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Abstract: Understanding hydrological and hydrochemical processes is crucial for the effective man-
agement and protection of groundwater resources. This study conducted a comprehensive investiga-
tion into hydrochemical processes and variations in groundwater quality across five distinct aquifers
in Phra Nakhon Si Ayutthaya, Thailand: Bangkok (BKK), Phra Pradaeng (PPD), Nakhon Luang
(NKL), Nonthaburi (NTB), and Sam Khok (SK). Utilizing various diagrams, the findings revealed
that high levels of sodium and salinity in shallow aquifers (BKK and PPD) were found which can
impede soil permeability and have potential consequences on crop yields. The presence of four
distinct types of groundwater—Na-Cl, Na-HCO3, Ca-Cl, and Ca-HCO3—suggests the influence of
rock weathering, mineral dissolution, and ion exchange reactions with the surrounding geological
formations, controlling the chemistry in the groundwater basin. The research also highlights concerns
regarding groundwater quality, particularly elevated concentrations of heavy metals (e.g., Zn, Hg, Pd,
Fe, and Mn) exceeding safe drinking water guidelines established by the World Health Organization
(WHO) in certain samples. The evaluation of water suitability for consumption and irrigation using
the Water Quality Index (WQI) and Wilcox diagram reveals a predominance of “poor” or “unsuitable”
categorizations. Untreated sewage discharge and fertilizer usage were identified as the primary an-
thropogenic activities affecting hydrochemical processes in groundwater. These findings emphasize
the need for continuous monitoring, appropriate management, and remediation efforts to mitigate
potential hazards.

Keywords: groundwater quality; heavy metal; hydrogeology; groundwater contamination; hydro-
chemistry

1. Introduction

Groundwater is particularly valued for its relatively pure nature compared to surface
water [1,2]. This water resource plays a crucial role in the domestic, agricultural, and
industrial sectors [3,4], especially during the post-monsoon season. However, aquifers
are increasingly facing threats of contamination as a result of factors such as industrial
growth and urbanization, leading to health risks [5–9]. Given these threats, it is imperative
to establish regular processes for monitoring water quality. Consequently, the identification
and mitigation of associated health risks become urgent tasks for environmental and
medical geochemists [7,10,11].

Geogenic sources, such as rock leaching and weathering, and anthropogenic activities,
like metal mining, smelting, fossil fuel combustion, pesticide use, and sewage sludge, have
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led to the accumulation of heavy metals in the soil and groundwater, including arsenic
and lead [12–14]. Prolonged exposure to these metals through drinking water can result
in various health issues, such as cancer, neurological disorders, developmental problems,
and organ damage. Additionally, certain geological formations may contain radioactive
elements like uranium or radon, which can seep into groundwater, increasing the risk of
cancer and radiation-related health problems [15]. Natural pollutants, like fluoride, can also
be present in groundwater due to chemical processes along its hydrogeological path [13].
Elevated fluoride levels in groundwater can cause dental and skeletal fluorosis. Geogenic
pollutants can increase the salinity and mineral content of groundwater, negatively impact-
ing plant growth and crop yield. Excessive salts, boron, selenium, and heavy metals can be
toxic to plants, inhibiting nutrient uptake, photosynthesis, and causing cellular damage,
ultimately leading to stunted growth, reduced crop quality, and crop failure [16].

Industrial processes and waste disposal are significant sources of heavy metal release
into the environment [17–20]. Areas with high industrial concentrations often face water
pollution as heavy-metal-containing wastewater infiltrates aquifers [21]. Health risks associ-
ated with heavy metal exposure include growth retardation and cancer development [22,23].
Ingestion or inhalation of lead-contaminated water or soil can cause neurological damage,
developmental issues, anemia, and impaired kidney function [24]. Prolonged exposure to
cadmium-contaminated water or crops can result in kidney damage, lung disease, and an
increased risk of cancer [24]. Consumption of mercury-contaminated water or fish can lead
to neurological damage, impaired cognitive function, and developmental issues in children.
Chromium (Cr), released by metal plating, tanneries, and stainless-steel production, poses
particular harm, increasing the risk of lung cancer, respiratory issues, liver damage, and
skin problems [25,26]. Arsenic in groundwater poses health risks, including skin lesions,
cardiovascular diseases, neurological effects, and an increased risk of cancer [7,10,24].
Arsenic accumulation in crops hampers growth, reduces yield, and poses a food safety
risk [25].

In Phra Nakhon Si Ayutthaya, Thailand, there is significant concern regarding indus-
trial and agricultural pollution. As a major rice-producing area, intensive agriculture in this
region can result in the leaching of agrochemicals, such as pesticides and fertilizers, into
groundwater, leading to water contamination and elevated nitrate levels, which pose risks
to human health and the environment [27,28]. Industrial activities and urban development
also contribute to groundwater pollution, with industrial effluents often containing heavy
metals and other hazardous substances, while urban runoff carries pollutants such as oils,
heavy metals, and chemicals into groundwater sources. Additionally, naturally occurring
geogenic contaminants, such as arsenic or fluoride, can be present in elevated levels in
groundwater [14], posing health risks if consumed. Therefore, a large population in the
area is at risk of consuming contaminated water. Monitoring environmental hazards over
time is crucial for understanding changes in contamination levels.

The objective of this study is to assess the impact of industrialization and agricul-
tural practices, particularly fertilizer use, on groundwater quality in rapidly developing
industrial regions. The research aims to answer the following question: What are the
main hydrochemical characteristics and variations in groundwater quality across multi-
ple aquifers in Phra Nakhon Si Ayutthaya, Thailand, and how do these variations affect
public health and agricultural use? The central focus of this investigation is to examine the
pressure exerted on the region’s geological resources, specifically groundwater, due to the
increasing use of fertilizers and the expansion of industrial zones. Various industries are
assumed to gradually introduce pollutants into the environment, significantly affecting
groundwater quality. The assumption is that these harmful substances can permeate into
groundwater and contaminate the food chain, potentially leading to health complications
if the water is consumed without treatment. This research aims to thoroughly analyze
pollution levels and identify the most critical contaminants as a starting point. The study’s
objectives include raising awareness and implementing proactive measures to mitigate
potential health risks based on the continuous assessment of pollution impacts.
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2. Materials and Methods
2.1. Study Area and Climate Conditions

The study area is located in Phra Nakhon Si Ayutthaya Province (Figure 1a), situated
in the quaternary floodplains (Qfd) of central Thailand (Figure 1b), approximately 76 km
north of the coast. The province lies between longitudes 100.2◦ E and 100.8◦ E and latitudes
14.1◦ N and 14.7◦ N, sharing its borders with several other provinces.
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Figure 1. (a) Study area representing land use (source: LULC 2020 [29]). (b) Site samplings from
various aquifers (e.g., Bangkok aquifer (BKK, 0–50 m depth), Phra Pradaeng aquifer (PPD, 51–100 m
depth), Nakhon Luang aquifer (NKL, 101–150 m depth), Nonthaburi aquifer (NTB, 151–200 m depth),
and Sam Khok aquifer (SK, 201–350 m depth)). (c) Mean monthly (1993–2022) rainfall (mm), mean
monthly (1993–2022) air temperature (◦C), and mean monthly (2013–2022) water table (m below
earth surface) provided by the Thailand Department of Groundwater and the Department of Water
Resources. (d) Geological cross section surveyed by the Thailand Department of Groundwater
in 2022.

