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Abstract: In December 2013, a portion of a large and deep ancient landslide on the southern slope of
the Montescaglioso town (Basilicata, Southern Italy) was abruptly reactivated, as a consequence of
exceptional rainfall events, causing relevant damages to structures and infrastructures. The sliding
surface is supposed to be located within a thick deposit of Pleistocene stiff clays overlain by dislocated
blocks of calcarenites and cemented conglomerates. This paper discusses the research carried out
to investigate the failure mechanism that occurred during the landslide event and the factors that
controlled the reactivation. To this purpose, geological and geomorphological analyses were first
proposed, followed by a back-analysis of the landslide process, performed via limit equilibrium
calculations implementing time-dependent pore water pressure distributions derived from transient
seepage finite element analyses. Furthermore, the overall landslide mechanism was investigated
through a three-dimensional finite element analysis, built using the monitoring campaign carried
out in the post-failure stage and calibrated according to the in situ failure mechanism evidence.
Both the limit equilibrium and finite element analyses provide results in good agreement with the
geomorphological evidence, further allowing us to recognize the effects of rainfall infiltration in the
increase of pore water pressure along the sliding surface and the variation of the stress–strain state
leading to failure occurrence.

Keywords: rainfall-triggered landslide; landslides; 2D–3D finite element analysis; landslide activity
monitoring; geomorphological analysis; geotechnical analysis

1. Introduction

The occasional reactivation of earth-slides in clay formations along pre-existing shear
bands, where critical state or residual strength is operative, can be characterized, in some
cases, by high displacement rates [1], and this still represents a challenging topic for
hazard assessment. The occasional renewal of earth-slide movements along pre-existing
shear bands at residual strength generally takes place with slow and relatively limited
displacements, due to the essentially non-brittle behavior of the slip surface [1–3]. However,
under some circumstances, abrupt and rapid occasional reactivations of earth-slides, with
large and rapid mass displacements, may occur over a very short period as a consequence
of a specific trigger. Several mechanisms potentially leading to large and rapid earth-slide
reactivations have been proposed [1,4], which include the following: rapid pore-pressure
increase at the slip surface, due to preferential seepage flows [5], water filling of tension
cracks, or rear scarps in the upper landslide area; breaking of pipelines crossing the slide
area; impedance of normal outflow of groundwater from the slope; stress changes due to
manmade excavation or natural erosion at the toe; rapid change in load distribution along
the shear surface; and internal brittleness within the landslide mass for compound and
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roto-translational slides. In particular, ref. [4] points out that considerable displacements
may occur as a consequence of the development of new portions of the failure surface in
the toe region on low-angle thrust shears or in those cases where the slide mass consists of
soil or rock with brittle stress–strain behavior (litho-relicts in particular). In such a context,
the whole failure mechanism, which involves the pre-existing sliding surface and the newly
formed brittle failure at the toe, may still have a degree of brittleness, possibly leading
to significant movements taking place in a relatively short time span. It follows that a
high level of hazard may arise from landslide processes where the aforementioned factors
play a role, bringing about severe damage to the interacting structures and potentially
threatening human lives which can be reduced by using predictive and early warning
tools [6–8]. On 3 December 2013, a large earth-slide occurred along the southern hillslope
of the Montescaglioso town (Basilicata, Southern Italy), causing significant damage to some
buildings and the interruption of relevant road infrastructure. The landslide activation took
place after about 52 h of high-intensity rainfalls, representing an exceptional rainfall event
for the specific area. The about 10 km2 landslide was characterized by large horizontal
and vertical displacement components (maximum horizontal displacement at the toe
approximately 20 m), which took place in a very short time (15 min). Due to the readiness
of inhabitants living in the buildings and of car drivers passing through the landslide area
at the time of failure, no injury or death was recorded. As described below in more detail,
the slip surface is supposed to be located within a thick deposit of stiff overconsolidated
clays, locally overlain by large blocks of calcarenites and cemented breccias, resulting from
ancient landslide processes. According to the geomorphological evidence and the historical
data, the landslide lies in a wider area affected in the past by large slope movements [9].
Thus, the examined phenomenon can be classified as an occasional reactivation along
a portion of pre-existing shear surfaces [1,10]. This was also confirmed by mapping of
the surface features produced by the landslide, carried out in the immediate days after
the event [11]. Pellicani et al. [12,13] presented an application of multi-temporal LiDAR
and UAV techniques to interpret the geomorphological and kinematical evolution of the
December 2013 Montescaglioso landslide. They highlighted the features of a progressive
failure, with a rigid translation in the lower part and subsequent retrogressive propagation.
Several applications of SAR interferometry techniques have been also performed on the
Montescaglioso landslide, due to the favorable conditions of the landslide geometry [14–18].
All of these works provide consistent results in terms of landslide kinematics. However,
the aforementioned papers do not focus on the landslide mechanism or on the factors that
have controlled the landslide reactivation.

