ratio
e
m

of charge to mass is the same for all particles, and if one writes

Ω =
e

2mc
H

then, for sufficiently small values of H such that one can neglect terms in H2, the Lagrangian
takes the form

L = ∑
mv2

2
+

1
2c ∑ e(H× r)v−U (8e)

It is remarkable that the two Lagrangians in (8b) and (8c) are the same. In summary,
the Lagrangian of charges in finite motion in an electric field produced by a motionless
rotating particle (8c) is the same as the Lagrangian of a system of charges placed in a
constant and uniform magnetic field (8b). In slightly different, more readable terms, the

behavior of a system of charges with the same
e
m

ratio executing a finite motion in a field E
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with central symmetry and a weak and uniform field H is equivalent to the behavior of the
same charge system in field E with respect to a uniformly rotating coordinate system with
angular velocity Ω. This is Larmor’s theorem (cf. [40], chapter VI, [41]).

Let us now evaluate the variation of the mean angular momentumM. The variation

ofM is equal to the moment K of forces applied to the system. Thus, K = m×H =
dM
dt

.

If the ratio
e
m

is the same for all the system’s particles, thenM is proportional to m (cf.
(8a)), and

dM
dt

= −Ω×M. (8f)

VectorM, and thus vector m, both rotate with angular velocity −Ω about the field
direction; its absolute value and the angle it makes with respect to the field direction are
constant.

3. Some Further Remarks on Section 2

Most, if not all, modern studies of the geomagnetic field have it varying in time,
keeping its first-order dipolar configuration and ‘ready’ to be analyzed with spherical
harmonics. But a time variable E or H field implies wave propagation, hence physics
described by Helmholtz equations, not Legendre. Let us describe what happens with a
variable field in the equations of Section 2.

The only link between the field geometry and the physics of the problem, that is, the e
charges and their positions in the reference system, is (5f), which we recall here:

Ql
m = ∑

i
eirl

i

√
4π

2l + 1
Ylm(θi, ϕi)

One needs to visualize the shapes of spherical harmonics that are “physically” repre-
sented by the coefficients Ylm. Figure 1 displays the first four axial multipoles, that is, the
eigenvectors Y1,0, Y2,0, Y3,0 and Y4,0 (from left to right and top to bottom) corresponding
to the so-called Gauss coefficients g1,0, g2,0, g3,0 and g4,0. The eigenvectors are a constant
of the problem, as long as this representation retains a physical meaning. For example, a
dipolar magnetic field must always have its principal axis aligned with the axis going from
the origin to the geographic North pole. In this paradigm, a variable field would involve
only modifications of the space–time physics of term eirl

i in the sum (5f). But this constraint
cannot be satisfied due to either of the following:

1. The position term rl
i of each moving particle fluctuates with time so that the Legendre–

Laplace condition (5a) is not satisfied any more, that is, the inverse distance
1

|Ro − r|
is no more a natural solution of the Laplacian. One would need to introduce time but
then the Laplacian would have to be replaced by a Dalembertian, i.e., a different problem.

2. It is the number and/or quality of the charges that would change with time. But then
the nature of the core would change with time, and one would need to find a physical
mechanism that would explain how the field intensity could decrease (as is the case
at present), yet could have increased and even reversed in the past.

Poisson’s reasoning ([27]) is simpler. As early as page 7 of his memoir, above his first
equation, he linked gravitation and magnetism. So did Gauss ([28]), and this was much
developed by Heaviside ([42]). This was more than a simple physical analogy.

Recall that modern geophysicists use Talwani’s algorithms ([43,44]) to determine
the mass (respectively, dipolar) distributions based on microgravimetric (respectively,
magnetic) measurements using the same equation. Poisson ([27]) writes: ‘The differential
volume element, corresponding to point M’ [The magnetic volume], will have h3dχdξdη as its
expression; we will write µ

′
h3dχdξdη for the amount of free fluid it contains, µ

′
being positive or

negative according to this fluid being boreal or austral. This coefficient will be a function of χ, ξ, η
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depending on the distribution of the two fluids inside the magnetic elements. If they are moving, µ
′

will vary with time, but the total quantity of free fluid belonging to the same element must always
be zero, so we will always have ∫

µ
′
dχdξdη = 0 (I)

The integral extending to the entire volume of the magnetic element’.
This short quotation is from the very beginning of Poisson’s derivation ([27]); in more

modern terms, div H = 0. What enters a volume element and what leaves it is constant: the
field is stationary.

