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Abstract: The well-documented decrease in the annual minimum Arctic sea ice extent over the past
few decades is an alarming indicator of current climate change. However, much less is known
about the thickness of the Arctic sea ice. Developing accurate forecasting models is critical to better
predict its changes and monitor the impacts of global warming on the total Arctic sea ice volume
(SIV). Significant improvements in forecasting performance are possible with the advances in signal
processing and deep learning. Accordingly, here, we set out to utilize the recent advances in machine
learning to develop non-physics-based techniques for forecasting the sea ice volume with low
computational costs. In particular, this paper aims to provide a step-wise decision process required to
develop a more accurate forecasting model over short- and mid-term horizons. This work integrates
variational mode decomposition (VMD) and bidirectional long short-term memory (BiLSTM) for
multi-input multi-output pan-Arctic SIV forecasting. Different experiments are conducted to identify
the impact of several aspects, including multivariate inputs, signal decomposition, and deep learning,
on forecasting performance. The empirical results indicate that (i) the proposed hybrid model is
consistently effective in time-series processing and forecasting, with average improvements of up to
60% compared with the case of no decomposition and over 40% compared with other deep learning
models in both forecasting horizons and seasons; (ii) the optimization of the VMD level is essential for
optimal performance; and (iii) the use of the proposed technique with a divide-and-conquer strategy
demonstrates superior forecasting performance.

Keywords: pan-Arctic sea ice volume forecasting; multi-horizon forecasting; time-series forecasting;
short-term forecasting; mid-term forecasting; deep learning

1. Introduction

Current global climate models predict a continuing increase in global air tempera-
tures [1]. Ongoing and impending climate change is predicted to affect the whole climate
system, including ocean temperatures, ocean currents, and sea ice extent and thickness [2].
The Arctic ice pack is especially critical to the climate system, as the shrinking sea ice
includes a feedback mechanism to further enhance warming. Instead of the snow-covered
sea ice reflecting the solar radiation back into the atmosphere and space, the open ocean
absorbs a large fraction of the insolation, thus leading to further warming and accelerated
ice melting.

The ice thickness, in addition to the aerial extent of the sea ice, is important for
the longevity of the ice itself and general shipping and emerging economic activities in
the Arctic. While the aerial extent of the sea ice is routinely observed by polar-orbiting

Geosciences 2023, 13, 370. https://doi.org/10.3390/geosciences13120370 https://www.mdpi.com/journal/geosciences

https://doi.org/10.3390/geosciences13120370
https://doi.org/10.3390/geosciences13120370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0002-3221-2353
https://orcid.org/0000-0003-1550-5098
https://orcid.org/0000-0002-6014-8942
https://orcid.org/0000-0003-1000-8324
https://doi.org/10.3390/geosciences13120370
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences13120370?type=check_update&version=1


Geosciences 2023, 13, 370 2 of 25

satellites (e.g., NASA’s Aqua and Terra satellites and the European Space Agency’s CryoSat-
2 satellite), the thickness of the sea ice is much more challenging to determine on a pan-
Arctic scale and with reasonable frequency (i.e., daily, weekly). The spatial heterogeneity
of the pan-Arctic ice thickness is further complicated by the age of the ice. First-year
ice is thin, whereas multiyear ice is thicker as it has had more time to build up. In the
Arctic Ocean, multiyear ice is preferentially collected in the Beaufort Gyre, located off the
north-facing Arctic coasts of Alaska and Canada. This has led to a generally increasing sea
ice thickness profile across the Arctic Ocean from the East Siberian Sea (thin) to the Beaufort
Sea (thick). In combination, this results in a complex system where the sea ice thickness is
controlled by its age, the wind- and current-driven movement of the ice pack, and seasonal
freezing and thawing (see Figure 1) [3]. The best thickness data have come from rare
submarine transits under the Arctic ice pack. Physics-based sea ice modeling has been the
most common means of obtaining sea ice thickness estimates. More recently, data-driven
techniques have been successfully employed in sea ice modeling. A recent research study
[4] showed that a deep learning probabilistic model outperformed the latest dynamical
model in forecasting the summer sea ice extent. Similarly, a model based on convolutional
neural networks [5] surpassed the predictive capability of the leading thermodynamic-
dynamical model in predicting the sea ice horizontal movement. Moreover, functional data
analysis approaches [6], as demonstrated in [7,8], have also been employed to understand
sea ice melting patterns. However, the sea ice thickness is challenging to model due to
the inherent lack of routine field or remote sensing observations. Nevertheless, the recent
results in [9] showed that a statistical two-stage model generating probabilistic forecasts
of Arctic sea ice thickness three months into the future met or exceeded the currently
available forecasts. Accordingly, we explore the best approaches and the capability of
AI-based models to forecast sea ice volume (SIV) time series. Given the relatively direct
links between insolation, air temperature, ice melting, and ocean currents, there is a high
likelihood that a multivariable correlative model based on historical atmospheric data can
be used for ice volume forecasting with relatively minor computational costs.

Figure 1. Maxima and minima estimates of the sea ice thickness in the Northern Hemisphere
averaged over a 5-year period from 2019 to 2023, derived from the ESA CryoSat-2 Synthetic Aperture
Interferometric Radar Altimeter [10].

To achieve these goals, in this paper, we explore the underlying relations between
historical atmospheric variables and related sea ice thickness observations in order to build
a correlative forecast model for sea ice thickness. In particular, we study various related
aspects such as the types and number of inputs (e.g., single or multivariate forecasting),
outputs (i.e., single-horizon, multi-horizon), and forecasting models (e.g., machine learning).
As a proof of concept, we focus on short-term (i.e., next seven days) to mid-term (i.e., next
30 days) horizons. However, we envision that this step-wise decision process can be used
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as a roadmap in the future to investigate signal-processing and deep learning techniques
and develop accurate forecasting techniques over longer forecasting horizons (e.g., next six
months, next year) using inputs and outputs reflecting other granularities (e.g., weekly)
and lengths.

1.1. Background of Time-Series Forecasting

Multivariate forecasting involves using both historical and non-targeted variables for
predictions, the latter offering supplementary information to enhance forecast accuracy [11].

Multi-horizon forecasting, in contrast to single-horizon forecasting, aims to predict a
phenomenon’s future state at multiple time steps simultaneously (see Figure 2). Thus, it
provides a timely and efficient approach to decision making in real-world problems, such
as Arctic sea ice volume predictions for ship navigation safety [12].

Future values?

tt−1 t+1t−2 t+2t−3 t+3t−4 t+4t−5 t+5t−6 t+6t−7 t+7t−8t−29

Amplitude

Time

Figure 2. Conceptual representation of multi–horizon forecasting, where the aim is to predict a
phenomenon’s state in multiple future time instances (e.g., seven steps ahead).

There are three main strategies in multi-horizon forecasting [13]. An iterative method
uses a single model repeatedly for multiple predictions, but it risks accumulating errors. A
direct approach uses multiple models for each horizon, avoiding error accumulation but at
a higher computational cost. Both methods, however, may produce biased forecasts due to
the omission of complex stochastic dependencies between past and future values [14,15].
The third strategy, called multi-input multi-output forecasting, simultaneously forecasts
all horizons with a single model, reducing computational costs. However, this approach
adds complexity, as it needs to account for various time scales, dependencies, and potential
interactions between inputs and outputs [16].

1.2. Related Works

In the literature, time-series forecasting has been traditionally addressed using two
distinct methods: statistical models and conventional machine learning techniques. Statisti-
cal methods include exponential smoothing [17], autoregressive integrated moving average
(ARIMA) [18], and their variations (e.g., seasonal ARIMA [19]). Although these models
have been extensively used in the literature, they are usually employed for univariate
forecasting of linear time series [20]. On the other hand, conventional machine learning
techniques have proven effective in handling non-linear and non-stationary data in the
literature. Such techniques include support vector regression (SVR) [21], gradient-boosting
decision tree (GBDT) [22], and random forest [23]. They are generally computationally
efficient and can offer high performance using limited training data. However, they usu-
ally require manual feature engineering and can struggle to learn intricate patterns from
complex time series.