The present paper proposes a back-analysis of the 2013 Montescaglioso landslide,
aimed at assessing the main triggering and aggravating factors that were responsible for
its high mobility. This is first pursued through a detailed analysis of the geomorpholog-
ical features of the case study, followed by a geotechnical characterization of involved
soils. Later on, a two-dimensional seepage finite element analysis is presented aimed at
exploring the transient seepage process that followed water infiltration from the ground
surface. Furthermore, a limit equilibrium analysis implementing the step-by-step pore
water pressure distributions varying with time, as result of the transient seepage analysis,
is discussed. The objective was to study the variation of the slope stability conditions
during the whole rainfall event. Finally, a three-dimensional stress–strain finite element
analysis investigated the overall failure mechanism in terms of the extent of the unstable
area, soil failure evolution within the slope, and strength mobilized along the shear surface.
The 3D model also allowed us to gain an insight into the overall landslide displacement
field, e.g., landslide directivity and areal distribution of displacement components, which
results in good agreement with the in situ landslide mobility, as reconstructed from ge-
omorphological evidence, Digital Terrain Model surveys, and satellite remote-sensing
analyses. Recently, three-dimensional finite element models have been increasingly used to
investigate the stress–strain evolution of slopes, thus providing insights in the landslide
behavior [19–22]. The study performed in this paper leads to advancements regarding
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the main factor considered responsible for the rapid reactivation of the landslide, i.e., the
rapid pore-pressure increases due to rainfall infiltration within the slope, even along the
slip surface. However, some other factors, such as the rupture of a large aqueduct pipeline
crossing the slide area, the long-term stress changes due to river erosion at the toe, and
the brittle activation of new portions of the failure surface at the scarp area and in the toe
region (both connected with a low-angle pre-existing shear surface), could have played
additional roles in the landslide reactivation, too.

2. The 2013 Montescaglioso Landslide
2.1. Features of the Landslide Reactivation

Between October 2013 and the beginning of December 2013, the area around the
Montescaglioso town (Matera province, Southern Italy) (Figure 1) was hit by two severe
rainfall events. The first (5–8 October, cumulative rainfall was 246 mm, and mean rainfall
intensity was 3.6 mm/h) affected a large area between Apulia and Basilicata, causing
several landslides and floods, four casualties, and huge economic damages. Two months
later, another rainfall event (30 November–3 December, cumulative rainfall was 151.6 mm,
and duration was 56 h), hit the same area and triggered a large earth-slide on December
3 along the southern hillslope of the town [11,14]. Taking into account the pluviometric
regime of the area, characterized yearly by a value of 570 mm, this second event corresponds
to 27% of the average annual rainfall and 81% of the maximum monthly rainfall.
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Figure 1. Aerial view of the Montescaglioso area (location in the inset) and its SW hillslope, with the 
landslide area in orange and locations of the Cinque Bocche and Capo Jazzo streams. In green are Figure 1. Aerial view of the Montescaglioso area (location in the inset) and its SW hillslope, with the

landslide area in orange and locations of the Cinque Bocche and Capo Jazzo streams. In green are the
locations of the boreholes performed throughout the area during several campaigns, and in yellow
are the locations of the boreholes drilled after the landslide event and equipped with inclinometers
(S2, S6, S8).
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The landslide initiation and evolution were reconstructed based on the information
collected from direct witnesses: it started at ca. 13.00 CET on 3 December, quickly exhaust-
ing its most intense phase and immediately causing the destruction of a 500 m stretch of
the freeway connecting Montescaglioso to Province Road SP175 (Figure 2).
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Later on, the movement involved the lower-left flank of the landslide, resulting in
the formation of a swarm of scarps and counterscarps (Figure 2), several tens of meters
in length, and creating a series of trenches with a maximum depth of seven to eight
meters [11,23]. The whole surface of the landslide area (about 5 × 105 m2) directly affected
some private houses and warehouses, which were subjected to rigid body translation for
few meters downslope and tilting, while a grocery store located in the crown area collapsed
(Figure 3). Luckily, no direct damage to people was recorded, despite the rapid activation
of the landslide, since the evolution and the consequent deformation of the buildings were
relatively slow, allowing the inhabitants to avoid fatal consequences.
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2.2. Geological and Geomorphological Features