From Lagrange’s standpoint ([36]), Poisson ([27]) implies that at the origin of the mag-
netic field is a rather undeformable object, a solid body consisting of a set of electromagnetic
point sources whose respective distances do not vary, or that can be considered as such
at the distance at which its effects are observed. We note that the tensor of a quadrupolar
electrical moment Dij = ∑ e(3xixj − r2δij) is similar to the order 2 inertia moment tensor of
a rotating solid body Iik = ∑ m(x2

i δik − xixk).
One then concludes that the space–time variations of electric charges that would

not result in a constant field would make it impossible to construct either an electric or a
magnetic moment.

Figure 1. Spherical harmonics (from left to right and top to bottom) Y1,0, Y2,0, Y3,0 and Y4,0.
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4. Reconciling Modern Observations with Poisson’s Theory
4.1. On the Drift of the Magnetic Dipole

In Sections 2 and 3, we showed that the only way a magnetic field can be written as
the sum of multipolar potentials is that (similar to masses composing a solid rotating body)
charges generating the electric and magnetic fields should move uniformly in space and
time. In other words, the field must be stationary. We also know that the field intensity fluc-
tuates and that this secular variation is morphologically similar to the drift of the rotation
pole, called the Markowitz (or Markowitz–Stoyko, [45,46]) drift. The annual oscillations of
the field are morphologically similar to those of the length of the day ([21–24]).

One can reconcile Poisson ([27]) and observations by picturing a dipole that oscillates
about the geographical North, this oscillation sharing the same excitation (forcings) that acts
on the polar motion. Let us first illustrate this idea. In Figure 2, we show the eigenvectorY1,0
associated with the Gauss coefficient g1,0. CLF stands for the Chambon-La-Forêt magnetic
observatory. Point P is one of the elements of the magnetic volume of [27] composing the
dipole. As seen in Section 2, the dipole action at CLF is characterized by the distance P-CLF
on the sphere. If the dipole is tilted (Figure 2, right), this distance changes, and so do the
coordinates of CLF in the two dipole reference systems (Figure 2, left and right).

Following Lagrange ([36]), a number of authors (e.g., [35,47–51]) have shown how and
how much astronomical forces influence Earth’s rotation, in the same way its own weight
perturbs the rotation of a spinning top, through an exchange of angular moments. The
same astronomical forces perturb the number of sunspots, i.e., solar activity (e.g., [52–55]).
Since [33], we know that masses at the surfaces of planets can re-organize under the
influence of stresses acting on the rotation pole. The Liouville–Euler system of linear
differential equations of the first order runs this re-organization (cf. [56], Section 3 for more
details). From Sections 2 and 3, moving charges may be considered as a moving fluid in
rotation about the dipole’s symmetry axis. Any large-scale fluid motions must correspond
to a block rotation about the Earth’s rotation axis, as shown by Laplace and Poincaré. There
are no other possibilities of natural motion at the first order. Inside as well as at its surface,
the pattern of fluid motion must be the same (cf. [33,57]; see [58,59] for some illustrations).

Figure 2. Eigenvector Y1,0 associated with Gauss coefficient g1,0: to the left, the dipole is axial.
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Possibly the longest series of magnetic measurements is that of declination D compiled
for Paris (France) by Alexandrescu et al. ([60,61]). The series starts in 1541, but we select
values from 1781 onward, when the sampling becomes more regular. The Brest sea level
data start in 1807. The polar motion (see Appendix A for more details)data are defined
as the modulus of the horizontal displacement of the pole in a plane tangential to Earth
(m1 + i m2); it starts in 1846 and therefore sets the length of our analyses.

We applied singular spectrum analysis (SSA, e.g., [62]) in order to extract the trend
(this sub-section) and the annual and semi-annual components (next subsection) from
the three time series of the sea level at Brest, magnetic field at CLF and length of day.
SSA uses the mathematical properties of descending order diagonal matrices (Hankel,
Toeplitz matrices, e.g., [63]) and their orthogonalization by singular value decomposition
(SVD, e.g., [64]).