Recently, the development of deeper machine learning models has proved beneficial
in learning from large and complex time-series datasets. Particularly, deep neural networks
have become increasingly popular for multi-horizon forecasting thanks to their significant
performance improvements over conventional forecasting techniques [24,25]. For instance,
the authors of [26] proposed a hybrid model integrating deep belief networks with a state-
dependent autoregressive model for single-horizon forecasting of non-linear time series.
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In [27], the authors proposed a one-dimensional convolutional neural network (CNN) for
single-horizon time-series forecasting. However, recurrent neural networks have become
one of the most popular deep models for time-series forecasting thanks to their distinctive
recursive architecture. Long short-term memory (LSTM) and gated recurrent unit (GRU)
are variations of this type of network. For instance, the authors of [28] proposed a dual-
stage two-phase recurrent neural network model for long-term multivariate time-series
forecasting. In [29], the authors developed a CNN-LSTM model to forecast multi-step-
ahead short-term time series. In [30], the authors proposed the integration of a bidirectional
GRU (BiGRU) and the sparrow search algorithm for recursive multi-horizon forecasting.
However, sophisticated forecasting models are not sufficient to attain optimal forecasts.
This is especially the case with processes that are complex and volatile.

Recent research has underscored the potential of signal-decomposition techniques,
such as variational mode decomposition (VMD), in improving the performances of fore-
casting processes for different research problems [31–34]. Particularly, VMD can generate
relatively stationary K-decomposed sequences without suffering from issues such as modal
aliasing found with other techniques such as empirical mode decomposition (EMD), thereby
simplifying complex patterns in the initial time series and enabling the forecasting model to
produce more accurate forecasts. For instance, the authors of [31] developed a hybrid short-
term wind-speed forecasting technique consisting mainly of VMD, wavelet transform, and
a radial basis function neural network. The authors employed a VMD decomposition level
of K = 7 after implicit preliminary observations of the decomposition effects of different
decomposition levels to achieve improved forecasting performance. In [32], the authors
developed a hybrid short-term daily runoff forecasting technique using VMD (K = 8) and
deep learning. The results showcased the superiority of the proposed hybrid technique
over some of its variations. In [33], the authors proposed a hybrid VMD-BiGRU (K = 11)
for recursive short-term forecasting of natural rubber’s price. Both studies employed the
central frequency method [34,35] to determine the optimal decomposition level, K, and
avoid mode mixing.

1.3. Limitations and Contributions

The current literature holds major limitations. First of all, there is a general lack of
studies tackling the problem of pan-Arctic SIV forecasting, as most standard approaches rely
on physics-based numerical sea ice modeling, which can be limited in terms of complexity,
parameterization requirements, uncertainty in initial conditions and forcing data, limited
spatial resolution, and the scarcity of real-world observational data for validation purposes.

The second limitation relates to the incorporation of signal-decomposition techniques
in the forecasting process. In particular, although VMD-based techniques provide im-
provements to the overall performance of forecasting models, the related decomposition
level is usually selected arbitrarily or follows techniques that can limit modal mixing (e.g.,
central-frequency method). However, depending on the specific application and the nature
of the data used, this might not be the optimal solution. In particular, while modal mix-
ing can make the decomposition process more complex, it can also introduce additional
spatial or temporal correlations between different components. Hence, disregarding the
impact of different decomposition levels on the performance of the forecasting model can
limit its generalizability and robustness, especially when dealing with complex and highly
variable data.

The third limitation is that most studies investigate single-horizon forecasting, which
cannot provide a comprehensive overview of future trends, particularly in applications
that necessitate a broader perspective through forecasts over multiple future points. Fur-
thermore, among the studies that do implement a multi-horizon forecasting scheme, many
rely on recursive approaches that limit the accuracy and reliability of the forecasts.

This paper aims to address these issues, and its main contributions are as follows:

• A hybrid VMD-bidirectional LSTM (BiLSTM) technique is proposed for multi-horizon
multivariate forecasting of the pan-Arctic SIV. The use of VMD enables the extraction
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of spectral and temporal information reflecting various hidden patterns in the raw
volume sequences. On the other hand, the bidirectional structure of the deep learning
model can effectively process and learn from future and past instances within the
input sequence. The multi-horizon aspect reflects the technique’s ability to produce
predictions for several points in the future (i.e., lead times) rather than just the next
one. The multivariate aspect indicates its ability to process multiple input features, in
addition to past values of SIV, to generate its forecasts. Thus, the proposed forecasting
model can better learn and memorize the complex patterns and dependencies between
different features and over multiple time steps to provide accurate forecasts.

• The proposed technique is investigated in two aspects: one is related to the decompo-
sition technique and one to the implementation strategy. In particular, the impact of
multiple VMD decomposition levels on its performance is analyzed to identify the
optimal decomposition level for achieving the best results. The proposed technique is
further analyzed by investigating the performance of two strategies affecting the way
the decomposed inputs are handled within the learning process, namely “all-in-one”
and “divide & conquer”.

• Technical experiments are carried out using the pan-Arctic Sea Ice Ocean Modeling
and Assimilation System (PIOMAS) dataset, which reflects pan-Arctic SIV time series
spanning more than four decades. The performance of the proposed technique is
studied for short-term and mid-term forecasting horizons, with distinctions between
the fall/winter and spring/summer seasons. In addition, multiple benchmarks are
conducted under different inputs, conventional and deep forecasting models, and
decomposition techniques.

The remainder of this paper is organized as follows. Section 2 provides the mathe-
matical backgrounds of VMD and BiLSTM. Section 3 provides a preliminary exploratory
analysis of the used dataset. In Section 4, the main technical aspects employed in this
study are described, namely the proposed technique and the conducted experiments. The
performance of the proposed hybrid forecasting approach is reported in Section 5. The
results of the benchmarks, impact of the VMD decomposition level, and robustness check
are also reported and discussed in this section. Finally, Section 6 concludes this research.

2. Methods

In this section, the foundational theories and concepts that underpin this study are
described.

2.1. Variational Mode Decomposition

Signal-decomposition techniques are popularly employed in time-series processing
tasks such as removing noise and extracting time-frequency information. VMD is a mathe-
matically framed non-recursive decomposition technique. It can simultaneously decompose
the input time series into a discrete number of stationary and narrow-band sequences called
intrinsic mode functions (IMFs) [36]. The summation of all IMFs and the residual produces
the original signal.

Let {TS(t)}H
t=1 represent a certain non-stationary sequence of discrete values sampled

over time. The decomposition of this time series using VMD is as follows:

TS(t) =
K

∑
k=1

Fk(t) + r(t) (1)

where Fk(t) is the extracted kth IMF sequence, K is the chosen decomposition level, and
r(t) is the residual.

Based on [36], an IMF is an amplitude- and frequency-modulated signal expressed as:

Fk(t) = Ak(t) cos φk(t), Ak(t) ≥ 0 (2)
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where φk(t) is the phase and Ak(t) is the slowly changing envelope corresponding to the
kth IMF. It also has a non-decreasing instantaneous frequency that varies slowly and is
mostly compact around a center frequency, ωk.

The VMD algorithm performs several computations to find the K IMFs and their
corresponding central frequencies concurrently via an optimization technique called the
Alternate Direction Method of Multipliers (ADMM) [37]. According to the ADMM, VMD
can decompose the input TS(t) into K Fk and ωk using these equations [36]:

F
{

Fn+1
k

}
=
F{TS(ω)} −∑i 6=k F

{
Fn+1

i (ω)
}
+ F{λn(ω)}

2
1 + 2α(ω−ωn

k )
2 (3)

ωn+1
k =

∫ ∞
0 ω

∣∣F{Fn+1
k (ω)

}∣∣2dω∫ ∞
0

∣∣F{Fn+1
k (ω)

}∣∣2dω
(4)

where n is the number of iterations; λ is the Lagrangian multiplier; and F
{

Fn+1
k

}
, F{TS(ω)},

F{F(ω)}, and F{λn(ω)} correspond to the Fourier transform of Fn+1
k , TS(t), F(t), and

λn, respectively. The initial value of n and those of other parameters, λ1, F
{

F1
k
}

, and ω1
k ,

are set to 0.
This signal-decomposition technique can be distinguished from others by its decom-

position level K. If K is chosen at random, there may be issues associated with noise and
overlap, producing sub-optimal decompositions. It is, therefore, necessary to identify a
suitable K for the context of the task at hand.