A total of 92 wells distributed over the area were observed. It covers an area of approx-
imately 2501 km2. Phra Nakhon Si Ayutthaya, like much of Thailand, experiences a tropical
monsoon climate [30,31]. The region has three primary seasons: summer from March
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to May, the rainy season from June to October, and winter from November to February.
Summer temperatures can reach up to 35–40 ◦C, while during the winter, they typically
range between 20 and 30 ◦C. The average annual rainfall (1993–2022) is approximately 1215
to 1432 mm, with heavy rain falling during the monsoon season, peaking around September
(Figure 1c). Monthly rainfall can significantly vary, with minimal precipitation in summer
and potentially over 200 mm per month at the height of the rainy season. Groundwater
levels in the region are typically high (averaging 26.51 ± 9.77 m below the earth’s surface)
due to the flat topography and abundant rainfall. However, these levels can fluctuate
throughout the year in response to rainfall patterns, with a one-month lag time [27], and
extraction for irrigation and other uses. The water table tends to be at its highest at the
end of the rainy season and gradually declines through summer until it is recharged by the
rains again.

This study area, predominantly flat, is characterized by the central river basin of
the Chao Phraya River, a significant waterway for both transportation and irrigation.
Numerous smaller rivers and canals branching off from the Chao Phraya River have created
a fertile, well-irrigated area, ideal for agriculture. The region’s alluvial soils, combined
with its tropical monsoon climate, support a variety of agricultural activities, with rice and
coconut farming being the most prevalent. This area is also a vital hub of industry. Major
industrial estates include the Rojana Industrial Park, Hi-Tech Industrial Estate, and Bang
Pa-In Industrial Estate, hosting a variety of manufacturing units ranging from automotive,
electronics, leather, and textile industries to food processing and packaging units. While the
province is extensively utilized for agriculture (64%) and industry, there is also a significant
amount of land used for residential areas, especially in and around urban centers. However,
the province faces environmental challenges related to land use and industrialization,
such as water pollution due to untreated industrial waste, soil degradation, and urban
encroachment onto agricultural and natural lands [32].

2.2. Hydrogeological Settings

The hydrogeology of Phra Nakhon Si Ayutthaya, situated within the floodplain de-
posits of the Chao Phraya River basin, comprises a complex and distinct layered aquifer
system (Figure 1d). This system consists of vertically arranged aquifers, each with its own
unique properties and varying degrees of hydraulic interconnectivity [33]. The shallowest
layer, known as the Bangkok aquifer (BKK), extends up to 50 m and primarily consists of
alluvial deposits from the Holocene age. The BKK aquifer serves as the primary source
of groundwater for domestic and agricultural purposes [34]. Below the BKK aquifer lies
the Phra Pradaeng aquifer (PPD), situated between 51 and 100 m. Composed of older
alluvial deposits from the Pleistocene age, the PPD aquifer functions as a significant water
storage unit [34,35]. The Nakhon Luang aquifer (NKL), which extends from 101 to 150 m,
consists of Tertiary sediments, both marine and non-marine, and is typically confined due
to overlying impermeable layers [36]. The Nonthaburi aquifer (NTB) follows, ranging
from 151 to 200 m and composed of late Pleistocene age sand and clay layers [36]. The
hydrological characteristics of the NTB aquifer can vary widely. Lastly, the deepest layer is
the Sam Khok aquifer (SK), stretching from 201 to 350 m and composed of early Tertiary
marine sediments [36]. These aquifers receive recharge from rainfall and river infiltration,
and they discharge into the rivers and canals [3]. Groundwater flow generally follows
the surface topography, moving from the north and northeast toward the Chao Phraya
River [37].

2.3. Sampling Collection

Water quality testing is a complex process involving multiple steps. Any missed or
incorrectly executed step can compromise the entire test, making careful planning and
understanding of the test’s specific objectives essential [38]. This study conforms to the
standard procedures delineated by the American Public Health Association (APHA) [39]
and the United States Salinity Laboratory (USSL) [40], ensuring precise groundwater
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sampling and analysis. In this specific study, the research involved collecting groundwater
samples from hand-dug wells and boreholes dispersed across the province’s industrial
areas. During the dry season (November 2022), a total of 92 samples were gathered from
these industrial estates, supplemented by additional samples from agricultural regions
within the same surrounding area (Figure 1a,b). Borehole distribution across each aquifer of
the study area encompasses eighteen boreholes (20% of total boreholes) in the BKK aquifer,
nineteen boreholes (21% of total boreholes) in the PPD aquifer, fifteen boreholes (16% of
total boreholes) in the NTB aquifer, twenty-three boreholes (25% of total boreholes) in the
NKL aquifer, and seventeen boreholes (18% of total boreholes) in the SK aquifer. Physical
and chemical analysis samples were collected using a 2.5 L low-density polyethylene bottle.
A separate 1 L container, immediately supplemented with 2 mL of concentrated HNO3
on-site, was utilized for metal content analysis. Prior to use, the containers designated for
sampling underwent meticulous cleaning, rinsed five times with distilled water. The entire
process employed chemicals of analytical grade.

2.4. Hydrogeochemical Analyses

On-site, immediate measurements were captured for appearance, pH, temperature
(◦C), electrical conductivity (µS/cm), and total dissolved solids (mg/L) of the water. Every
sample received an accurate label, preparing it for subsequent laboratory analysis. Rigorous
precautions were instituted to avoid contamination during the collection process. For
instance, pH meter calibration using distilled water secured trustworthy readings. Likewise,
sample bottles underwent meticulous rinsing, initially with distilled water, then with the
water sample itself before collection.