In Figure 3a, we superimpose the SSA trends of declination in CLF in red, sea level at
Brest in blue, and polar motion in black. We dealt with the sea-level series in Le Mouël et
al. ([65]), in which we compared variations of the sea-level trends with the variations of
Markowitz–Stoyko polar drift. We studied many aspects of polar motion in [49,66,67]. The
time derivatives of the three trends are shown in Figure 3b. We also used the long dataset
of Stepheson and Morrison ([68]) and Gross ([69]) for lod and compare its trend with the
first derivative of magnetic declination (Figure 3c).

The trends of the three derivatives display very similar patterns. We showed before
that this pattern is linked to the ephemerids of Uranus ([49,65]). The similarity between
the derivative of the trend of the rotation pole and sea level is expected: as Earth shifts,
its fluid envelope shifts as a solid in the same way. The two are almost in phase. For the
magnetic field, there is a ∼20-year phase lag. It is in quadrature with polar motion around
1930, and catches up in the 1960s. This vindicates the mechanism advocated by Le Mouël
et al. ([20,21]) and Jault et al. ([22–24]), that is, a transfer of moment at the core–mantle
boundary. The phase lag would be due to the roughness of the CMB.

Laplace ([33]) showed theoretically that lod and pole motion are linked by a first-
order derivative operator. We verified this with the observations of Lopes et al. ([67]).
Figure 3c compares the (5 yr smoothed) mean value of the derivative of declination in Paris
to the corresponding (5 yr smoothed) mean value of the length of day. The two series of
mean values of solid Earth motions are in quadrature and show a ∼60 yr oscillation ([67],
Figure 4). This 60 yr period is clearly present in the 2-hump pattern of lod as well as in
the derivative of declination (blue curve, Figure 3c). As shown in Section 2, the angular
and magnetic moments that are at the origin of the geomagnetic field are linked linearly
(Equation (8c)). On the other hand, the angular momentum and the polar rotation axis
are linked through a first-order time derivative (Equation (8a)). In the spirit of Larmor’s
theorem, we assume that the two phenomena (rotation and magnetism) are linked by the
same external forcing; thus the former should be compared to the derivative of the latter. In
the lower part of Figure 3c, the mean value of lod is offset by 60 years, leading to an almost
perfect match of the patterns. We have not (yet) been able to explain this offset.

One cannot envision that the magnetic field (declination) variations would be due to
intensity variations of components X, Y and Z since, as seen in Section 2, the field must be
constant (following Poisson). Figure 3b is but an extension to sea level of an observation
made by Le Mouël [20].
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Figure 3. Various comparisons between the trends of magnetic declination in Paris, mean sea level in
Brest, and polar motion and lod. (a) Superposition of SSA trends of (1) the Markowitz–Stoyko drift
since 1846 (gray curve) (2) of the magnetic declination D in Paris since 1781 (red curve) and (3) of
the mean sea level from Brest tide gauge since 1807 (blue curve). (b) Superposition of the first time
derivatives of the three trends in Figure 3a. (c) On the top: superposition of the smoothed first time
derivative of magnetic declination D in Paris since 1835 (red curve) and the smoothed length of day
(blue curve) from Stephenson and Morisson ([68]) since 1835. On the bottom: the latter curve is offset
by 60 yr.
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4.2. On the Forced Quasi-Cycles of the Magnetic Field

Next, we extend the observation by Jault and Le Mouël ([24]) of a link between annual
and semi-annual oscillations of lod and the magnetic field. We applied SSA in order to
extract the annual and semi-annual components from the same three time series (sea level
at Brest, magnetic field at CLF and length of day; this sub-section and Figure 4a–c).

Figure 4. Sums of the annual and semi-annual components of (a) lod (b) Brest tide gauge and (c) the
X magnetic field at CLF since 1962.
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Given their phase and amplitude modulation, the superimposition of the semi-annual
and annual components generates fringe patterns (Figure 4a–c). These are better visual-
ized in the enlarged Figure 5a,b, showing the 1980–1990 decade. In Figure 5a, the two
components generate a characteristic pattern with two humps that correlate between the
magnetic field and length of day, with constant phases. In Figure 5b, one of the two humps
for sea-level is subdued and looks more like a shifting step. The double hump pattern
was already recognized by [24] as Figure 1 in their work. As explained by Poisson ([27]), a
moving charged fluid tends to replicate the pattern of the motion; the different processes
seem to be in phase and constant. If these originate from fluid motion tangential to the core,
there will be a transfer of moment according to the Liouville–Euler equations. Thus, based
on Figures 4 and 5, one can propose that the annual forcing of the double humps is driven
by polar motion/rotation.