The Montescaglioso village is located at the top of a hill, at about 350 m a.s.l., in the
final reach of the Bradano river alluvial plain. The hill is bounded by steep slopes that are
affected by the widespread development of landslides of different typologies, showing a
variable state of [9,14,23], indicating that the area is highly prone to mass movements. The
landslide area is located just below the urban area and the cemetery, between the Cinque
Bocche and Fosso di Capo Jazzo streams (Figure 1).

The geological setting is characterized by sediments of the Bradanic Trough, which
represents the foredeep where the Apulian foreland subsidies under the Southern Apen-
nines [15]. The Lower–Middle Pleistocene sediments [17,24] are represented by a regressive
sequence, locally covered along the slope interested by the 2013 landslide by fluvial con-
glomerates. In detail, Sub-Apennine Clays crop out in the area, delimited at the top by the
Montemarano sands and the Irsina conglomerates [25–30]. The overall sequence of clays,
sands, and conglomerate crops out at the upper hillslope, while the clays are interbedded
by sandy/arenaceous layers in the middle lower portion [23]. Along the slope, where
erosion processes are widespread, chaotic large blocks related to ancient gravitational
phenomena are common [15]. The general structural setting of the area is characterized
by tectonic lineaments with NW-SE and SW-NE orientations, which play a fundamental
role in the development of the fluvial network at the regional scale. Based on borehole
stratigraphies, a geological longitudinal section was reconstructed (Figure 4), and a fault
system was recognized in the crown area.
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As concerns the hydraulic conditions, two different types of groundwater circulation
were found along the slope: a superficial regime affecting the debris shallow layer (between
2 and 6 m from the ground surface) and a deep groundwater regime affecting the lower
clays [23].

Pre- and post-event orthophotos and LIDAR data were used by several authors to
analyze the ground surface deformation associated with landslide reactivation [13,14,17,23].
The comparison between pre- and post-event Digital Terrain Models (DTMs) highlighted
a strong horizontal N–S component in the landslide movement, along with a general
lowering of the ground surface within its middle–upper portion, as well as an uplift of a
few meters at the landslide toe.

The data derived from the inclinometer readings showed a remarkably low—about
negligible—progression of the movement in the post-failure stage, as discussed in detail
later on. In particular, very small shear displacements were measured at about 50 m depth
in the toe area and at 10–20 m depth near the main landslide scarp. These inclinometer
deformations were interpreted as representative of weakness zones and, as such, of the
shear band.
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3. Geotechnical Parameters of the Soils

The clays lying at depth in the examined slope belong to the Sub-Apennine Clays
Formation [27], which has been deeply investigated in the geotechnical literature [31–35].

Amanti et al. [23] have presented the results of detailed geotechnical investigations
carried out on clay samples taken from the landslide area during post-event field surveys.
In particular, samples were collected both from block sampling in the shallowest layers of
the crown area and from boreholes drilled to depths varying from 25 m to 66 m. Based
on these laboratory tests, the physical and mechanical properties of involved soils are
fairly homogeneous, with rather limited variability in depth. The grain size distribution
of clay samples is fairly homogeneous, mainly consisting of silty and sandy clays, with
clay fraction varying from 38 to 55%. The plasticity index ranges between 22 and 41%.
These being typical values also for clays from different areas but belonging to the same
formation [32–34]. Based on the Casagrande chart, the soils can be classified as character-
ized by medium to high plasticity and low activity. The average natural unit weight is
20 kN/m3, whereas the natural water content is about 20%. Based on the results of oe-
dometer tests, the clays can be classified as overconsolidated, with OCR ranging between
1.7 and 7.4. Direct-shear tests have indicated cohesion values at peak ranging between 20
and 40 kPa, with friction angles in the range of 19–30◦. Whereas consolidated/undrained
triaxial tests have shown an average value of the peak cohesion equal to 30 kPa and a
friction angle of 28◦, the latter being higher than the values generally found for the same
formation. Such a discrepancy is supposed to be related to the possible higher sand compo-
nent of the samples used for the shear tests. The residual friction angle has been estimated
through ring shear tests and results to be in a range lower than the minimum value of the
aforementioned range of the peak friction angle [23].