A comprehensive assessment of water quality involved evaluating a wide range of
parameters. These parameters included pH, temperature, electrical conductivity (EC),
chloride (Cl), fluoride (F), total dissolved solids (TDS), nitrate (NO3), sulfate (SO4), phos-
phate (PO4), carbonate (CO3), bicarbonate (HCO3), calcium (Ca), magnesium (Mg), sodium
(Na), potassium (K), and several heavy metals such as arsenic (As), cadmium (Cd), nickel
(Ni), lead (Pb), selenium (Se), chromium (Cr), zinc (Zn), mercury (Hg), iron (Fe), and
manganese (Mn). Established instrumental techniques and standard analytical methods
were employed to identify and measure these physical and chemical parameters [39]. Ion
chromatography mass spectrometry (IC) was used to analyze primary ions, while an atomic
absorption spectrophotometer (AAS) was utilized for trace and heavy metal evaluation.
The analytical error for both methods was kept below 5% and 10%, respectively. The
data collected on various water quality parameters and heavy metals were then compared
against the drinking water quality guidelines set by the World Health Organization (WHO)
to ensure compliance [41].

Numerous scientific studies have documented various methodologies for evaluat-
ing groundwater quality [42–44]. These methodologies utilize the physical and chemical
characteristics of water and have been applied in different settings to determine its suit-
ability for drinking. The Water Quality Index (WQI) method, which employs a weighted
arithmetic index, has been widely used in many studies to assess water potability [42–45].
This investigation followed a similar approach, integrating the weighted arithmetic index
method along with traditional graphical methods such as Stiff [46], Durov [47], Wilcox [48],
and USSL diagrams [40].

Additionally, a ternary plot was conducted to analyze the chemical properties of
groundwater. This plot illustrates the distribution of major cations (Na, K, and Ca) and
anions (Cl, SO4, and carbonate alkalinity) [49,50]. Carbonate alkalinity (Alkc, meq/L)
represents the combined concentration of CO3 and HCO3 ions. Furthermore, a binary
diagram of Cl and SO4+AlkC was utilized to provide information about the total ionic
salinity (TIS, Σmeq/L). By comparing the position of each groundwater sample with the
iso-Σmeq/L lines (lines with a slope of −1), the TIS value could be observed [51].

The World Health Organization’s guidelines for drinking water [41] served as a
reference point against which the computed WQIs were measured. The WQI offers a
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simplified summary of water quality based on various chemical parameters and can be
calculated using the following equation:

WQI = Σ (Wi × qi) (1)

In this formula, “Wi” represents the relative weight of each parameter, and “qi”
denotes the sub-index for each parameter (Table 1). The Wi is usually assigned based
on the perceived importance (wi/Σwi, Table 1) of each parameter for water quality. The
assigned weight (wi) to each parameter (between 1 and 5) was considered based on its
relative importance to the overall quality of groundwater [52].

Table 1. Standards, weights, and relative weights used for WQI computation.

Parameters WHO (2022)
Standard (Si, mg/L) Weight (wi, mg/L) Relative Weight (Wi, mg/L)

pH 8.5 4 0.0533
TDS 1000 4 0.0533
Ca 100 2 0.0267
Mg 50 2 0.0267
Na 200 3 0.0400
K 20 2 0.0267

HCO3 350 2 0.0267
SO4 250 3 0.0400
Cl 250 3 0.0400

NO3 50 2 0.0267
PO4 5 4 0.0533

F 1 5 0.0667
As 0.01 5 0.0667
Zn 5 2 0.0267
Pb 0.01 5 0.0667
Hg 0.006 5 0.0667
Fe 0.3 3 0.0400
Mn 0.4 4 0.0533
Cr 0.05 5 0.0667
Cd 0.003 5 0.0667
Ni 0.02 5 0.0667

Total 75 1

The sub-index or qi is typically computed by comparing the measured value (Ci) for
each parameter with its respective guideline or standard (Si). Each qi was calculated using
the following equation:

qi = (Ci/Si) × 100 (2)

where Ci is the observed concentration (mg/L) of each parameter in the groundwater
sample, and Si is the standard guideline value (mg/L) for that parameter as set by a
recognized authority, such as the World Health Organization (WHO) [41]. The resulting
qi values are then scaled and summed to obtain the overall WQI. A WQI exceeding 300
indicates that the water is unsuitable for drinking [53].

Groundwater quality for irrigation applications was evaluated using various tools. The
methodologies incorporated the United States Salinity Laboratory (USSL) diagram [40], the
Wilcox diagram [48], and electrical conductivity (EC) values. Additionally, the calculation
of essential agricultural indices, namely the sodium adsorption ratio (SAR) [40] and the
sodium percentage (%Na) [54], was carried out. The SAR was calculated using the following
equation:

SAR = [Na+]/
√

([Ca2+] + [Mg2+])/2 (3)
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Here, the concentrations of sodium (Na+), calcium (Ca2+), and magnesium (Mg2+)
are measured in milliequivalents per liter (meq/L). The sodium percentage (%Na) was
computed using the following formula:

%Na = [Na+] × 100/([Ca2+] + [Mg2+] + [Na+] + [K+]) (4)

In this formula, potassium (K+) concentration is also considered, with all ion concen-
trations measured in meq/L. These methods, incorporated in the study for determining
the suitability of water for irrigation, have been regarded as effective strategies in assessing
the aptness of water for irrigation applications [54].

3. Results and Discussion
3.1. Hydrochemical Facies in Groundwater

Groundwater levels, influenced by aquifer type and geographic location, can vary
from a few meters to over 40 m below the surface (Figure 2a). The Sam Khok (SK) aquifer
typically exhibited deeper groundwater depths (ranging from 3.50 m to 41.38 m below the
earth’s surface, with an average of 27.59 ± 11.56 m), suggesting the presence of elevated
bedrock or less permeable soil layers [55]. The Nakhon Luang (NKL) aquifer showed pro-
found levels, but certain areas had shallower readings (with an average of 21.44 ± 8.06 m),
indicating varying geological conditions or recharge rates. The Phra Pradaeng (PPD)
aquifer displayed a spectrum of water levels (ranging from 4.04 m to 44.77 m, with an
average of 17.81 ± 12.03 m), hinting at diverse geological situations. Conversely, the Non-
thaburi (NTB) and Bangkok (BKK) aquifers predominantly revealed shallower groundwater
depths. The NTB aquifer presented a range of levels (from 5.06–34.76 m, with an average of
21.44 ± 8.06 m) but trended toward deeper ones in certain locations (Figure 2a), while the
BKK aquifer consistently reflects shallower levels (averaging 13.85 ± 11.99 m), implying
regions of high permeability or superior recharge rates [35].
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Figure 2. (a) Stiff diagram map (in meq/L unit) showing the spatial distribution of main cations
(Na+ + K+, Ca2+, and Mg2+) and anions (Cl− + NO3−, SO4