(a)

(b)
Figure 5. Enlargement and superposition of the annual and semi-annual components of the X
magnetic component at CLF (red), lod (gray curve) and sea level at the Brest tide gauge (blue curve).
(a) Length of day versus X component of the magnetic field in Chambon-La-Forêt (b) Sea level
recorded by the Brest tide gauge versus X component of the magnetic field in Chambon-La-Forêt.
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We next wish to check whether the same can be said of the other geomagnetic field
components at CLF. Figure 6a,b compare the pattern of lod to those of X, Y and Z: Y behaves
as X, but Z does not have the two humps, only one strong maximum per year (i.e., no
semi-annual component).

We attempted to check whether the observations made with the couple “magnetic
observatory–tide gauge” at CLF and nearby Brest could be extended to other couples.
Unfortunately there are not many such couples, particularly since all datasets should be of
sufficient length and quality. We found five couples listed in Table 1 below and shown on a
world map (Figure 7).

Table 1. List of “magnetic observatory–tide gauge” couples.

Magnetic Observatory Tide Gauge

Chambon-La-Forêt (CLF, 2.26◦ E, 48.02◦ N) Brest (4.49◦ W, 48.38◦ N)
Hartland (HAD, 4.48◦ W, 51◦ N) Newlyn (5.54◦ W, 50.10◦ N)
Canberra (CNB, 149.36◦ E, 35.32◦ S) Newcaslte V (151.78◦ E, 32.92◦ S)
Hermanus (HER, 19.23◦ W, 34.43◦ S) Simons Bay (18.44◦ E, 34.18◦ S)
Kanozan (KNZ, 139.95◦ E, 35.25◦ N) Mera (139.82° E, 34.91◦ N)

(a)

(b)
Figure 6. Comparison of annual plus semi-annual components of all three geomagnetic components
at CLF with those of lod. (a) Comparison of annual plus semi-annual components of all three
geomagnetic components X, Y and Z at CLF (X red, Y green, Z blue) with those of lod (gray) 1980–
1990). (b) Annual plus semi-annual components of geomagnetic components X, Y and Z at CLF (X
red, Y green, Z blue) and those of lod (1962–2022).
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Figure 7. Associated couples of a magnetic observatory (red diamond) and a tide gauge (blue circles).
See Table 1.

Figure 8a–c show the combined annual and semi-annual SSA components of X, Y
and Z at the five magnetic observatories. These figures illustrate the different modulation
(“wave”) patterns associated with annual and semi-annual forcings. There is an ongoing
debate as to their origins (e.g., [70–74]).

Figure 9a–e allow one to compare the magnetic oscillations for X, Y and Z with the
corresponding sea level oscillation, one for each observatory couple. Magnetic components
X extracted from the Brest-CLF (Figure 9a), Simons Bay-HER (Figure 9b) and Newlyn-
HAD (Figure 9c) couples are in phase opposition with the sea level; the two other field
components Y and Z are in phase with the sea level (with a small phase drift over the
40 years of the record). These three couples happen to be located on the same magnetic
meridian. The same holds for the Newcastle-CNB couple (Figure 9e), with a slightly larger
phase drift.

For the Japanese couple Mera/KNZ (Figure 9d), X is in phase with sea-level in 1980,
when Y and Z are in quadrature. After 40 years of slow drift, Z is in phase, and X and
Y in quadrature. Finally, for the Australian couple Newcastle/CNB (Figure 9e), X is in
phase opposition, Y in phase and Z in quadrature in 1980 and the three drift respectively to
opposition, quadrature and opposition in 2020. We note that in Hartland, Z does not have
a semi-annual component (Figure 9c), and it is quite small in Hermanus (Figure 9b). We
tested tens of potential tide gauge/magnetic observatory couples, whose results are not
good enough to be reported; we just note that some 80% of them have no semi-annual Z.