2.2. Bidirectional LSTM

LSTM is a popular deep learning neural network that was first proposed back in
1997 [38]. It is a type of recurrent neural network that works as a composition of long- and
short-term memory to make future predictions. More specifically, LSTM networks provide
an efficient solution to the vanishing gradient problem, as they can retain long-term input
dependencies [39]. In addition, an LSTM cell can use or ignore the retained information
based on the assigned weights from its learning process. This decision is conducted using its
forget gate. These factors make LSTMs optimal in handling sequential data, outperforming
other deep learning models but usually at the expense of higher computational costs.

Let x = (x1, x2, ..., xT) represent an input sequence of T elements and ht represent
the LSTM memory at time t. Usually, this gate employs a sigmoid function σ to make the
decision ft at time t, as follows:

ft = σ(w fh
[ht−1], w fx [xt], b f ) (5)

Two other types of gates comprise this model. An input gate determines if the infor-
mation will be added to the memory. This gate consists of two layers: a sigmoid layer that
decides whether values are to be updated it, and a tanh layer that creates a new vector of
candidate values c̃t to be added to the memory, as follows:

it = σ(wih [ht−1], wix [xt], bi) (6)

c̃t = tanh(wch [ht−1], wcx [xt], bc) (7)

Memory can be updated with the vector ct as follows:

ct = ft ∗ ct−1 + it ∗ c̃t (8)

where ∗ is the element-wise multiplication and ct−1 is the vector of the old values.
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The output gate determines whether the value in the cell passes to the output using a
sigmoid layer ot, as follows:

ot = σ(woh [ht−1], wox [xt], bo) (9)

In addition, it maps the values within the range [−1, 1] using the tanh function ht, as
follows:

ht = ot ∗ tanh(ct) (10)

In all these equations, b f , bi, bc, and bo are the biases and w fh
, w fx , wih , wix , wch , wcx , woh ,

and wox are the weight matrices.
In this work, we use BiLSTMs (see Figure 3). Such a network was first proposed

in [40] using a standard recurrent cell. The LSTM cell’s neurons are divided into forward
and backward states in such a network. Following this, information from past and future
instances can be obtained as forward and backward hidden layers connected to the same
output. In comparison with other recurrent neural networks, the BiLSTM’s structure allows
it to take into account not only the preceding but also the succeeding context. This aspect
also makes it more robust to noise and hence able to make more accurate predictions. Such
capabilities make BiLSTMs especially well suited for processing and learning patterns
found in the input time series (e.g., SIV) to produce accurate forecasts.

xt−n

t

xt−1 xt

yt−n yt−1 yt

Backward layer

H
id

de
n 

la
ye

r 1

Output layer

Input layer

Forward layer

...

Figure 3. Architecture of the bidirectional LSTM network, incorporating two LSTMs: one processing
the data in a forward direction along the temporal dimension, and the other processing the data in a
backward direction. This allows the model to have access to both past (backward) and future (forward)
contexts simultaneously, enhancing its ability to capture long-term patterns in the sequence data.

3. Dataset Description

The PIOMAS dataset (The PIOMAS dataset can be accessed at the following link: https:
//psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data (accessed on
25 October 2023)) consists of a 12-category thickness and enthalpy distribution sea ice model
coupled with a parallel ocean program [41]. It is the product of the Polar Science Center
within the Applied Physics Laboratory at the University of Washington. It relies on the
daily sea ice concentration and sea surface temperature acquired from satellites to produce
several daily sea ice and ocean features. The ocean model is based on an enhanced Bryan–
Cox–Semtner ocean model. The sea ice model is a dynamic thermodynamic system that
relies on atmospheric forcing of surface winds and air temperature, humidity, downwelling
long- and short-wave radiative fluxes, precipitation, and evaporation [42]. This model
incorporates Thorndike thickness distribution theory and enthalpy distribution theory [43].
The PIOMAS dataset contains daily pan-Arctic sea ice thickness and volume data from 1979
onward (see Table 1 for more details). For the remainder of this study, we use the PIOMAS’
averaged pan-Arctic SIV time-series data. We assume that the retrieved time series is of

https://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data
https://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data
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sufficient quality, although previous studies in the literature have indicated some errors in
the PIOMAS dataset [43]. The corresponding training set chronologically covers 80% of the
data from 1 January 1979 to 17 October 2013, whereas the testing set covers 20% of the data
from 18 October 2013 to 30 June 2022.

Table 1. Basic details of the PIOMAS dataset [42]. Both pan-Arctic sea ice thickness and volume time
series do not have any missing values.

Dataset Resolution Time Range # Samples Features Units

PIOMAS Daily 1 January 1979–30 June 2022 15,876 pan-Arctic sea ice thickness m
pan-Arctic SIV km3

Table 2 summarizes some statistical properties of the pan-Arctic SIV time series for
daily, monthly, and yearly periods. Figure 4 showcases seasonal variations over similar time
frames. As can be seen, seasonal variations are present in the SIV data. When comparing the
SIV between the fall/winter and the spring/summer seasons, it is apparent that the average
standard deviation and dynamic range are significantly higher during the latter season. This
implies volume values that are more spread out and volatile during the spring/summer
season compared to the fall/winter season (as seen in Figure 4b). Two seasonal periods with
similar volume patterns can be distinguished: a spring/summer period that corresponds
to the thawing of ice (22 March–21 September), characterized by a decreasing volume,
and a winter period that corresponds to the icing of ice (22 September–21 March) with an
increasing volume. This observation suggests dividing the pan-Arctic SIV time series into
two seasonal subsets and developing a separate model for each. Such a division can help
the forecasting models better learn each season’s characteristics. In addition, daily time
series over a whole month all have a similar linear pattern (see Figure 4c). We note that the
latter days of the month (i.e., days 29, 30, and 31) have fewer instances in the time series
compared to the other days, hence the slight differences in the figure.

Although similar seasonal patterns are present throughout the time series, another
distinction can be made between the years (see Figure 4a). The effects of global warming can
be observed, with significant decreases in the volume values from one decade to another.
In particular, the lowest annually averaged pan-Arctic SIV was 12.863 km3 in 2017, whereas
the highest was 25.390 km3 in 1979. Hence, capturing these intra-monthly, monthly, and
yearly variations could improve forecasting performance.

Table 2. Descriptive statistics of the pan-Arctic SIV times series data from January 1979 to June
2022, with distinctions between the fall/winter and spring/summer seasons (all values are in km3).
Distinct seasonal SIV patterns, shown by notable variations in the ranges and standard averages
between seasons, may impact the forecasting models’ efficacy (highest values and largest ranges are
in bold).

Season Length
Daily Monthly Yearly

Avg. Std. Min–Max Avg. Std. Min–Max Avg. Std. Min–Max

Fall/winter 8819 18.2 6.7 3.6–32.7 17.9 6.8 3.7–32.0 18.3 3.7 12.3–24.3
Spring/summer 8400 19.4 7.9 3.6–33.0 20.1 7.8 3.7–32.9 19.4 4.0 12.8–25.9
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(b) Box plot of monthly averages.
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(c) Box plot of daily averages.

Figure 4. Seasonal cycles of pan-Arctic SIV from 1979 to 2021 over different time frames. The volume
patterns distinguish two seasonal periods: the spring/summer thawing period (from around April to
September) with decreasing volume, and the winter icing period (from around October to March)
with increasing volume.

4. Technical Implementation

This section focuses on the technical aspects of the study forecasting the pan-Arctic
SIV. The proposed hybrid forecasting technique is described first. Figure 5 showcases its
architecture. Then, three experiments are outlined that offer benchmarks and investigations
of the impact of different inputs, decomposition techniques, and deep learning models on
forecasting performance. The last subsection summarizes the benchmark models and how
their performance is assessed throughout this study.

4.1. Proposed Hybrid VMD-BiLSTM Model

Let {I(t)}L
t=1 denote an Arctic sea SIV sequence (of L samples) that can represent the ice

volume {V(t)}L
t=1. Multi-horizon forecasting of an SIV sequence, It−S+1|t =

{
I(t− S + 1), ...,

I(t)
}

, of S− 1 elements and a time index t, can be written as:

Ît+S|t+1 = f
(

It−S+1|t, ε
)

(11)

where Ît+S|t+1 is the forecasted SIV sequence over S-steps (i.e., horizons), f is the forecasting
model, S is the horizon, and ε is the error.