For Sub-Apennine Clays outcropping at other sites, Cafaro and Cotecchia (2001) [32]
and Lollino et al. (2005) [33] found a plasticity index in the range of 25–33%, a liquid limit
between 50 and 60 %, and a permeability coefficient in the range from 3 to 6 × 10−11 m/s.
At other sites in the northern Apulian Foreland, [34] indicate plasticity index values in the
range of 22–28%, void ratio in the range of 0.5–0.6, as well as a cohesion value equal to
30 kPa, and friction angle of 22◦, based on consolidated/undrained triaxial tests. In this
case, the permeability coefficient is found to be about 7 × 10−11 m/s. Similar values were
found by Di Maio and Vassallo [35] for Sub-Apennine Clays outcropping in a landslide
area close to Montescaglioso.

Based on the large dataset available on the geotechnical characterization of the clay
formation, and specifically on the deposits cropping out in the landslide area, the hydraulic
and mechanical properties, summarized in Table 1, have been chosen as representative of
the clay behavior. From a geotechnical point of view, the weathered clay and unweathered
clay layers were unified into a single geo-lithotechnical layer, given the equality of physical
and mechanical parameters.

Table 1. Soil hydraulic and mechanical parameters adopted in the seepage FEM and LE analyses.

Layer

Seepage FEM LE

γsat
(kN/m3)

ksat
(m/s)

C′

(kPa)
φ′r
(◦)

Conglomerates with sand intercalation 18 4 × 10−6 0 25

Weathered clay 19.5 4 × 10−8 0 13

Unweathered clay 19.5 4 × 10−8 0 13

4. Hydrological Processes and Landslide Reactivation

A back-analysis of the December 2013 landslide reactivation was performed through
the limit equilibrium method calculations implementing time-dependent pore water pres-
sure distributions derived from transient-seepage finite-element analyses. The aim was
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to investigate the influence of rainfall infiltration and pore water pressure variations on
the change in stability factor during the rainfall event. The limit equilibrium analyses
were performed by using SLOPE/W [36], adopting the Morgenstern and Price (1965)
method [37]. Transient finite element analyses were carried out with SEEP/W [36] to define
the time-varying pore water pressure distributions resulting from the rainfall infiltration
process within the slope to implement in the LEM analyses.

The stratigraphic scheme adopted for the calculation was assumed according to the
geological longitudinal section shown in Figure 4. Figure 5 shows the finite element mesh
adopted for the seepage analysis. The geometry of the sliding surface was assumed to be
in accordance with in situ geomorphological evidence [11], as well as with borehole and
inclinometer data. In particular, the assumed sliding surface delimits a roto-translational
landslide body, with the scarp approximately at an elevation of 200 m a.s.l. and the depth
of the failure surface increasing downslope (between 10 and 20 m from g.l. in the upper
part of the landslide to 50 m depth just above the toe). The location of the landslide toe
was assumed according to the geomorphological evidence. It turns out that most of the
landslide surface (namely its middle and lower portions) involves the clay substratum,
with only limited parts (in the scarp area and at the toe) passing through the conglomerates.
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Figure 5. Above, the plot of the rainfall intensity with time during the event that triggered the 2013
Montescaglioso landslide. Below, the seepage domain adopted for the SEEP/W transient analysis:
discretization mesh and boundary conditions. The failure surface of the landslide is also reported,
along with the location of the control nodes (1–4) used to follow the variation of the pore water
pressures with time (see text for further details).