2−, and HCO3
− + CO3

2−) in groundwater
in 2022. Colors represent groundwater aquifers. Contour lines show average water table during
2013–2022. (b) Stiff diagram for mean main ions (meq/L) in each aquifer and for overall groundwater
samples. Colors in Stiff indicate groundwater aquifers (e.g., Bangkok aquifer (BKK, 0–50 m depth),
Phra Pradaeng aquifer (PPD, 51–100 m depth), Nakhon Luang aquifer (NKL, 101–150 m depth),
Nonthaburi aquifer (NTB, 151–200 m depth), and Sam Khok aquifer (SK, 201–350 m depth)).
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Geographic location, such as longitude 100.64◦ E and latitude 14.46◦ N, also plays a
significant role, as different aquifers exhibited varied water levels (Figure 2b), indicating
complex geological settings. However, it is important to note that these observations are
general, and specific geological factors, hydrological conditions, and human interventions
can greatly influence groundwater levels [37]. Differences in extraction rates, aquifer
characteristics (permeability and porosity), and rainfall patterns and evaporation can
contribute to variations in groundwater depths between aquifers [56].

The physical properties of groundwater showed variations across different aquifers.
The BKK aquifer showed variability in electrical conductivity (EC), ranging from 712.46 to
11,266.21 µS/cm (averaging 7398.31 ± 3523.96 µS/cm), with some wells recording high
levels of total dissolved solids (TDS, maximum 7323.04 mg/L). The PPD aquifer also
showed high TDS levels at certain sites (12,275.90 mg/L), potentially indicating pollution
or high mineral content. The NKL aquifer exhibited considerable variations in pH levels
(5.99–9.77 with an average of 8.01 ± 0.88), suggesting diverse water quality. The NTB
aquifer had a low pH value in one site (3.1), indicating a more acidic environment influenced
by local soil composition or biological activities. Lastly, the SK aquifer demonstrated varied
EC values, ranging from 572.91 to 3778 µS/cm with a mean of 1536.22 ± 1142.50 µS/cm.

There was a significant variation in calcium (Ca) concentration, ranging from very low to
high values across different aquifers (Figure 2b). The Ca ranged between 1.0 mg/L (NTB aquifer)
and 1640.0 mg/L (BKK aquifer) with an average value of 175.84 ± 258.08 mg/L (Table 2). A
wide variation was also found for magnesium (Mg) concentration (0.7–487.78 mg/L). The
overall average Mg was 53.55 ± 101.52 mg/L. The maximum Mg was observed at the PPD
aquifer (487.78 mg/L), while the minimum value was found at the NTB aquifer (0.7 mg/L).
Higher concentrations of Ca and Mg ions usually indicate the presence of limestone and
dolomite in the geological substrate [57]. This could be the case for the samples from
the PPD aquifer, which show very high concentrations of both calcium and magnesium.
These ions are also important indicators of water hardness [58], with higher concentrations
leading to harder water.

Table 2. Concentration of cations and anions in groundwater across different aquifers.

Ions
Concentration (mg/L)

Maximum (Aquifer) Minimum (Aquifer) Average Standard Deviation

Ca 1640.0 (BKK) 1.0 (PPD) 219.53 258.08
Mg 487.78 (PPD) 0.7 (SK) 46.97 101.52
Na 2888.89 (PPD) 26.0 (BKK) 590.62 507.81
K 60.0 (NKL) 1.0 (PPD) 10.94 10.99
Cl 9548.8 (BKK) 7.2 (NTB) 834.17 1463.07

SO4 1109.33 (BKK) 0.0 (PPD) 343.88 254.79
HCO3 788.0 (SK) 0.0 (PPD) 309.47 142.52
CO3 370.25 (NKL) 0.0 (PPD) 216.83 11.10
NO3 21.5 (BKK) 0.0 (NTB and SK) 2.68 11.69

Bangkok aquifer (BKK, 0–50 m depth), Phra Pradaeng aquifer (PPD, 51–100 m depth), Nakhon Luang aquifer (NKL,
101–150 m depth), Nonthaburi aquifer (NTB, 151–200 m depth), and Sam Khok aquifer (SK, 201–350 m depth).

The sodium (Na) concentration varied significantly between aquifers (Figure 2b),
with an average of 446.78 ± 507.81 mg/L. The maximum was found in the PPD aquifer
(2888.89 mg/L), while the BKK aquifer had the minimum Na concentration (26.0 mg/L),
reflecting differences in the composition and sources of groundwater [59]. Variations in
mineralization were also observed in groundwater, as indicated by distinct potassium
(K) levels (Table 2). The maximum K was 60.0 mg/L (NKL), and the minimum K was
1.0 mg/L, found at the PPD aquifer. The Na and K ions are commonly found in igneous
and metamorphic rocks, as well as in clays [60]. High concentrations of Na ion, such as in
some samples from PPD, could also signify a large input from such rocks or from seawater
intrusion.
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Chloride (Cl) concentration showed a broad variation, ranging from 7.2 mg/L (NKL
aquifer) to 9548.8 mg/L (BKK aquifer), indicating different levels of salinity and potential
sources such as seawater intrusion or anthropogenic activities [35]. Furthermore, there
was also a significant variation in sulfate (SO4) concentration (0.0–1109.33 mg/L, Table 2),
reflecting differences in geological formations and groundwater flow patterns. Extremely
high levels of Cl and SO4, like those found in the samples from PPD and BKK, could suggest
contamination from industrial effluents, sewage, or possible seawater intrusion [61].