Two forecasting tasks are considered in this paper: forecasting Ît+S|t+1 over short-term
horizons (i.e., S = 7) and over mid-term horizons (i.e., S = 30). Raw volume daily time
series are processed to multivariate continuous sequences of 30 + S in length, where the
first 30 elements are historical values (i.e., inputs) and the S-elements are the targeted future
values (i.e., targets). Generally, two main types of sequences are extracted:

1. Pan-Arctic SIV sequences, Vt−S+1|t, to provide direct historical 30-day volume data
(i.e., a sequence of 30 elements).
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2. Time sequences to provide recurrent temporal and contextual information, comprising
the corresponding values for the day of the month, Dt−S+1|t =

{
D(t − S + 1), ...,

D(t)
}

, ranging from 1 to 31; the month, Mt−S+1|t =
{

M(t− S + 1), ..., M(t)
}

, ranging
from 1 to 12; and the year, Yt−S+1|t =

{
Y(t− S + 1), ..., Y(t)

}
, ranging from 1979 to

2022, all with the same granularity (i.e., three sequences of 30 elements each).
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Figure 5. A detailed overview of the proposed hybrid VMD-BiLSTM technique for multi-horizon
forecasting of the pan-Arctic SIV, detailing how data are preprocessed, transformed, fed to the BiLSTM
model, and then aggregated to generate the final forecasts.

The raw daily SIV time series are processed using a technique called a sliding window.
This involves moving a ‘window’ of a fixed size (i.e., 30 + S) along the time series to create
continuous sequences of data. This is carried out with a unit stride, meaning the window
moves one data point at a time. We repeat this process until the entire time series is covered,
resulting in a set of overlapping sequences.
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Table 3. Properties of the sets of input sequences of the SIV forecasting models. A decomposed SIV
input sequence using EMD (i.e., VEMD) has the same size as one using VMD (i.e., VVMD,k).

Horizon Season Input Size

Short-term Fall/winter Time 5936 × 3 × 37
V + Time 5936 × 4 × 37
VVMD,k + Time 5936 × 4 × 37

Spring/summer Time 6816 × 3 × 37
V + Time 6816 × 4 × 37
VVMD,k + Time 6816 × 4 × 37

Mid-term Fall/winter Time 4671 × 3 × 60
V + Time 4671 × 4 × 60
VVMD,k + Time 4671 × 4 × 60

Spring/summer Time 5804 × 3 × 60
V + Time 5804 × 4 × 60
VVMD,k + Time 5804 × 4 × 60

Next, time information sequences (i.e., day, month, year) are read from each input SIV
sequence. The resulting SIV and time datasets are chronologically split into training and
testing sets based on 80/20 ratios.

Within the proposed hybrid framework, a BiLSTM model with five layers was devel-
oped, containing an input layer, forward hidden layers, backward hidden layers, an output
layer, and a fully connected layer. For short-term horizons in spring/summer, the proposed
model has three hidden layers; in fall/winter, it has five hidden layers; and for mid-term
horizons, it has eight hidden layers in both seasons. The dimensions of the input and
target reflect the number of nodes in the input and output layers. The fully connected layer
outputs the corresponding multi-horizon forecasts (i.e., 7 outputs for short-term horizons
and 30 outputs for mid-term horizons). The Adam optimizer was used to train the model
with a batch size of 512 and a learning rate of 0.0032 for short-term forecasting, 0.0014 for
mid-term forecasting in spring/summer, and around 0.002 for both forecasting horizons
in fall/winter. In addition, dropout rates were employed on the outputs of each LSTM
layer, except for the last one and the fully connected layer. We note that the learning rate
determines how much a model changes in response to the estimated error each time its
weights are updated during training, whereas the dropout rate is a regularization technique
that prevents overfitting by randomly setting a fraction of the input to 0 at each update.

The performance of the proposed hybrid model is studied under different inputs and
compared with other deep learning models. Three main input cases are considered: time
only, SIV and time, and decomposed SIV and time. The VMD technique is benchmarked
against EMD. A decomposition level of K = 31 (and a residual) is set for this last input case.

The first input case comprises time data only. All three time sequences are concatenated
to form a 3D array of size [X× 3× 30 + S]. The first dimension represents the training set
size (i.e., X instances), the second dimension represents the number of input sequences,
and the third dimension represents the length of the input sequences (see Table 3 for
more details).

Each SIV sequence in the second input case is concatenated with time sequences to
form a 3D array of size [X × 4× 30 + S]. Consequently, the second dimension reflects a
single SIV sequence and three time sequences.

SIV sequences are decomposed for the last two cases using EMD (i.e., third case) and
VMD (i.e., fourth case). Each SIV sequence is processed using EMD into a specific number
of IMFs (and a residual). While using VMD, they are decomposed into K = 31 IMFs (and
a residual). For both cases, each decomposed sequence is concatenated with three time
sequences to form a 3D array similar to the second case. The second dimension, in this case,
reflects a single decomposed sequence in addition to three time sequences.
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Thus, in the context of the third case, Equation (11) becomes:

V̂t+S|t+1 = Σ f
(
VEMD

t−S+1|t, Dt−S+1|t, Mt−S+1|t, Yt−S+1|t, ε
)

(12)

and in the context of the fourth case, it becomes:

V̂t+S|t+1 = Σ f
(
VVMD,k

t−S+1|t, Dt−S+1|t, Mt−S+1|t, Yt−S+1|t, ε
)

(13)

where k is a decomposition level (k ∈ [1, K + 1]), VVMD,k
t−S+1|t and VEMD

t−S+1|t are single decom-
posed SIV sequences using VMD and EMD, and S = 7 is used to forecast the next seven
days (i.e., short term) or S = 30 to forecast next month (i.e., mid term). In addition, other
machine learning models are considered. Mainly, convolutional neural networks with
InceptionTime and Transformers with time-series transformers (TST). For more details
about these two models, refer to Section 4.2.

All data preprocessing is conducted using MATLAB 2023a. The parameters of EMD
and VMD are set as follows. For EMD, the sifting relative tolerance is 0.2, the maximum
sifting iteration is 100, the maximum number of extracted IMFs is 31, and the maximum
number of extrema in the residual signal is 1. For VMD, the penalty parameter is 1000, the
number of IMFs is K = 31 (in addition to the residual), the initial center frequency is 0, and
the convergence criterion is 5× 10−6. In addition, optimal sets of hyperparameters of all
deep learning models are used in this study. More details about the considered models and
their hyperparameters are reported in Section 4.2.

However, the optimal performance of the proposed hybrid model relies not only
on the inputs and the employed forecasting model but also on the parameters defining
the decomposition and the forecasting processes. Hence, additional investigations were
conducted, as described below.

4.1.1. Experiment I: Impact of VMD Decomposition Level on Forecasting Performance

In this experiment, the proposed hybrid model is empirically studied to identify the
impact of its VMD decomposition level on its forecasting performance. A divide-and-
conquer strategy is employed for all cases of K, where each decomposed sequence and
the three time sequences are injected into a single forecasting model. Consequently, K + 1
models forecast the K IMFs and a residual. Their forecasts are then summed to produce the
intended SIV forecast. Such a strategy enables a timely investigation of the best K value for
each forecasting horizon.

4.1.2. Experiment II: Evaluating the Robustness of VMD-Based Forecasting Strategies

Robustness checks are conducted here to identify the best VMD-based forecasting
strategy. Using the proposed hybrid model with results from previous experiments, we
consider two different strategies (see Figure 6). The first is referred to as the “all-in-one”
strategy and represents the most straightforward approach, where all sequences from the
best input case (i.e., K + 1 decompositions and time sequences) are injected directly into
the forecasting model to forecast the SIV. In the second strategy, referred to as “divide and
conquer”, K + 1 instances of the best model are employed. Each model takes as input a
single VMD-decomposed sequence, in addition to its corresponding time sequences, and
is assigned to forecast the future state of that VMD decomposition. All forecasts are then
summed to obtain the actual model’s SIV forecast.
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Figure 6. The strategies investigated for multi-horizon pan-Arctic SIV forecasting: ‘All-in-one’
benchmarking strategy versus the proposed ‘Divide and conquer’ approach. The former injects all
optimal input sequences directly into the model, whereas the latter operates an individual model on
one VMD-decomposed sequence, aggregating their forecasts at the end.