In the seepage analysis, a slope steady-state groundwater regime, representative of the
ordinary hydraulic conditions in the slope, consistent with a water table at depth of about
10 m from the ground surface (Figure 5), was assumed to be the initial pore water pressure
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distribution. This is in accordance with the available well and open-pipe piezometer data.
Then, a transient seepage analysis was simulated by assuming the event rainfall history
as boundary condition along the slope surface, as shown in Figure 5. The permeability
saturated coefficients of the different strata were prescribed according to the literature data
available for the Sub-Apennine Clays [33,34]. In particular, the coefficient of permeability,
ksat, for the lower unweathered grey was assumed to be equal to 4 × 10−8 m/s, whereas it
was set at equal to slightly larger values for the upper layers in order to account for the
weathering effects and the higher sand component (Table 1). As concerns the partially
saturated soils above the water table, a coefficient of permeability constant with suction was
assumed for the upstream layers’ soils, whereas a variation of the unsaturated coefficient
of permeability with suction was taken into account for the other layers. For the latter, the
variation of the volumetric water content with suction (soil–water characteristic curve) was
estimated based on the grain size curve, according to the method suggested by Arya and
Paris [38]; the law of variation of the unsaturated hydraulic conductivity with respect to
suction was defined following Green and Corey [39].

An impervious boundary was assigned at the bottom of the mesh, whereas the actual
rainfall intensity of the event, as reported in the sketch in Figure 5, was prescribed along
the slope profile. A constant total head was assumed along both right and left boundaries
of the seepage domain: in particular, at the right boundary, the value of the hydraulic head
was set equal to the elevation of the water course at the toe of the slope, whereas it was
imposed at 15 m depth below the ground level along the left boundary to comply with in
situ measurements.

The results of the transient seepage analysis are reported in Figure 6 in terms of the
variations of piezometric head calculated against time for four nodes of the mesh along
the sliding surface (see points 1–4 in Figure 5), along with the variation of the cumulated
rainfall with time.
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The plots show that, in the first stage of rainfall infiltration (the first ten hours), the
piezometric head values in the shallower nodes located within the conglomerates (Nos. 1
and 4) increase with rates higher than the nodes located at depth in the clay substratum
(Nos. 2 and 3). Later on, Nodes 1 and 4 tend toward a steady increase of piezometric heads,
whereas Node 2 is characterized by a larger increase of piezometric heads as an effect
of the significant rainfall height cumulated during the 15–30 h time interval. The effect
of such strong rainfall intensity in this latter time interval is also observed for all nodes
in terms of a slightly delayed increase of piezometric heads calculated in the following
hours. The overall variations of piezometric heads are in the order of 5–7 m, reaching the
maximum value of 7 m at the toe of the slope (Node 4). In the same plots, the curves of
piezometric heads obtained by assuming a constant average intensity for the whole rainfall
time duration are reported for comparison. A slight difference is observed only in the last
stage of the rainfall term.

The pore water pressure distributions obtained from the transient seepage analy-
ses were then implemented in a time-dependent limit equilibrium analysis to assess the
variation of the stability conditions of the landslide body during the event (Figure 7).
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Since the latter can be interpreted as a partial reactivation along a pre-existing sliding
surface (see Section 1), the shear strength values adopted for the back-analysis of the clay
layer were those at the residual (see Table 1). The whole set of material parameters adopted
for the different layers is reported in Table 1, and the results are shown in Figure 8 in terms
of the variation of safety factor values against time, along with the variation of cumulated
rainfall height. The results of the time-dependent limit equilibrium analyses indicate that
the safety factor starts from an initial value of 1.17, meaning quite stable conditions, and
then reaches about unity at the end of the rainfall history after 56 h. A clear increase in
the FS variation rate is observed after 25–30 h from the beginning of the rainfall event as a
consequence of the strong increment of cumulated rainfall. It is interesting to note that the
FS continues to decrease even after the accumulated rainfall reaches a plateau.

These results can provide a reasonable explanation for the landslide triggering, taking
into account the permeability values for the soil materials assumed in the seepage analysis.
Therefore, in this study, no effect of preferential seepage flows, water filling of tension
cracks, or rear scarps in the crown area, as well as the potential effect of the rupture of the
pipeline passing across the landslide body, was accounted for.
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5. Three-Dimensional Finite Element Analysis

The evolution of the stress–strain state in the examined slope leading to the 2013
December landslide reactivation and the resulting displacement field were investigated
also by means of a three-dimensional finite element analysis performed with PLAXIS-3D
code [40].