The comparisons made in Figure 9 suggest strongly to us (though, granted, they
do not prove) a link between annual variations of sea level and the magnetic field. The
correlations are of better quality than we might expect, despite differences in topography
and geography in the vicinity of the gauges. The same can be said of the (SSA determined)
trends. We are in a position to strengthen our physical understanding of this link.
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Figure 8. Time evolution of annual plus semi-annual components extracted from the 5 observatories
listed in Table 1. (a) Forced quasi-cycles associated with the X magnetic component at (from left to
right and top to bottom) Chambon-La-Forêt ( CLF), Hermanus (HER), Hartland (HAD), Kanozan
(KNZ) and Canberra (CNB). See Table 1 and Figure 7. (b) Forced quasi-cycles associated with the Y
magnetic component at (from left to right and top to bottom) Chambon-La-Forêt ( CLF), Hermanus
(HER), Hartland (HAD), Kanozan (KNZ) and Canberra (CNB). See Table 1 and Figure 7. (c) Forced
quasi-cycles associated with the Z magnetic component at (from left to right and top to bottom)
Chambon-La-Forêt (CLF), Hermanus (HER), Hartland (HAD), Kanozan (KNZ) and Canberra (CNB).
See Table 1 and Figure 7.
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(a)

(b)

(c)
Figure 9. Cont.
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(d)

(e)
Figure 9. Comparison between forced components extracted from each observatory/tide gauge cou-
ple. (a) Comparison between forced components of sea level in Brest (grey curve) and respective os-
cillations of magnetic components X (red curve), Y (green curves) and Z (blue curve) in Chambon-La-
Forêt. (b) Same as Figure 9a for the tide gauge/magnetic observatory couple Simons Bay/Hermanus.
(c) Same as Figure 9a for the tide gauge/magnetic observatory couple Newlyn/Hartland. (d) Same
as Figure 9a for the tide gauge/magnetic observatory couple Mera/Kanozan. (e) Same as Figure 9a
for the tide gauge/magnetic observatory couple Newcastle/Canberra.

In Section 2, we saw that if a measured magnetic field has its origin in the uniform
motion of charges in rotation about our planet’s symmetry axis, the quantity and quality of
charges cannot vary with time (or the dipole would vanish). Then, there is a link between
the magnetic and angular moments. It is expressed by Equation (8a):

m =
e

2mc ∑ r× p =
e

2mc
M

Sea-level and magnetic variations are linked through polar motion (e.g., [20], Section 2);
here, the length of day. Polar motion is forced by Earth’s revolution about the Sun. If the

field is constant and the link exists, the ratio
e

2mc
must be constant. The (geo-)physical
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consequences generated by these moments should be, of the first order, the same for all
torques around the globe, and the variations in amplitude of the geophysical phenomena
involved should be proportional.

In Table 2 below, we evaluate the amplitudes of the SSA annual components of the
sea-level and magnetic components and their ratios for the five couples of stations of
Figure 7. In the 1980–2022 period, these ratios are the same at 7 mm/nT for CLF, HAD
and HER, almost the same at 8 mm/nT forCNB and not so different at 10 mm/nT for
KNZ. Given the complexity of sea-level physics and geomagnetism, there is no a priori
reason why the ratios should be constant, unless Equation (8a) holds, which seems to be the
case. This result vindicates Poisson’s approach ([27]): fluid motions in the core are similar
to those at the surface; because they are charged, the motifs of variations in the Earth’s
magnetic field are those of the sea surface and the atmosphere.

Table 2. List of “magnetic observatory–tide gauge” couples (a completer).

Couple Observatory–Tide Gauge Ratio Sea Level/Magnetic Component Order of Magnitude

CLF/Brest, between 1980 and 2000 ∼100 mm/15 nT ∼7 mm/nT
HAD/Newlyn, between 1980 and 2005 ∼100 mm/15 nT ∼7 mm/nT
CNB/Newcaste V, between 1980 and 2022 ∼ 80 mm/10 nT ∼8 mm/nT
HER/Simons bay, between 1980 and 2000 ∼100 mm/14 nT ∼7 mm/nT
KNZ/Mera, between 1980 and 1995 ∼140 mm/14 nT ∼10 mm/nT