Moreover, the bicarbonate (HCO3) concentration varied from zero to 788.0 mg/L
in the SK aquifer, which can be influenced by factors such as carbonate rock dissolution
and groundwater recharge [62]. Different hydrochemical conditions can also result in
varying carbonate (CO3) concentrations (0.0–219.67 mg/L), but these were generally low
(Figure 2b). The HCO3 and CO3 ions are associated with limestone and are a significant
component of temporary hardness in water [58]. Therefore, high HCO3 and CO3 levels,
such as in the samples from the NKL aquifer, could indicate the presence of limestone in
the aquifer. Additionally, high nitrate (NO3) concentration indicates potential sources such
as agricultural activities or contamination in the BKK aquifer (21.5 mg/L) (Table 2 and
Figure 2b). NO3 is also associated with agricultural runoff, especially from fertilizer use
and wastewater treatment plants [63]. Higher concentrations, as seen in some samples
from PPD and BKK, could suggest contamination from these sources. Long-term exposure
to high levels of nitrates is harmful to human health, particularly for infants and pregnant
women [63]. Conversely, it was not found in the deeper aquifers (NTB and SK).

3.2. Groundwater Characterization

To interpret and identify the prominent ionic elements and water mixtures in the
local aquifer, the results relied on a series of traditional graphical presentations of the
hydrochemical data. A well-recognized methodology to categorize groundwater types
according to their ionic constituents comes from Durov [47] (Figure 3). The Durov diagram
shows all 58 samples lying in Zone 1, implying a Na predominance among the cations
and Cl and HCO3 predominance in Zone 5 and Zone 7, respectively, for the anions. The
high percentages of Na + K could suggest the influence of saltwater intrusion or water–
rock interactions [60,61]. However, there was no correlation between TDS and Na+K,
and the pH in groundwater did not vary based on Cl ions. A high concentration of
Cl suggests the influence of evaporation, sewage pollution, or saltwater intrusion [35].
Additionally, many samples showed CO3+HCO3 as the dominant anion. High bicarbonate
can indicate groundwater that is influenced by carbonate minerals and is common in
groundwater, which can be further affected by soil CO2 [64]. In addition to saltwater
intrusion, a suggestion from the Durov plot is that calcite and gypsum dissolution (Zone
D, Figure 3) and cation exchange serve as the principal hydrochemical processes affecting
groundwater chemistry in the area under study. This could also be due to the infiltration of
water from bicarbonate minerals (Zone G, Figure 3) [47].

The hydrochemical aspects presented by the Durov diagram are confirmed in the
ternary plots of cations and anions (Figure 4). Displayed in the cation field (Figure 4a) is
an enrichment in Na (average 68.72 ± 16.08 eq%) and Ca (average 30.50 ± 15.99 eq%),
with Cl (average 58.82 ± 29.81 eq%) and HCO3 (average 30.97 ± 27.87 eq%) prevailing in
the anion field (Figure 4b). Four types of groundwater can be discerned: the Na-Cl type,
represented by 50 samples; the Na-HCO3 type, represented by 8 samples; the Ca-Cl type,
represented by 7 samples; and a mixed type, represented by only 17 samples. The Na-Cl
type was the most common type of groundwater in the investigated area, which signifies
a high sodium and chloride concentration. Sodium and chloride can occur naturally in
groundwater from the dissolution of salt deposits and the weathering of rocks containing
sodium-bearing minerals [60]. However, high Na and Cl levels might be indicative of
anthropogenic influences such as wastewater, septic system, or agricultural effluents,
especially in coastal regions where seawater intrusion may be a factor [65]. The Na-HCO3
groundwater type indicates a longer residence time with more water–rock interactions [66],
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which can lead to an increase in sodium and bicarbonate ions. This type was also associated
with more alkaline conditions [67], and the weathering of silicate minerals like feldspar
or clay minerals lead to the Na-HCO3 type of groundwater [68]. The industrial effects
could be found in the Ca-Cl type. In addition to the dissolution of minerals like gypsum
and anhydrite (for calcium) and halite (for chloride), anthropogenic factors like industrial
effluents or agricultural runoff contribute to the calcium or chloride levels in this type
of groundwater [69]. The last group is the fresh water type dominated by Ca-HCO3
composition (Figures 3 and 4) suggesting the dissolution of Ca-rich phases and ionic
exchange controlling the geochemical processes, particularly occurring in metabasaltic and
carbonatic rocks [20,70].
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Figure 4. Ternary diagram for (a) cations (Na, K, and Ca) and (b) anions (SO4, Cl, and Alkalinity).
Colors indicate groundwater aquifers (e.g., Bangkok aquifer (BKK, 0–50 m depth), Phra Pradaeng
aquifer (PPD, 51–100 m depth), Nakhon Luang aquifer (NKL, 101–150 m depth), Nonthaburi aquifer
(NTB, 151–200 m depth), and Sam Khok aquifer (SK, 201–350 m depth)).

Furthermore, the groundwater type differs between aquifers (BKK, PPD, NKL, NTB,
and SK) and shows different dominant ions, indicating diverse geological formations
and sources of the water, as well as different levels of interaction with rocks and soil.
These findings should be validated by other potentially comprehensive hydrogeochemical
analyses (e.g., stable isotopes, trace elements) to confirm the sources of major ions.

When considering the salinity, the water samples were plotted on total ionic salinity
(TIS, meq/L) (Figure 5). A TIS between 5 and 100 meq/L is observed. The binary diagram
of Cl versus SO4+AlkC shows that the groundwater in the BKK and PPD aquifers had high
salinity greater than 60 meq/L with an average value of 70.26 ± 41.38 meq/L for BKK
and 62.32 ± 60.66 meq/L for PPD. This high salinity in shallow groundwater indicates the
salinization from sea water flowing upstream along the Chao Phraya River. Conversely,
salinity was generally low (<30 meq/L) in the deeper groundwater aquifers (deeper than
100 m depth) such as NKL, NTB, and SK. In addition to variation in depth, TIS also differed
between groundwater basins in Thailand. The groundwater in southern Thailand has
reported that their TIS was between 0.007 and 0.12 meq/L depending on the geological
and geographical settings [71]. Compared to other regions, a TIS of 20–80 meq/L was
reported for the groundwater in the industrial areas of Shaying River Basin, China [72]. The
high salinity of groundwater is also the result of natural processes such as the interaction
with soluble evaporite. Conversely, lower-TIS groundwater (<45 meq/kg) was observed in
Mozambique [50]. Their groundwater was not mixed with saline water.