In this analysis, the effects of a prescribed increase in the groundwater level, assumed
in accordance with the results of the seepage analysis, on the reactivation of the landslide
body were simulated. The 3D analysis was carried out using standard soil constitutive
laws and taking into account the results of the geotechnical characterization of the soil
materials described above. For the sake of simplicity, in this model, only two materials,
i.e., sandy conglomerates and clays, were considered: therefore, the loose sand debris was
included in the sandy conglomerates, while all clays were included in a single clay layer.
A linear elastic perfectly plastic model with a Mohr–Coulomb strength criterion and a
non-associated flow rule (ψ = 0◦) was assumed for such materials, considering c′ = 100 kPa
and φ′ = 28◦ as representative shear strength parameters for the conglomerates and
c′ = 10 kPa and φ′ = 20◦ for the intact clays. Moreover, a pre-imposed planar layer was
included in the clays to simulate the geometry of the assumed pre-existing shear band,
for which strength parameter values corresponding to residual conditions (i.e., c′ = 0 and
φ′ = 12◦) were prescribed. The whole set of mechanical and hydraulic parameters used in
the numerical simulation is reported in Table 2. From the Digital Elevation Model (DEM)
in Figure 9, the 3D FEM model was built considering 85,222 tetrahedral elements. The
mesh is coarser at the bottom and finer in the upper part of the domain. Two different pore
pressure distributions were assigned in the simulations: (i) initial steady-state non-critical
conditions; and (ii) post-rainfall critical conditions, i.e., corresponding to a water table very
close to the ground surface.
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Table 2. Soil hydraulic and mechanical parameters adopted in the stress–strain FEM analyses.

Layer γsat
(kN/m3)

E′

(MPa) ν
c′

(kPa)
φ′

(◦)
ksat

(m/s)

Conglomerates 18 500 × 103 0.3 100 28 4 × 10−6

Intact clay 19.5 150 × 103 0.25 10 20 4 × 10−8

Shear band 19.5 150 × 103 0.25 0 12 4 × 10−8
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To simulate the pore pressure distribution representative of non-critical steady-state
conditions, an impermeable boundary was assigned to the bottom of the mesh, whereas
constant values of the groundwater head were prescribed along its vertical boundaries.
Pore pressures equal to zero were imposed on the nodes corresponding to the stream at
the toe of the slope, while free draining conditions were prescribed to the nodes at the
ground surface. The resulting water table is approximately 10 m below ground level,
except for the upper hillslope, where it reaches a depth of about 15 m. This steady-state
water table is approximately consistent with the field data acquired in the slope during the
post-event monitoring activity, which should also correspond to the pre-event water table
conditions. The post-rainfall critical pore water pressure distribution was, instead, obtained
by significantly increasing the hydraulic head value applied at the left-hand boundary,
e.g., the top of the slope, in order to achieve a water table in agreement with that resulting
from the transient seepage analysis (Section 4). The initial stress state in the slope was
obtained by simulating a gravity loading procedure [41]. The stages of the analysis have
progressively included the initial stress state assignment, the activation of the pre-existing
shear band, and then the implementation of the critical pore water pressure distribution to
simulate the effects of the rainfall event.

Under the non-critical steady-state pore-pressure regime and after the activation of
the shear band, which means assuming residual parameters for the same layer, the slope
became stable. Later on, the increment of pore water pressures within the slope, associated
with post-rainfall critical condition, was simulated, and slope-instability conditions were
found (also indicated by lack of numerical convergence) as a result of the concentration of
plastic shear straining approximately in the portion of the shear band where the landslide
area actually developed. In particular, the slope-failure mechanism seems to develop at the
lower slope and then propagate according to a retrogressive mechanism. The calculated 3D
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displacement field is shown in Figure 10 in terms of the contours of horizontal displace-
ment component along the y-axis and indicates that the largest horizontal displacement
components are oriented along the y-axis and concentrate in the lower portion of the slope
(orange and yellow zones), with values progressively lower in the upper slope.
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This is in good agreement with the observed in situ failure mechanism and, in particu-
lar, with the direction of the larger horizontal displacement (N–S direction), as well as with
the retrogressive evolution of the landslide process, as reconstructed by means of remote
sensing and interferometry techniques [13–17,23]. Figure 11 reports the in situ vertical and
horizontal displacement maps to highlight one of the aforementioned displacement fields,
as reconstructed by Amanti et al. [23].
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Actually, a significant uplift of the stream bed was measured in situ after the landslide
reactivation, along with settlements of the ground surface in the uppermost sectors of the
landslide area [14,15,17,23]. A longitudinal section of the deviatoric strain activated at
failure can be seen in Figure 12. This shear straining is concentrated along the pre-imposed
shear band and connects with the toe of the slope and the landslide crown through new
shear zones, crossing areas not affected by previous straining.
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6. Post-Failure Landslide Activity Monitoring