4.2. Performance Evaluation
4.2.1. Baseline Models

We consider two deep learning models for benchmarking purposes: TST and Incep-
tionTime. In addition, we employ five other statistical and conventional machine learning
as baselines. A brief description of each of these models follows.

• Historical mean: A simple baseline model relying on the values from the previous
week (i.e., last 7 elements) or month (i.e., last 30 elements) to provide short-term or
mid-term forecasts. Other variations of this model were considered (e.g., same week
averaged over the past three months, same month averaged over the past three years),
but the proposed historical model proved the best one.

• GBDT [44]: This is an iterative ensemble model of multiple decision trees. The output
of the GBDT is the accumulation of the outputs of all its comprised decision trees.

• SVR [45]: This is a popular conventional machine learning model for regression. We
employ SVR under two kernels: sigmoid and radial basis functions.

• ARIMA [18]: This is a well-known statistical model for forecasting. ARIMA is
generally applicable to non-stationary time series. Its difference transformation can
effectively transform non-stationary data into stationary data.

• TST [46]: This is a recent deep neural network that handles long-term dependen-
cies while tracking relationships in sequential input to learn context and meaning.
This model was initially proposed in 2017 for translation tasks in Natural Language
Processing in [47], but it has now become a state-of-the-art model for various tasks
in that field. Multihead self-attention is the core component of TST that makes it
suitable for processing time-series data. This mechanism identifies multiple types
of dynamic contextual information (i.e., past values, future values) of every element
in a sequence, with every attention head. In the recent literature, attention-based
deep learning has been effectively employed for uni- and multivariate time-series
forecasting problems [48–50].

• InceptionTime [51]: This is a state-of-the-art time-series classification model that was
first introduced in 2019. The inception module serves as its main structural component.
An inception module consists of (i) a bottleneck layer (one-dimensional convolutional
layer) to reduce the dimensionality of the inputs; (ii) three one-dimensional convo-
lutional layers with kernel sizes of 10, 20, and 40, which are fed the output of the
bottleneck layer; (iii) a max pooling layer, which is fed the input of the inception
module; and (iv) a depth concatenation layer [12], which is the final layer, where the
four convolutional layers’ outputs are concatenated along the depth dimension. Each
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inception module (i.e., convolutional layer) comes with 32 filters by default, which are
simultaneously applied to the input time series. To the best of the authors’ knowledge,
this model has yet to be investigated for the task at hand.

4.2.2. Model Hyperparameter Tuning

Deep learning models have multiple hyperparameters that affect their learning pro-
cesses and overall performance. The use of non-optimal values can result in model under-
performance. For this reason, several hyperparameters of each of these models were subject
to optimization.

As hyperparameter tuning requires increased time and computational costs, all deep
learning models were tuned using only the non-decomposed pan-Arctic SIV and time
information. The tuned hyperparameters from this case were used for the other cases
(i.e., time only, EMD-decomposed volume and time, VMD-decomposed volume and time).
The optimization trials were conducted using the Optuna framework [52] with the tree-
structured Parzen estimator as the sampling algorithm for five epochs (with no early
stopping) and over 100 trials (with no pruning). All the considered deep learning models
were implemented using the tsai library [53] in Python 3.6 and trained using batch sizes
and epochs equal to 512 and 25, respectively.

4.2.3. Evaluation Metrics

The forecasting performance of all models is assessed in this study using five popular
metrics: RMSE, Mean Absolute Percentage Error (MAPE), Coefficient of Variance (CV),
Anomaly Correlation Coefficient (ACC), and climatology forecast skill score (SS). RMSE and
MAPE are accuracy measures. CV indicates the degree of variability in the forecasts. ACC
assesses the ability of the model to capture deviations from the mean, whereas the SS metric
compares the model’s performance to the baseline reference (climatology method). These
metrics are defined over the entirety of both forecasting horizons using Equations (14)–(18):

RMSE =

√√√√ 1
N × S

N

∑
i=1

S

∑
h=1

(
yi(h)− fi(h)

)2
(14)

MAPE =
1

N × S

N

∑
i=1

S

∑
h=1

∣∣∣∣∣yi(h)− fi(h)
yi(h)

∣∣∣∣∣× 100 (15)

CV =

√
1

N×(S−1) ∑N
i=1 ∑S

h=1
(
yi(h)− fi(h)

)2

1
N ∑N

i=1 yi(h)
× 100 (16)

ACC =
∑N

i=1 ∑S
h=1

(
(yi(h)− ȳi) · ( fi(h)− f̄i)

)
√(

∑N
i=1 ∑S

h=1
(
yi(h)− ȳi

)2
)
·
(

∑N
i=1 ∑S

h=1
(

fi(h)− f̄i
)2
) (17)

SS = 1−
1

N×S ∑N
i=1 ∑S

h=1(yi(h)− fi(h))2

1
N×S ∑N

i=1 ∑S
h=1

(
yi(h)− 1

N ∑N
i=1 yi(h)

)2 (18)

where yi is the hth actual value of a sequence, i; fi is the hth forecasted value of the same
sequence; N is the number of sequences; S is the number of horizons to be forecasted; and
ȳi and f̄i are the means of the actual sequence and the forecasted sequence, i, respectively.

All volume input sequences in all training and testing sets are standardized to have a
zero mean and a unit standard deviation. This simplifies the calculation and amplifies the
forecasting model’s convergence speed. Accordingly, the forecasted sequences will have to
be reversely standardized to provide the actual predictions.
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5. Results and Discussion

This section highlights the results of the different experiments investigating different
aspects of the hybrid VMD-BiLSTM model in short- and mid-term forecasting horizons.

5.1. Correlation Analysis

This first section examines the relationship between the input and output sequences
using the Spearman correlation coefficient, incorporating both the correlation coefficient
and the statistical significance. The Spearman coefficient (ρ) is defined by:

ρ = 1−
6Σn

i=1d2
i

n(n2 − 1)
(19)

where di is the rank difference of two sequences, and n is the length of each sequence.
Figure 7 showcases the average Spearman’s coefficient between the historical SIV

input and output sequences. Different lengths from the previous 10 to 90 days were
constructed as input sequences. The output sequences are the next 7 days and the next
30 days. As can be seen, the immediate historical sequences had the highest correlation
with the output sequences. The further back the inputs go, the lower the correlation. In
addition, this analysis revealed statistically significant correlations, particularly for the
short-term output sequences (i.e., the next seven days), with p-values effectively at zero. For
the mid-term output sequences (i.e., the next 30 days), although the correlation remained
statistically significant with an average p-value of 0.028, the weaker correlation suggests
that the influence of the historical inputs may be attenuated over time.
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Figure 7. Spearman’s correlation coefficients between varying lengths of SIV input sequences (ranging
from 10 to 90 elements) and output sequences, reflecting short- and mid-term horizons. The input
sequences were linearly interpolated to match the lengths of the output sequences prior to correlation
calculation. The correlation results were found to be statistically significant, with p-values of less than
0.001 for short-term outputs and 0.02 for mid-term outputs.

Hence, the use of long durations of inputs (e.g., 40 to 90 days) is not optimal, espe-
cially since they would necessitate higher computational costs during all steps of model
development. In addition, such durations may not always be available for use. However,
very short durations (e.g., 10 days) may not provide enough information for the subsequent
processes. This is especially important for signal-decomposition techniques that rely on
time-frequency processing to decompose the input or deep learning models that can extract
complex patterns from the input. Hence, the choice of the past 30 days as the input length
is reasonable for this work, as such an input length can provide a balance between the
amount of historical data and computational costs. Nevertheless, further experiments are
necessary to quantify the influence of the input lengths on forecasting performance.



Geosciences 2023, 13, 370 16 of 25

5.2. Stationarity Analysis

The stationarity of a time series can be assessed using the Augmented Dickey–Fuller
(ADF) [54] and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [55] tests. The ADF test as-
sumes a unit root in the series (null hypothesis), rejecting this if the test statistic is below
a critical value, thereby indicating stationarity. Conversely, the KPSS test assumes trend
stationarity (null hypothesis), rejecting it for a non-stationary unit root process if the test
statistic exceeds the critical value.