4.3. On the 11 yr Cycle and the Magnetic Field

The 11 yr cycle is one of the better known variations of the Earth’s magnetic field.
It is considered to be the same Schwabe ([75]) cycle that is found in sunspot numbers.
In the minds and logic of Laplace ([33]), Lagrange ([36]) and Poisson ([27]), planets are
responsible, through exchanges in moment, for a number of astrophysical and geophysical
phenomena. The origin of this 11 yr cycle likely has its source in the revolution and moment
of Jupiter. This moment is directly connected to variations of distances to Jupiter in the
solar system. Jupiter exerts the largest torque of the eight planets (and also larger than that
of the Sun, which is motionless at the time scales we are interested in; Lopes et al. [67]).
This torque acts on (or modulates, or forces) sunspots (e.g., [55]) as well as on polar rotation
(e.g., [49,66]).

In what we will call the Poisson–Le Mouël paradigm, the fluid’s rotation generates the
field; this same rotation must then force solar activity in the form of sunspots. In the case
of fluid mechanics, and as shown by Courtillot and Le Mouël ([76]) Figure 45 and by Le
Mouël et al. ([6,18]), a law of natural turbulence appears, a Kolmogorov ([19]) power law
with exponent −5/3. This law is found in sunspots as well as in variations of geomagnetic
intensity (the latter since as far back as at least 1 Myr, see [76]). The angular coordinate θ

and
dψ

dt
that define the location of the pole of rotation on the sphere are the solutions of a

system of differential equations, one for θ that describes pole motion, and the other for
dψ

dt
that describes the length of day. One is the derivative of the other (see [51]). As is the case
for all derivative operators, it amplifies high-frequency components. Le Mouël et al. ([77])
showed that the 11 yr component is a major component of the length of day, whereas Lopes
et al. ([66]) showed that it is a minor one of polar motion.

In order to retain the homogeneity of our datasets and their temporal resolution, we
integrated the 11 yr quasi-cycle extracted from the length of day by SSA (Figure 10, black
curve, bottom two rows). In the top row of Figure 10, we superimposed the 11 yr component
from sunspots (pink) with that of aa. The two curves appear to be in quadrature: this is
checked by offsetting the Schwabe cycle forward by exactly the 11/4 yr (second row). The
explanation for this observation is the following: the torque exerted by Jupiter acts directly
on sunspots, while the aa index is the difference between two antipodal observatories.
Thus, the aa index is a derivative operator. This is likely why the 11 yr cycle is prominent in
aa but minor in the X, Y and Z components. The same accounts for the phases of aa and
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lod: we integrate the 11 yr component of lod (black curve in 3rd row of Figure 10) and see
it is in phase with aa. And finally, according to [36], Jupiter does act on the Earth’s rotation,
as shown by Lopes et al. ([49]) and the Jupiter–Earth distance (blue curve bottom row in
Figure 10). This last result provides a good illustration of Equation (8f):

dM
dt

= −Ω×M.

Polar motion as well as length of day are linked to Ω (e.g., Lambeck [56], Section 3).
We have also seen in theory (and checked in the example above) that the variation in the
magnetic field is linked to momentM. We could say that magnetic field components (X,Y,Z)
are to polar motion (m1,m2) what aa indices are to the length of day. The link between
Sections 2 and 3 above is the length of day.

Figure 10. Eleven year quasi-cycles extracted by SSA from the geomagnetic index aa (red; top 3 rows),
the sunspot series (pink; top 2 rows), the length of day (black; bottom 2 rows) and the ephemerids of
Jupiter (blue; bottom row marked as distance of Earth from Jupiter).

4.4. On the International Geomagnetic Reference Field

Since the work of Gauss ([28]), the decomposition of the geomagnetic field into spher-
ical harmonics has become normal practice (“routine”). We recall, however, as a caveat
the fact that an electric field or a gravity field can be decomposed in spherical harmonics
(SH) because these fields are constant and their elementary sources all have the same sign.
Such is not the case with a magnetic field, unless it is constant also (Sections 2 and 3). In
principle, the SH decomposition of a magnetic field does not have physical significance.
Nevertheless, a spherical harmonic decomposition of the International Geomagnetic Ref-
erence Field (IGRF) is published every five years ([78]). Given the fact that there is no
magnetic monopole, the first source term (i.e., “Gauss coefficient”) is the axial dipole g1,0,
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an imaginary source at the center of the Earth. The other terms of the Fourier expansion on
the base functions cos and sin are written as gl,m and hl,m.