3.3. Groundwater Quality for Human Consumption

The heavy metal concentration (mg/L) varied between aquifers across the study area
(Figure 6). Compared to the World Health Organization’s (WHO) drinking water stan-
dards [41] (Table 1), the concentrations of several heavy metals (as shown in Appendix A,
Table A1), notably zinc (0–140 mg/L, averaged 8.01 ± 22.20 mg/L), mercury (0–1.02 mg/L,
averaged 0.17 ± 0.29 mg/L), lead (0–0.159 mg/L, averaged 0.0031 ± 0.017 mg/L), man-
ganese (0–830 mg/L, averaged 132.59 ± 186.02 mg/L), and iron (0–580 mg/L, averaged
27.70 ± 91.13 mg/L) in certain groundwater samples, significantly exceed the WHO’s stan-
dard [41] for safe drinking water (Figure 6). These findings indicate potential public health
risks if the water is consumed without proper treatment. However, the contaminants might
come from various sources, including agricultural runoff, industrial waste, and natural
mineral deposits [73]. It is also worth noting the wide range of concentrations for each
metal across different locations (Figure 6). This suggests significant spatial variability in the
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groundwater’s heavy metal contamination, which could be due to variations in local geol-
ogy, the influence of human activities such as agricultural and industrial activities [17,21],
or both.
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Figure 5. Total ionic salinity (TIS) diagram. Colors indicate groundwater aquifers (e.g., Bangkok
aquifer (BKK, 0–50 m depth), Phra Pradaeng aquifer (PPD, 51–100 m depth), Nakhon Luang aquifer
(NKL, 101–150 m depth), Nonthaburi aquifer (NTB, 151–200 m depth), and Sam Khok aquifer (SK,
201–350 m depth)).

Natural sources of zinc (Zn) in groundwater include the dissolution and weathering
of Zn-containing rocks and minerals present in the Earth’s crust [11,74]. In groundwater,
the Zn concentration is usually below 0.010–0.040 mg/L [74,75]. Extremely high Zn in the
study area might be released from the use of Zn-containing materials like rubber tires in
vehicle industries [11]. The presence of Zn in groundwater can have implications for both
human health and crop production [76]. Zn is an essential micronutrient for human health,
and its deficiency can lead to various health problems [77,78]. Conversely, excessive Zn
intake can also be harmful [26,77,79]. In terms of crop production, Zn plays a vital role in
several plant physiological functions and is necessary for optimal growth and development.
Zn deficiency in soil–crop systems is widespread globally, particularly in calcareous, high-
pH, eroded, and land-leveled soils [76]. The findings suggest reducing groundwater use
or using iron oxide [80] and zeolite [81] in situ adsorption barriers. Concentrations of
dissolved zinc were strongly reduced due to inserting the iron oxide or zeolite permeable
barriers.

Industrial activities like leather manufacturing, mining, and chemical manufactur-
ing can release mercury (Hg) into the environment [11,82]. The Hg can transform into
methylmercury, a highly toxic form that can accumulate in fish and contaminate water
bodies [83]. Consuming Hg-contaminated water or fish can cause neurological damage,
impaired cognitive function, and developmental issues in children [82,84]. To reduce Hg
below standard limits [41], the use of synthetic chelating ligands such as K2BDET could
reduce mercury concentrations [85]. Ingesting or inhaling lead (Pb)-contaminated water or
soil released from battery manufacturing and paint production can lead to neurological
damage, developmental issues in children, anemia, and impaired kidney function [24].
Lead can also accumulate in crops, affecting their growth and quality [86]. According to
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the literature report, the 5 g/L of kaolin-supported nanoscale zero-valent iron can remove
Pb from wastewater within 60 min [87,88].
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aquifers in Phra Nakhon Si Ayutthaya, Thailand, in 2022. Colors indicate groundwater aquifers (e.g.,
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(SK, 201–350 m depth)).

The manufacturing can also introduce manganese (Mn) and iron (Fe) into the environ-
ment through wastewater discharges [89]. High levels of Mn in drinking water can lead to
health issues such as neurological effects, including cognitive and behavioral changes [90].
It can also cause manganism, a condition similar to Parkinson’s disease, characterized
by movement disorders. High concentrations of Mn in groundwater can also lead to a
condition called manganese toxicity, which affects various crops, including rice, soybeans,
and wheat [91]. Symptoms of manganese toxicity in plants include leaf chlorosis, stunted
growth, and reduced crop yield [25,92]. In general, Fe is an essential nutrient for the human
body, but excessive iron concentrations in drinking water can pose health risks. High Fe
levels may cause gastrointestinal issues, such as stomach pain, nausea, and diarrhea [91].
Additionally, Fe can affect the taste, odor, and appearance of water, making it less appeal-
ing for consumption [25]. However, Fe and Mn can be removed from groundwater by a
process that combines oxidation and microfiltration [93,94]. Furthermore, industries such
as mining, metal smelting, and wood preservation might cause arsenic (As) contamination
in groundwater [14], posing significant health risks. Prolonged exposure to arsenic can
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lead to skin lesions, cardiovascular diseases, and neurological effects [7,25,63]. Previous
research has documented that using coconut husk carbon can remove As concentration
with a metal adsorption capacity of 159 mg/g [95].

Hydrochemical characterization, being the initial phase in assessing water quality,
identified the concentration of individual parameters in this study (Figures 2–6). It also
evaluated groundwater quality by comparing the results to WHO guidelines [41] (Table 1).
The Water Quality Index (WQI), however, takes on a critical role in assessing the overall
groundwater quality. It provides a comprehensive view of the influence of groundwater’s
chemical parameters on its quality. Using the water quality classification model [53], the
general evaluation of groundwater for drinking purposes was derived (Table 3). The
result revealed that none of the samples fell into the “excellent water (WQI < 50)” or
“good water (51 < WQI < 100)” categories. A significant proportion of samples, notably
all from all aquifers, displayed WQI values that would categorize them as “poor water
(101 < WQI < 200)” and even beyond (Table 3). In fact, many values exceeded 300 (84% of
all samples), indicating that they could be classified as “unsuitable water” for drinking. A
few samples showed WQI values that were close to or within the lower end of the “poor
water” category, or in a few isolated cases, below 100 (13% of all samples). However, the
majority of samples are not classified as suitable for drinking according to the classification
scheme by Sahu and Sikdar [53]. The spatial distribution of these groundwater types
(Figure 2a) as depicted by the WQI values (Table 3) suggests that groundwater quality
varies significantly within the study area, with many areas posing potential health risks
if the water is consumed. Although some samples contained heavy metals below the
WHO standard limits (Figure 6), continuous monitoring and mitigation measures are
recommended due to the harmful effects of long-term low-concentration exposure. The
local health and environment authorities should investigate further to identify the sources
of these heavy metals and consider appropriate treatment and remediation measures. The
result suggests that the use of nanoscale zero-valent iron and in situ permeable barriers
such as iron oxide, zeolite, chelation, and microfiltration is necessary to improve water
quality before consumption [80,81,87,88,96].