Table 4 presents the average results of the ADF and KPSS tests run on the pre-processed
SIV sequences (i.e., the main input data to the forecasting model) for the fall/winter and
spring/summer seasons. The tests were run using sequences without decomposition,
as well as with EMD and VMD decomposition. We investigated the stationarity of the
decomposed sequences using different multiples of eight VMD decomposition levels (K)
corresponding to 7, 15, 23, 31, 39, 47, 55, 63, 71, and 79 IMFs in addition to the residual (only
specific K values are reported in the table). All reported p-values and test static values
were averaged over all the sequences of the same case (e.g., test static was averaged over
8819 sequences corresponding to the no-decomposition case for fall/winter). The results
show that raw volume sequences were usually not stationary (refer to test results on
sequences from the fall/winter season using both tests and on spring/summer sequences
using the KPSS). Additionally, decomposing using VMD can provide stationary sequences.
For instance, the test statistics using ADF were lower than their corresponding critical
values for all considered K values using the fall/winter sequences and for K > 7 using the
spring/summer sequences. Using KPSS, the test statistics were lower than the critical values
for K ≥ 55 for both seasons. Further, the higher the K, the wider the difference between
the two values until a certain K. This demonstrates that greater degrees of stationarity can
result from higher decomposition levels.

Table 4. ADF and KPSS tests (α = 1%) on the processed pan-Arctic SIV sequences with or without
decomposition (smallest values in each case are indicated in bold). All results were averaged over all
related input sequences.

Season Sequences
ADF KPSS

p-Value Test Statistic Critical Value p-Value Test Statistic Critical Value

Fall/winter no decomposition 0.999 29.422444 −2.64298 0.013149 0.466233 0.216
EMD 0.46391 −0.932447 −2.64298 0.028428 0.463015 0.216
VMD, K = 7 0.210504 −2.743359 −2.64298 0.038997 0.35998 0.216
VMD, K = 31 0.133635 −6.358259 −2.64298 0.053761 0.274097 0.216
VMD, K = 55 0.110459 −12.187335 −2.64298 0.069083 0.192984 0.216

Spring/summer no decomposition 0.100008 −17.627617 −2.64298 0.010001 0.655554 0.216
EMD 0.467808 −0.990105 −2.64298 0.029544 0.438946 0.216
VMD, K = 7 0.197314 −2.438189 −2.64298 0.039224 0.353945 0.216
VMD, K = 31 0.112083 −6.126092 −2.64298 0.06529 0.228267 0.216
VMD, K = 55 0.114006 −6.546266 −2.64298 0.069402 0.197404 0.216

In the following subsections, the results of the reported forecasting performance from
all conducted experiments are discussed.

5.3. Benchmarking the Proposed Hybrid Model

As can be seen in Table 5, the historical mean model generally achieved superior
forecasting performance compared to all considered baseline conventional models. In
particular, the GBDT and SVR models yielded the worst performance among all models for
both forecasting horizons. In addition, the historical mean outperformed all deep learning
forecasting models in the absence of information about the SIV, as evidenced in Table 6
(i.e., time only). We note that this specific case, where the deep learning models were trained
using time-only inputs, can be considered another baseline that more advanced models
should always outperform. Among these deep learning models, TST and InceptionTime
consistently exhibited the poorest performance for short-term and mid-term forecasting,
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respectively. The superiority of the historical mean model highlights the usefulness of
immediate past values in predicting future ones for both forecasting horizons.

Table 5. Overall performance values of the baseline models for multi-horizon pan-Arctic SIV fore-
casting (best results are indicated in bold). All metric values are averages, computed over the entirety
of the testing set and across the two specified forecasting horizons. Metric units are represented in
m3 for the RMSE and as a % for all other metrics.

Model
Next 7 Days Next 1 Month

RMSE MAPE CV ACC SS RMSE MAPE CV ACC SS

Historical Mean 922.39 6.65 6.47 36.43 97.92 3416.56 26.76 24.02 72.25 71.64
SVR-Sigmoid 9089.28 1398.22 63.83 <0 <0 9145.84 97.15 64.5 <0 <0
SVR-RBF 10,109.84 1498.07 71.00 7.26 <0 10,154.48 107.59 71.61 17.60 <0
GBDT 10,212.71 444.54 71.72 0.00 <0 10,178.06 49.41 71.78 0.00 <0
SARIMAX 7070.50 776.15 49.65 8.99 <0 7060.88 51.84 49.79 16.79 <0

Table 6. Overall performance values of the proposed technique, benchmarked against other inputs
and models for multi-horizon pan-Arctic SIV forecasting. All metric values are averages, computed
over the entirety of the testing set and across the two specified forecasting horizons for each season
(best results are indicated in bold). Metric units are represented in m3 for the RMSE and as a % for all
other metrics.

Season Model Input
Next 7 Days Next 1 Month

RMSE MAPE CV ACC SS RMSE MAPE CV ACC SS

Fall/winter TST Time only 3275.06 19.51 20.11 74.19 48.56 3108.40 19.04 18.88 96.89 39.88
Volume and Time 293 1.68 1.80 76.47 99.59 825.67 4.41 5.01 97.82 95.71
VEMD and Time 288.12 1.58 1.77 75.70 99.60 453.31 2.33 2.75 98.23 98.70
VVMD,31 and Time 235.94 1.18 1.45 79.24 99.73 421.13 2.33 2.56 98.39 98.87

InceptionTime Time only 2057.75 10.90 12.63 43.99 79.67 3570.47 19.51 21.68 85.82 20.40
Volume and Time 535.85 3.02 3.29 73.00 98.61 745.62 3.87 4.53 82.34 96.49
VEMD and Time 430.03 2.3 2.64 61.96 99.10 775.66 4.01 4.71 85.07 96.24
VVMD,31 and Time 355.57 1.86 2.18 62.42 99.40 664.46 3.59 4.04 86.54 97.24

BiLSTM Time only 2222.17 13.28 13.64 96.40 76.31 1908.08 10.5 11.59 98.94 77.3
Volume and Time 257.23 1.50 1.58 97.54 99.68 375.96 2.12 2.28 99.11 99.10
VEMD and Time 304.79 1.77 1.87 97.75 99.55 354.12 1.92 2.15 98.99 99.19
VVMD,31 and Time 173.03 0.97 1.06 99.44 99.86 250.07 1.43 1.52 99.84 99.61

Spring/summer TST Time only 5022.15 57.62 39.88 81.32 44.94 4094.32 42.5 33.35 96.47 56.70
Volume and Time 350.05 2.94 2.78 80.73 99.73 762.13 7.12 6.21 97.1 98.38
VEMD and Time 614.78 6.37 4.88 84.38 99.17 735.09 7.15 5.99 96.59 98.52
VVMD,31 and Time 265.91 2.56 2.11 78.80 99.84 222.62 1.99 1.81 98.62 99.87

InceptionTime Time only 3825.53 43.10 30.38 52.08 68.05 5286.05 59.4 43.05 94.49 27.81
Volume and Time 755.37 7.18 6.00 61.78 98.75 1778.18 19.69 14.48 94.81 91.6
VEMD and Time 710.16 6.03 5.64 59.07 98.90 1684.15 18.93 13.72 94.5 92.29
VVMD,31 and Time 522.47 4.86 4.15 65.19 99.40 1092.40 12.62 8.90 94.39 96.94

BiLSTM Time only 3961.78 44.15 31.46 91.91 65.75 4877.53 51.05 39.73 95.83 38.84
Volume and Time 455.37 4.16 3.62 96.51 99.55 806.78 8.00 6.57 99.18 98.25
VEMD and Time 485.95 5.32 3.86 94.09 99.48 769.15 6.90 6.26 97.46 98.37
VVMD,31 and Time 164.42 1.43 1.31 99.29 99.94 208.39 2.16 1.7 99.86 99.89

In the absence of a decomposition technique, better performance can be achieved
using the SIV and time information. In this case (i.e., volume and time), all deep learning
models significantly outperformed all baselines. Regardless of the forecasting horizon and
season, these models could learn from the patterns in the historical SIV and time data, thus
achieving overall average improvements of 81.61%, 82.7%, 81.61%, 7.89%, and 114.58% in
terms of the RMSE, MAPE, CV, ACC, and SS compared with the previous time-only case.
More specifically, BiLSTM performed the best with these input data during the fall/winter
season, with overall average improvements of 88.42%, 88.7%, and 88.42% in terms of the
RMSE, MAPE, and CV for short-term forecasting and 80.30%, 79.81%, and 80.33% in terms
of the same metrics for mid-term forecasting. During the spring/summer season, TST
performed the best, with overall average improvements of 93.03%, 94.90%, and 93.03% in
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terms of the RMSE, MAPE, and CV for short-term forecasting and 81.39%, 83.25%, and
81.38% in terms of the same metrics for mid-term forecasting.