Figure 11a shows the monotonous decay of the IGRF axial dipole g1,0 since 1900. With
Poisson ([27]) and Le Mouël’s ([20]) hypothesis in mind, and given some of the results in
the previous sections of this paper (similar behavior of the annual SSA components of sea
level, rotation axis and magnetic field), it is natural to compare the behavior of the intensity
of the IGRF dipole with polar motion (m1,m2) or the equivalent parameter θ of [33]. This is
done in Figure 11a.

Figure 11. Comparison between (a) the evolution of g1,0 from ([78]) and the Markowitz–Stoyko
drift and (b,c) their corresponding time derivatives. (a) Red dots = IGRF g0

1 every 5 years since
1900 [78] and interpolation as the black curve. Blue curve = SSA first component i.e., trend of polar
motion, that is the Markowitz–Stoyko drift. (b) First time derivatives of the two curves shown in
Figure 11a. (c) Second derivative in time of the curve corresponding to the coefficient g0

1 versus the
first derivative of the polar motion. The two curves are in phase possibly due to causality.
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The time variations of g0
1 and θ are indeed very close. The first derivative of polar

motion is in quadrature with the first derivative of g0
1 (Figure 11b) and in phase (opposition)

with the second derivative of g0
1 (Figure 11c).The variation of dipole intensity follows

the variation of the angle θ between the rotation axis of the planet and that of the dipole.
Another example is given by the similarities between the magnetic declination in Paris and
rotation axis, and between their derivatives (Figure 3a,b).

If the field is constant, we saw that there is a link between the magnetic moment m and
the angular momentumM (Equation (8f)). We checked this relation, using observations
(Table 2). We also showed that, in the case of a rotating system of charges about the axis Z
(with velocity Ω), this relation becomes

Ω =
e

2mc
H

This does express the link between the variations of Earth’s rotation and the magnetic
field H. Since Ω is connected to m1 and m2 through the Liouville–Euler equations, H is also
connected to m1 and m2. But the key coordinate is ṁ3, which is the length of day. This is
the reason why the second derivation of g1,0 agrees better with the Markowitz–Stoyko drift,
which is, as we saw, the second derivative of lod.

5. Discussion and Conclusions

In his pioneering work on the nature and origin of the Earth’s magnetic field, Poisson [27]
recognized that the field had to be constant. Gauss [28] came to the same conclusion. This
will seem awkward to the modern physicist. Poisson’s proof involved theoretical physics and
mathematics but only a limited set of observations.

More recently, one of us (Le Mouël [20]) observed that there were strong observational
connections between the Earth’s magnetic field and its rotation, more precisely, the secular
variation of the field and the drift of the rotation pole on one hand, and the forced oscillations of
the magnetic field and the length of day on the other. Based on these observational facts, Le
Mouël [20] proposed to model the core source as a rotating cylinder when Poisson envisioned a
sphere. Thus, based on observations, Le Mouël (1984) (with collaborators, in a suite of often
cited papers) built quasi “experimentally”, 150 years later, almost the same theory as Poisson
had done “theoretically”.

We attempted in this paper to return to the original sources and to reconstruct the devel-
opment of geomagnetism, using the “current” language. Starting from Maxwell’s equations,
we derived the equations for the electrostatic and magnetostatic fields (Section 2). We came
to the same equations as Poisson, with an important difference: Poisson chose the Lagrangian
approach to gravity (Legendre, 1785; Lagrange 1788; Laplace, 1799) to formally derive the
equations for the magnetic field ([35]). To scientists of this epoch, there was no difficulty in
reasoning the magnetism in the same “classical” way as one reasons in gravity.

In Section 2, we propose a short tutorial on the equations of electromagnetism. This can
be found in most graduate textbooks. But we emphasize the fact that the magnetic field does
not need to derive from a scalar potential to be developed into spherical harmonics. However,
most geomagnetists do make this hypothesis, invoking Stokes’s theorem: since magnetic
measurements are made at the surface where almost no charge circulates, one can assume that
the field derives from a scalar, not a vector potential. It is more physical, hence logical, to obtain
the spherical harmonics from the electrostatic field, then use the vector potential (Equation (6))
to return to their expression for the magnetic field.