Table 3. Water Quality Index (WQI).

Aquifers
Water Quality Index (WQI)

Max Min Mean

BKK 14,314 28 2590
PPD 5752 22 1659
NKL 9251 55 2761
NTB 11,443 23 3314
SK 4414 26 1775

Average 9035 31 2419
Bangkok aquifer (BKK, 0–50 m depth), Phra Pradaeng aquifer (PPD, 51–100 m depth), Nakhon Luang aquifer
(NKL, 101–150 m depth), Nonthaburi aquifer (NTB, 151–200 m depth), and Sam Khok aquifer (SK, 201–350 m
depth). Excellent water (WQI < 50), good water (51 < WQI < 100), poor water (101 < WQI < 200), unsuitable water
for drinking (WQI > 300) [53].

3.4. Groundwater Quality for Irrigation Purposes

The sodium adsorption ratio (SAR) is a measure of the suitability of water for use
in agricultural irrigation, as determined by the concentrations of solids dissolved in the
water [40]. The results for the SAR were plotted with the EC value, ranging from 391 µS/cm
to 19,181 µS/cm. EC, or electrical conductivity, is a measure of the water’s ability to conduct
electricity, which indicates the number of dissolved salts or substances in the water [86]
(Figure 7a). High values of EC denote high salinity, which is not favorable for most
crops [86]. Irrigation with high-salinity water can result in salt accumulation in the root
zone, impacting plant growth and yield. Crops vary in their tolerance to salinity [16]. In
Phra Nakhon Si Ayutthaya Province, most agricultural crops consist of rice and coconut.
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Both rice and coconut trees have moderate salinity tolerance. For rice, the threshold EC is
about 3000 µS/cm, and for coconut, it is slightly higher [16].
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µS/cm) at sampling stations. (b) Wilcox diagram showing sodium percent (%Na) and electrical
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(SK, 201–350 m depth)).

The SAR values fell in the range of 1.03–21.28 (averaged 7.38± 4.36) for all the samples
and were typically found to be in the range of 1.03–5.92 for the groundwater deeper than
100 m (NKL, NTB, and SK aquifers). This indicates a sodium hazard class of S1 (Figure 7a)
and excellent water quality [97]. Groundwater with SAR values greater than 6 is observed to
have permeability problems [40,98], indicating that sodium salts dominate, which can result
in soil swelling and decreased permeability [66,97], impeding the uptake of water by crops.

Furthermore, the samples were also assessed for sodium hazard or sodium percent
(%Na) [54] (Figure 7b). It represents the sodium content of the water as a percentage. High
sodium content in irrigation water can cause degradation of soil structure, resulting in
reduced water infiltration capacity [54,65]. This could further lead to lower yields due to
waterlogging and decreased aeration [98]. The %Na ranged between 27.72 and 96.53 with
an average value of 59.04 ± 16.25 for all samples (Figure 7b). Values less than 20% indicate
excellent water quality. In this study, only 12 sites fell within the standard range of 20–40%,
classifying the samples as good-quality water [48]. When the sodium range is high, Na
can be absorbed by clay particles and displace Mg and Ca ions [99]. When Na in water is
displaced with Mg and Ca ions in the soil, it can reduce soil permeability and result in poor
internal soil drainage. This can restrict the movement of air and water in the soils and such
soils generally become hard when dry [98].

For groundwater shallower than 200 m depth (BKK, PPD, NKL, and NTB aquifers),
these aquifers showed relatively high variability in EC, SAR, and %Na. Some of the values
were quite high, particularly in the BKK and PPD aquifers, suggesting that irrigation water
from these aquifers could have significant impacts on soil properties and crop yields [86].
The high salinity (EC) and sodium content (%Na) could contribute to soil degradation [48],
while high SAR values could cause problems with soil structure and water uptake [40]. It
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appears that the groundwater in many of these aquifers may not be suitable for irrigation
without some form of treatment or management, especially for salt-sensitive crops. The
high salinity and sodicity could negatively affect soil health and, as a consequence, crop
health and productivity, including rice and coconut. However, for the deeper groundwater
(SK aquifer), this aquifer had generally lower values of EC, SAR, and %Na. Irrigation
water from this aquifer might have less severe impacts on soil properties and crop yields,
although some measurements still suggest potential issues, especially regarding the SAR
and %Na. Furthermore, the actual impact would also depend on other factors such as the
specific crop variety, the soil type, the extent of rainfall (which can help leach salts), and the
farmers’ management practices [86].

Several studies have examined the impact of nitrogen (N), phosphorus (P), and potas-
sium (K) fertilizers, also known as NPK, on soil and groundwater quality. These nutrients
are essential for crop growth, but their leaching into groundwater can disrupt ecosystems
and agriculture. In the study area, the concentrations of nitrate (NO3), a component of N,
in groundwater compared to phosphates (PO4) and potassium (K) were observed due to
their mobility and abundance. A study proposed a diagram illustrating the correlation
between these ions in the groundwater (Figure 8). The plot highlighted areas with varying
degrees of contamination, revealing that factors such as the source and amount of fertilizer,
the relative proportion of NPK, and aquifer properties can influence contamination levels.
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Figure 8. Bivariate plot between NO3
− and K+ and PO4

3− showing the influence of fertilizer on
the groundwater quality of the study area aquifer [41]. Colors indicate groundwater aquifers (e.g.,
Bangkok aquifer (BKK, 0–50 m depth), Phra Pradaeng aquifer (PPD, 51–100 m depth), Nakhon Luang
aquifer (NKL, 101–150 m depth), Nonthaburi aquifer (NTB, 151–200 m depth), and Sam Khok aquifer
(SK, 201–350 m depth)).

Nonlinear patterns were observed in specific samples (Figure 8), pointing to several
agricultural areas or watersheds impacted by fertilizer pollution. The slope of this line
can change based on the origin of the fertilizer, the quantity applied, and the relative NPK
composition. The composition of recharged water moving through the vadose zone was
found to vary depending on fertilizer application, linked to diverse cropping patterns. Shifts
in farming methods and the varied properties of aquifers could influence NO3 distribution
in agricultural watersheds [63]. The slope might also indicate a variation in nitrate levels
corresponding to minor increases in potash or phosphate values. It is noteworthy that
highly soluble nitrate and nitrite (NO2) have greater mobility and form weaker bonds with
soil particles [100]. NO3 originates from the oxidation of ammonia, which increases due to
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nitrogen fertilizer application [63,100,101]. The oxidation process depletes oxygen levels,
hastening the migration of nitrogen compounds to the water table through the vadose
layer [102]. The groundwater’s vulnerability to fertilizers was particularly evident in Phra
Nakhon Si Ayutthaya due to its shallow water table and sedimentary formations. Sixty-four
percent of the area is being cultivated more than once, primarily during the Ayutthaya
one rice season in August. Therefore, nitrate, phosphate, and potassium impacts are still
significant in the BKK aquifer (Figure 8) during the sampling period in January 2022.