A topographic network consisting of a Robotized Total Station (RTS) and optical
targets was installed to monitor the area of interest in the 2013 landslide, as well as to
identify urban areas potentially affected by retrogressive landslide activities (Figure 13).
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The RTS was set on a private terrace southeast of the town, with a view over the 
whole landslide and the lower part of Montescaglioso. In order to ensure the maximum 
measurement effectiveness, three fixed points (REF1, REF2, and REF3) were also installed 
in stable areas (cemetery, municipal auditorium, and sector behind the total station), so 
that accuracy of 1 cm in the planimetric and altimetric components was reached. The 
measured cumulated displacements are close to zero throughout the monitored area, even 
in the portion where large displacements occurred in 2013 (Figures 13 and 14). 

Figure 13. Aerial view of the landslide area with the location of the topographic targets (white circles
1−23), the Robotized Total Station (RTS white square), and the inclinometers (S2, S6, S8 red triangles).
The landslide limit is shown in the pale blue color. The fixed point is shown with white triangles
(REF1, REF2, and REF3).

The RTS was set on a private terrace southeast of the town, with a view over the
whole landslide and the lower part of Montescaglioso. In order to ensure the maximum
measurement effectiveness, three fixed points (REF1, REF2, and REF3) were also installed
in stable areas (cemetery, municipal auditorium, and sector behind the total station), so that
accuracy of 1 cm in the planimetric and altimetric components was reached. The measured
cumulated displacements are close to zero throughout the monitored area, even in the
portion where large displacements occurred in 2013 (Figures 13 and 14).
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the upslope area (lower graphs): (a) horizontal component and (b) vertical component.

A post-failure inclinometer monitoring was also carried out within S2, S6, and S8
boreholes (Figure 1). The readings (Figure 15) indicate cumulated displacements that are
generally below the accuracy level recognized for such instruments, also with a trend
that does not suggest an evolution towards instability. Nonetheless, the inclinometer
profiles show some clear bending at specific depths (51 m at S6, and 23 m at S8) that could
correspond to the depth of the weakness zone or the shear band.
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7. Concluding Remarks

The present paper discussed a detailed study of the December 2013 Montescaglioso
landslide reactivation, which was triggered by an exceptional rainfall event and caused
severe damage to structures and roads. This work aimed at interpreting the main triggering
and aggravating factors that were responsible for the landslide instability and the high mo-
bility of the slide mass. A detailed post-failure geomorphological analysis, an interpretation
of a large geotechnical dataset on the soils involved, a time-dependent limit equilibrium
analysis implementing the results of 2D transient seepage finite element analysis, and a 3D
stress–strain finite element analysis were performed.

The limit equilibrium analysis provided useful indications on the variation of the slope
safety factor during the rainfall event, whereas the transient seepage analysis allowed for
the identification of a significant increase in pore water pressures induced by the rainfall
even at large depths, i.e., where the shear band is supposed. According to the seepage
analysis results, this phenomenon could be related to the high permeability of the materials
overlying the clays, thus allowing for rapid infiltration of water at depth. The 3D numerical
model allowed us to investigate the overall failure mechanism in terms of the extent of
the unstable area, the evolution of the slope failure, and the soil strength mobilized along
the shear band. Furthermore, it gave us an insight into the main landslide movement
directivity and the areal distribution of displacement components; the latter resulted in a
good agreement with the in situ landslide mobility, as reconstructed from geomorphological
mapping, DTM surveys, and satellite interferometry analyses. Both analyses confirm that
the mobilized strength of the soil is close to the residual value, and the failure process can
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be described as a reactivation of a portion of a pre-existing landslide shear band located in
the deep clay layer.

On the basis of all analyses, the main factor that might be responsible for the rapid
reactivation has to be found in the rapid increase of pore water pressures following the
infiltration of the exceptionally large amount of rainfall. It has to be mentioned that other
factors that were not investigated in the present work could have potentially played some
roles in the landslide triggering and the consequent unexpectedly high displacement rate:
among these, the breaking of an aqueduct pipeline crossing longitudinally the slide area,
the rapid infiltration of runoff water within vertical fractures, and the brittleness associated
with the development of new portions of the failure surface at the scarp area and in the
toe region.
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