One can perform a decomposition in spherical harmonics and consider multi-poles if
and only if the motions of charges are finite and uniform, two conditions that are not met in
a dynamic field. From this, one can draw a number of consequences for the magnetic field,
the main one being that the magnetic moment of the charges that generate the field and their
angular moment (thus, the motion of the rotation pole) are linked by Larmor’s relation. This is
in agreement with the theoretical works of Laplace [33], Poisson [27]) and [20]. A magnetic field
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can be written on the basis of spherical harmonics only if this field is constant. Section 3 deals
with the intrinsic theoretical consequences of a constant dipolar field.

From the ideas presented in Sections 2 and 3, we concluded that in order to satisfy all
hypotheses and all theoretical results, it is sufficient that the axis of symmetry of the magnetic
dipole and the rotation axis can move with respect to one another, which is never the case with
a development in spherical harmonics.

Section 4 presents tests of our hypotheses. In Figure 3, we show that sea-level variations in
Brest, variations of magnetic declination in Chambon-La-Forêt and Markowitz–Stoyko polar
drift were essentially the same, except for the phase of declination, which we interpret as
resulting from the nature of core–mantle coupling. We know from other tide gauges that the
Brest gauge is representative of most northern hemisphere gauges. Jault and Le Mouël (1991)
discussed the correlation and the model that would link geomagnetic secular variations and
polar drift; we extend the correlation and the model to sea-level variations.

Next, we focused on annual and semi-annual oscillations, as did Jault and Le Mouël [24])
previously, bringing into the picture the information carried by the sea level. All these cycles,
regardless of whether they correspond to the geomagnetic field components, length of day, or
sea level, are in phase or in phase opposition. This observation falsifies the hypothesis that the
field would include seasonal variations (the Russel–McPherron [72] effect), unless the effect
could also explain the presence of the same cycles in the sea-level and length-of-day variations.
We calculated the ratios of the mean amplitude of variations in these cycles (magnetic field
components to associated tide gauges). Independent of local and regional geography and
topography, we find these ratios to be quasi constant at ∼8 mm/nT. This also agrees with the
concept of a constant field (relation (8a)).

We next tested the Schwabe ∼11 yr cycle. Paradoxically, it is rather weak in geomagnetic
field components, and quite strong in magnetic indices, such as aa. In a parallel way, the cycle is
weak in polar motion, yet it is one of the main components of the length of day. This is readily
understood when one follows Laplace (1799): polar motion and length of day describe the same
phenomenon but differ by one order of derivation. In a reciprocal way, the polar motion is
linked to the derivative of magnetic components.

Our last test is with the secular variation of the IGRF. Many forget the caveat that a dynamic
magnetic field derives from a vector potential, not a scalar potential; hence, it can, in principle,
not be developed in spherical harmonics. Despite this caveat, regular analyses of magnetic field
models have been produced at five-year intervals for years since 1900. The secular variation
of that field is monotonous and decreasing as far as the leading axial dipole field component
is concerned. This behavior is parallel to that of polar motion. We saw, in addition, that the
time variations of the second derivative of g0

1 are parallel to those of the first derivative of
polar motion.

The validity (and foresight) of Poisson’s derivation of Maxwell’s equations also applies
to Larmor’s equation, the Liouville–Euler system, and, in general, the distinction that must be
made between electric and magnetic fields. The parallel behaviors of magnetism and rotational
mechanics, illustrated by the Larmor formula, were put to the test with modern observations
with success. We successively showed that the drift of the magnetic dipole, the forced responses
of the field to commensurate pseudo-frequencies generated by the Jovian planets, the Schwabe
cycle and the IGRF, can all be understood in the frame of Poisson’s theory. And to the series of
observations of a number of geophysical, atmospheric and heliophysical processes (e.g., [53–55]),
including sea level, the Earth’s magnetic field can be added as we showed in this paper.
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Appendix A. The Polar Motion

Figure A1. Terrestrial reference frame. m1 and m2 are the coordinates of the rotation pole. ψ and θ

are the declination and inclination introduced by Laplace [33]. From Lopes et al. [67].

Figure A2. Polar motion from IERS. The m1 and m2 components of polar motion from IERS (from
1846 to the present). From Lopes et al. [67].
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