When processing the SIV with a decomposition technique, even better performance
was generally achieved. The overall average improvements achieved using either decom-
position technique were 19.52%, 18.15%, and 19.53% in terms of the RMSE, MAPE, and
CV over all the forecasting horizons, seasons, and models. Nevertheless, the use of EMD
added few to no improvements to the forecasting performance, generally yielding com-
parable performance with the previous case (i.e., volume and time). This was better seen
with short-term forecasting, as the fewest overall average improvements were achieved,
with 0.97%, 3.93%, and 1.02% in terms of the RMSE, MAPE, and CV during fall/winter
over all three models. During the spring/summer season, deteriorations from the same
previous case were observed, with overall averages of 25.45%, 42.84%, and 25.39% in terms
of the RMSE, MAPE, and CV over all three models. However, longer forecasting horizons
seemed to better exploit the EMD-decomposed input, as generally better improvements
were achieved, with 15.63%, 17.66%, and 15.61% during the fall/winter season and 4.50%,
5.73%, and 4.50% during the spring/summer season in terms of the same metrics over the
three models. Nevertheless, errors often accumulated with longer forecasting horizons.
These underwhelming performance values can be attributed to EMD’s drawbacks, such as
noise sensitivity and the inability to extract closely spaced high-frequency components in
the input data. Nevertheless, the extracted IMFs still provided valuable information to the
forecasting model for further forecasting horizons.

The best performance was achieved using the VMD-processed inputs (i.e., VVMD,31

and time). Similar to the second case (i.e., volume and time), all models could better learn
the variations in the SIV. Particularly, compared with the same second case, overall average
improvements of 40.13%, 40.19%, 40.12%, 0.44%, and 1.32% were achieved in terms of the
RMSE, MAPE, CV, AC, and SS over all the forecasting horizons, seasons, and models. These
results showcase the capabilities of VMD in capturing intrinsic time-frequency patterns,
which is essential for better forecasts. Similar to the VEMD and time case, better overall
performance was observed with longer forecasting horizons. In particular, the overall
average improvements for short-term forecasting were 28.62%, 34.50%, and 28.70% in
terms of the RMSE, MAPE, and CV during fall/winter and 39.59%, 36.95%, and 39.58%
during spring/summer over all three models. Mid-term forecasting saw overall average
improvements of 31.12%, 28.98%, and 31.02% during fall/winter and 61.18%, 60.32%, and
61.17% during spring/summer in terms of the RMSE, MAPE, and CV over all three models.
Nevertheless, higher errors were associated with longer horizons.

Specifically, the proposed BiLSTM model consistently achieved the best performance
in this case (VVMD,31 and time) for both seasons and forecasting horizons. In particular,
BiLSTM achieved the highest overall average improvements compared with the first case
(i.e., time only), with 94.26% for short-term horizons and 91.23% for mid-term horizons
in terms of the RMSE, MAPE, and CV metrics. TST and InceptionTime followed BiLSTM
with smaller improvements, where TST achieved average improvements of 94.08% for
short-term forecasting and 90.85% for mid-term forecasting for the same metrics and
over all seasons. InceptionTime achieved average improvements of 84.97% for short-term
forecasting and 80.29% for mid-term forecasting for the same metrics and seasons. In
addition, both of these models appeared to struggle to efficiently assimilate patterns from
the decomposed sequences and accurately forecast SIV anomalies, yielding ACC averages
that were consistently less than 85% for TST and 75% for InceptionTime for all considered
input cases. A variety of factors contributed to these lower performance values. For
instance, although it incorporates a multihead self-attention mechanism that can process
past and future information in the input, TST usually requires a larger amount of training
data than that required by LSTM to learn the underlying patterns and make accurate
predictions. Nonetheless, these results emphasize the importance of the BiLSTM network’s
memory cells in capturing and retaining long-term information from the input.
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These observations can made about the data in Figure 8, where different examples of
forecasting the SIV over short- and mid-term horizons using the proposed hybrid VMD-
BiLSTM are showcased. Particularly, the forecasts in both seasons seem to closely follow all
target variations over multiple horizons. We note that in Figure 8a, the forecasts using the
EMD variation of the proposed technique seem to follow the general trend of the target SIV
sequence for September 2016. However, the proposed technique still qualitatively performs
better, as it was able to produce forecasts following the change in the slope of the target.

In this study, we only considered the historical data of the pan-Arctic SIV and time
information. However, as daily weather features such as air temperature and humidity
are readily available in open datasets, such data can be employed as additional inputs
to the forecasting model to improve its performance over shorter or longer horizons.
Nevertheless, the proposed hybrid model has proven to be more accurate than other
forecasting techniques. However, the VMD decomposition level used within it (K = 31) is
yet to be optimized. The next subsection discusses the experiment’s results, identifying the
most optimal K value.
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Figure 8. Plot of the BiLSTM model’s forecasts based on two instances from the test set of each season,
employing three distinct inputs: VVMD,31 + Time, Volume + Time, and VEMD + Time. The target SIV
sequence is included in the plot for comparison. Generally, the proposed hybrid technique is able to
provide forecasts that can closely follow the actual variations in the SIV, even with unusual values
(such as the 2016 minima seen on 6 September).

5.4. Experiment I: Impact of VMD Decomposition Level on Forecasting Performance

As can be seen in Figure 9, the forecasting performance of the proposed hybrid model
was impacted by the VMD decomposition level (i.e., K). The forecasting performance
generally improved with higher values of K up to a certain value, after which it worsened.
This pattern can be seen for every forecasting horizon and season. The best forecasting per-
formance during the fall/winter season necessitated higher values than K = 31, which was
employed in the corresponding case in Experiment I (i.e., VVMD,31 and time), with K = 39
for short-term forecasting and K = 63 for mid-term forecasting. These decomposition
levels enabled overall average improvements of 25.93%, 40.81%, and 25.83% for short-term
forecasting and 28.52%, 42.20%, and 28.51% for mid-term forecasting in terms of the RMSE,
MAPE, and CV compared with the original case of K = 31 (i.e., VVMD,31 and time). The
opposite trend can be seen in the other season, where fewer decomposition levels were
sufficient to achieve the best performance. In particular, in spring/summer, a decompo-
sition level of K = 15 for short-term forecasting achieved overall average improvements
of 42.45%, 19.86%, and 39.37%, compared with the same corresponding case (i.e., VVMD,31

and time) in terms of the RMSE, MAPE, and CV. For mid-term forecasting during the same
season, the initial K = 31 was sufficient to achieve the best performance.

Forecasting longer horizons generally necessitated higher VMD decomposition levels.
The forecasting performance was improved with a smaller value of K for short-term
forecasting, with K = 39 and K = 15 for the fall/winter and spring/summer seasons,
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respectively. Almost double those values were needed for mid-term forecasting, with
K = 63 and K = 31 for the fall/winter and spring/summer seasons, respectively. This
observation can be attributed to the increased uncertainty related to increased forecasting
horizons. Thus, further horizon forecasting requires more detailed time-frequency patterns
that can be extracted using VMD to achieve optimal performance.

0 10 20 30 40 50 60 70 80

Decomposition level (K)

100

150

200

250

300

R
M

S
E

 (
m

3
)

Fall/Winter Spring/Summer

K=39

K=15

(a) Short-term horizon

0 10 20 30 40 50 60 70 80

Decomposition level (K)

200

250

300

350

400

R
M

S
E

 (
m

3
)

Fall/Winter Spring/Summer

K=63

K=31

(b) Mid-term horizon

Figure 9. Overall RMSE values of the proposed hybrid technique developed using different VMD
decomposition levels, averaged over the whole test set of each season (Experiment I). The lowest
RMSE values are highlighted.