Comparison with other regions revealed that aquifer properties, cropping patterns,
and fertilizer use affect irrigation suitability [38,46,97,103]. For instance, groundwater from
confined aquifers (SK aquifer) demonstrated better irrigation properties than unconfined
aquifers (BKK and PPD aquifers). This suggests a higher contamination risk in unconfined
aquifers. High sodium absorption ratio (SAR) values in the BKK aquifer (Figure 7a) are
associated with the overexploitation of groundwater, excessive agrochemical use, and
greater evapotranspiration during dry seasons, resulting in high salinity, deeming the
water unsuitable for irrigation [38,97]. Other contributing factors to water quality for
irrigation include natural weathering, bedrock leaching, and climate variability [104].

4. Conclusions

This research explores the hydrochemical facies and characteristics of groundwater
from five distinct aquifers. Groundwater physical and chemical properties, such as electrical
conductivity (EC), pH, and total dissolved solids (TDS), exhibit remarkable differences
across aquifers, hinting at diverse water quality and potential pollution or high mineral
content. The varying concentration of elements like Ca, Mg, Na, K, Cl, SO4, HCO3, CO3,
NO3, and heavy metals in the groundwater reveals different geological and hydrological
conditions, potential contamination sources, and water hardness levels. Furthermore, the
quality of groundwater was evaluated for human consumption and agricultural irrigation
purposes. Notably, heavy metal concentrations, such as zinc, mercury, lead, manganese,
and iron, significantly exceeded the World Health Organization’s (WHO) standards for
safe drinking water in certain groundwater samples, signaling potential public health
risks. Most samples were classified as “poor” or “unsuitable” for drinking, according to
the Water Quality Index (WQI), indicating considerable groundwater quality variability
within the study area. The likely sources of contamination include agricultural runoff,
industrial waste, and natural mineral deposits. The research emphasizes the importance of
continuous monitoring and remediation measures to ensure water safety. The treatment
technologies such as nanoscale zero-valent iron and in situ permeable reactive barriers
such as iron oxide, zeolite, chelation, and microfiltration should be employed for pollutant
removal before consumption. The findings conclude that continuous monitoring, effective
management practices, and treatment measures are critical for preserving groundwater
quality. This work thus provides a comprehensive understanding of groundwater quality
across diverse aquifers, emphasizing the need for strategic measures to safeguard water
safety and sustainability.
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Appendix A

Table A1. Heavy metal concentration (mg/L) in groundwater across different aquifers in Phra
Nakhon Si Ayutthaya collected in November 2022.

Elements Values (mg/L)
Aquifers

BKK PPD NKL NTB SK Overall

As

Max 0.0158 0.0253 0.0329 0.0054 0.0033 0.0329
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0028 0.0021 0.0047 0.0019 0.0017 0.0028
StdDev 0.0040 0.0058 0.0083 0.0017 0.0014 0.0053

Zn

Max 18.0000 40.0000 140.0000 120.0000 91.0000 140.0000
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 1.4549 5.3316 9.7915 12.7844 9.1000 7.8058
StdDev 4.4426 11.6740 29.2966 29.4649 21.1045 21.8650

Hg

Max 1.0200 0.8990 0.7430 0.0002 0.0003 1.0200
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.3840 0.2669 0.1773 0.0001 0.0001 0.1663
StdDev 0.3527 0.3493 0.2834 0.0001 0.0001 0.2913

Ni

Max 0.0120 0.0100 0.5160 0.0425 0.0069 0.5160
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0032 0.0015 0.0252 0.0051 0.0025 0.0085
StdDev 0.0033 0.0027 0.1070 0.0103 0.0024 0.0537

Pb

Max 0.0140 0.0018 0.0055 0.0057 0.1590 0.1590
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0021 0.0001 0.0014 0.0015 0.0103 0.0030
StdDev 0.0044 0.0004 0.0015 0.0017 0.0372 0.0166

Mn

Max 562.0000 415.0000 490.0000 830.0000 325.0000 830.0000
Min 0.1910 0.1000 0.2000 0.0000 0.1000 0.0000

Mean 98.1132 72.0928 164.5378 187.4125 115.9472 128.3652
StdDev 203.6324 131.9233 189.1197 252.4662 121.7922 184.3860

Cd

Max 0.0006 0.0024 0.0009 0.0007 0.0009 0.0024
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0002 0.0003 0.0004 0.0003 0.0003 0.0003
StdDev 0.0002 0.0006 0.0003 0.0003 0.0003 0.0003

Fe

Max 580.0000 160.0000 320.0000 540.0000 55.0000 580.0000
Min 0.5000 0.0000 0.0460 0.1000 0.2000 0.0000

Mean 61.7444 22.5959 23.3658 42.1406 6.6250 29.8712
StdDev 153.3979 46.0680 67.7370 133.2024 14.1562 93.2930

Ba

Max 0.6680 0.9090 1.1176 0.5436 0.5375 1.1176
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.1005 0.1382 0.1477 0.1420 0.0796 0.1232
StdDev 0.1564 0.2563 0.2279 0.1715 0.1305 0.1958

Se

Max 0.0018 0.0018 0.0041 0.0130 0.0080 0.0130
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0004 0.0002 0.0015 0.0031 0.0022 0.0014
StdDev 0.0007 0.0006 0.0012 0.0041 0.0025 0.0024

Cr

Max 0.0024 0.0024 0.0038 0.0082 0.0033 0.0082
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0005 0.0003 0.0016 0.0018 0.0016 0.0012
StdDev 0.0010 0.0008 0.0013 0.0021 0.0013 0.0014

Note: Bangkok aquifer (BKK, 0–50 m depth), Phra Pradaeng aquifer (PPD, 51–100 m depth), Nakhon Luang
aquifer (NKL, 101–150 m depth), Nonthaburi aquifer (NTB, 151–200 m depth), and Sam Khok aquifer (SK,
201–350 m depth).
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