As higher decomposition levels were investigated, this experiment required more time
and computational resources. In particular, the time and computation costs needed to train
the model with no decomposition involved were multiplied by K + 1, the number of VMD
decompositions (and residual) chosen, to train the same model with VMD-decomposed
inputs using the “divide & conquer” strategy (refer to the results of Experiment II for more
details). Nevertheless, this experiment must be conducted whenever such a decomposition
technique is integrated into a learning process to ensure optimal results. Moreover, the
choice of K values is critical. In this experiment, eight multiples were selected based on
previous works in the literature and several preliminary trials. Specifically, K < 7 values
were initially investigated but were dropped after observing few to no improvements in
forecasting performance. Hence, multiples of eight provided comprehensible results with
big enough improvements following a steady increase in the decomposition levels.

The proposed hybrid forecasting model can provide better forecasting performance
with an optimized VMD decomposition level. However, it is important to conduct a
robustness check to quantify the usefulness of employing the “divide and conquer” strategy.
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5.5. Experiment II: Evaluating the Robustness of VMD-Based Forecasting Strategies

From Table 7 and Figure 10, it is apparent that using the “divide and conquer” strategy
produced better overall forecasting performance compared to the “all-in-one” strategy.
Particularly, average degradations of 237.09%, 232.99%, and 236.98% in terms of the RMSE,
MAPE, and CV were observed, regardless of the forecasting horizon and season. These
results provide empirical proof of the usefulness of dividing the forecasting task into
sub-forecasting tasks using separate deep learning models. Moreover, the errors over
each horizon showcase how the model using the “all-in-one” strategy struggled to deal
with the increased uncertainty in further horizons (e.g., mid-term forecasting during the
spring/summer season). Although a similar observation can be made for the other case,
it was significantly attenuated, as minor errors accumulated over the horizons. Such
outcomes prove that dividing the forecasting task into specific and separate tasks can
reduce the related uncertainty and generate more accurate forecasts.

However, the proposed hybrid technique implements the “divide and conquer” strat-
egy, which requires more time for model learning. More specifically, training the hybrid
model using this strategy can be seen as equivalent to training the same model multiple
times using the “All-in-one” strategy. As seen in Figure 6, this increase in time and com-
plexity is tied with K + 1, the number of decompositions (and residual), reflecting the
training of the K + 1 models with partial input data (e.g., an ith IMF with a corresponding
time sequence). Nevertheless, the granularity of data (e.g., daily, in the case of this study)
and the availability of higher-performance computation devices can enable the successful
application of such a forecasting strategy in real-world scenarios.

Further results are reported in Table 8, which displays the performance of the proposed
hybrid model, computed and averaged for each month of the year over the whole testing
set. Some notable patterns and intriguing trends can be observed. In the case of short-
term forecasts, the model exhibited superior performance for January, as evidenced by the
lowest RMSE, MAPE, and CV values. This result indicates high accuracy and consistency
in the model’s forecasts for this month. However, it is noteworthy to highlight March
and September when the model’s performance dipped. During these transitional months,
when sea ice begins to melt in March and starts to form in September, forecasting can be
particularly challenging due to the high variability and dynamics of the sea ice processes.
The model, while experiencing relatively higher errors during these periods, still managed
to provide reasonably accurate forecasts, illustrating its resilience in handling complex
Arctic conditions.

For mid-term forecasts, similar trends can be observed. The model continued to
demonstrate the strongest performance for January with the lowest RMSE and CV values,
whereas for February, it yielded the lowest MAPE, signifying minimal relative errors.
Despite the elevated error values for August, September, November, and December, the
model still maintained high ACC and SS values, especially for June and July.

The high ACC values for the majority of months indicate that the model correctly
captured the directionality of the anomalies. Moreover, the SS values suggest that the
proposed technique performed well compared to climatology-based reference forecasts,
especially during the summer months when the sea ice melt is in its advanced stage.

Table 7. Experiment II: overall performance values of the optimized proposed hybrid technique
(VMD-BiLSTM) using the divide-and-conquer and all-in-one forecasting strategies (best results are
indicated in bold). Metric units are represented in m3 for the RMSE and as a % for all other metrics.

Season Strategy
Short-Term Horizon Mid-Term Horizon

RMSE MAPE CV ACC SS RMSE MAPE CV ACC SS

Fall/winter Divide-and-conquer 137.39 0.69 0.84 99.53 99.91 194.57 1.00 1.18 99.68 99.76
All-in-one 395.536 2.033 2.428 97.00 99.20 909.80 3.45 5.52 99.30 94.80

Spring/summer Divide-and-conquer 115.42 0.86 0.91 99.21 99.97 208.38 2.15 1.69 99.86 99.88
All-in-one 391.72 3.91 3.11 97.70 99.70 528.31 5.17 4.30 99.50 99.30
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Figure 10. RMSE values by horizon of the hybrid VMD-BiLSTM model implemented using
two different VMD-based forecasting strategies, averaged over the whole test set of each season
(Experiment II).

Table 8. Average performance values of the proposed hybrid technique (VMD-BiLSTM) on the whole
test set, computed for each month of the year (best results are indicated in bold). Each data sequence
was considered to belong to a specific month based on the start date of that sequence. Metric units
are represented in m3 for the RMSE and as a % for all other metrics.

Month
Short Term Mid Term

RMSE MAPE CV ACC SS RMSE MAPE CV ACC SS

January 47.74 0.22 0.33 99.61 99.87 102.72 0.51 0.73 99.82 99.72
February 79.19 0.30 0.55 99.42 99.59 110.54 0.46 0.78 99.71 99.43
March 211.29 0.87 1.48 98.94 96.16 123.68 0.47 0.87 99.61 98.85
April 131.03 0.55 0.92 78.58 99.94 193.88 0.72 1.37 99.24 94.89
May 165.83 0.63 1.16 97.32 98.31 177.54 0.72 1.26 99.83 98.88
June 123.25 0.52 0.86 99.68 99.74 148.55 0.74 1.05 99.91 99.82
July 50.50 0.41 0.35 99.68 99.95 155.72 1.52 1.10 99.91 99.76
August 78.44 1.09 0.55 98.85 99.62 255.92 3.81 1.81 99.75 97.32
September 105.16 1.73 0.73 85.52 98.54 304.16 5.15 2.15 98.69 89.79
October 169.90 1.72 1.19 99.60 97.71 264.20 2.31 1.87 99.65 94.40
November 168.76 1.45 1.18 99.60 98.79 328.33 2.41 2.32 99.56 95.63
December 102.15 0.65 0.71 99.63 99.67 254.40 1.57 1.80 99.67 98.96

6. Conclusions

Based on satellite imagery over the past few decades, ongoing climate change has
reduced the area of the Arctic sea ice pack. However, much less is known about the
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changes in the thickness and volume of the Arctic sea ice. To alleviate the current lack
of a straightforward and low computational cost model, we set out to develop a hybrid
VMD-BiLSTM technique for forecasting the pan-Arctic SIV over multiple horizons. With
the integration of VMD with the bidirectional LSTM, innate patterns and fluctuations can
be captured and learned for more accurate short-term and long-term forecasts. Empirical
experiments highlighted the benefits of multivariate inputs (i.e., previous 30 days of time
and volume information) in forecasting accuracy. In addition, the experiments showcased
how a tuned decomposition level in VMD-empowered forecasting techniques can further
enhance the model’s forecasting accuracy. Although cumbersome, such a fine-tuning task
is necessary to achieve optimal forecasting results. Further, this paper provides evidence
that a forecasting approach based on a signal decomposition must rely on the “divide and
conquer” strategy to optimize the usage of the extracted time-frequency patterns from the
input data.

We find that the main benefits of these results are twofold: (1) They are proof of
concept that an advanced deep learning-based forecasting technique can produce better
results with fewer computational costs compared to conventional forecast modeling for
Arctic sea ice thickness. (2) Given the increasing importance of thawing the Arctic Ocean
for economic, military, and recreational shipping, future machine learning-based sea ice
thickness modeling focused on subsections of the Arctic Ocean may help operational
navigation in the Arctic.
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