
Citation: Ausilio, E.; Durante, M.G.;

Zimmaro, P. On the Potential of Using

Random Forest Models to Estimate the

Seismic Bearing Capacity of Strip

Footings Positioned on the Crest of

Geosynthetic-Reinforced Soil

Structures. Geosciences 2023, 13, 317.

https://doi.org/10.3390/

geosciences13100317

Academic Editors: Claudia Pirrotta,

Sebastiano Imposa, Maria Serafina

Barbano, Sabrina Grassi and Jesus

Martinez-Frias

Received: 15 September 2023

Revised: 13 October 2023

Accepted: 19 October 2023

Published: 20 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

geosciences

Article

On the Potential of Using Random Forest Models to Estimate
the Seismic Bearing Capacity of Strip Footings Positioned on
the Crest of Geosynthetic-Reinforced Soil Structures
Ernesto Ausilio 1,* , Maria Giovanna Durante 1 and Paolo Zimmaro 2,3

1 Department of Civil Engineering, University of Calabria, 87036 Arcavacata di Rende, Italy;
mgdurante@unical.it

2 Department of Environmental Engineering, University of Calabria, 87036 Arcavacata di Rende, Italy;
paolo.zimmaro@unical.it

3 The B. John Garrick Institute for the Risk Sciences, University of California, Los Angeles,
Los Angeles, CA 90095, USA

* Correspondence: ernesto.ausilio@unical.it

Abstract: Geosynthetic-reinforced soil structures are often used to support shallow foundations of
various infrastructure systems including bridges, railways, and highways. When such infrastructures
are located in seismic areas, their performance is linked to the seismic bearing capacity of the
foundation. Various approaches can be used to calculate this quantity such as analytical solutions
and advanced numerical models. Building upon a robust upper bound limit analysis, we created a
database comprising 732 samples. The database was then used to train and test a model based on a
random forest machine learning algorithm. The trained random forest model was used to develop
a publicly available web application that can be readily used by researchers and practitioners. The
model considers the following input factors: (1) the ratio of the distance of the foundation from
the edge and the width of the foundation (D/B), (2) the slope angle (β), (3) the horizontal seismic
intensity coefficient (kh), and (4) the dimensionless geosynthetic factor, which accounts for the tensile
strength of the geosynthetic. Leveraging the model developed in this study, we show that the most
important features to predict the seismic bearing capacity of strip footings positioned on the crest of
geosynthetic-reinforced soil structures are D/B and kh.

Keywords: geosynthetic-reinforced soil structures; seismic bearing capacity; random forest

1. Introduction

Shallow foundations are sometimes built on geosynthetic-reinforced soil structures,
such as mechanically stabilized earth and artificial slopes. These structures are often used
to support bridges, electrical transmission towers, railways, and highways. One of the
benefits of using geosynthetic reinforcements when designing these structures is that they
provide a substantial improvement to the foundation’s bearing capacity under static and
seismic loadings.

In the last few decades, stability-related applications of reinforced soil structures were
proposed by various authors by means of experimental full-scale structure models [1–3],
centrifuge, and other reduced-scale models [4–15], analytical procedures, and numerical
models [16–23]. More recently, the use of artificial intelligence (AI)-based modeling tech-
niques to solve complex engineering problems has gained the interest of various scientists
and researchers. AI is frequently utilized in a variety of engineering domains, includ-
ing geotechnical engineering, to map non-linear correlations between input and target
variables in complex problems (e.g., [24–26]). Nowadays such AI-based approaches are
becoming increasingly popular, mainly because computational resources and extensive
databases are more readily available (e.g., [27–29]). These enormous amounts of data are

Geosciences 2023, 13, 317. https://doi.org/10.3390/geosciences13100317 https://www.mdpi.com/journal/geosciences

https://doi.org/10.3390/geosciences13100317
https://doi.org/10.3390/geosciences13100317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0001-6296-214X
https://orcid.org/0000-0002-3544-5961
https://doi.org/10.3390/geosciences13100317
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences13100317?type=check_update&version=2


Geosciences 2023, 13, 317 2 of 11

difficult to analyze using standard approaches. They can be more easily utilized leveraging
AI-based methods.

The complex task of predicting the bearing capacity of shallow foundations lying on
geosynthetic-reinforced soils was recently analyzed using AI techniques [30–34]. Other
studies focused on analyzing the bearing capacity of shallow foundations on natural slopes
using machine learning (ML) techniques [35–37]. However, none of the existing studies
focused on the application of ML methods for the prediction of the seismic bearing capacity
of shallow foundations positioned on the crest of geosyntethic-reinforced soil structures.

Ausilio et al. [38] recently proposed a simple mathematical expression to calculate
the seismic bearing capacity of shallow foundations located close the crest of geosyntethic-
reinforced soil structures. This equation can be efficiently implemented as part of a broader
performance-based design approach. The proposed expression is valid for both static and
seismic conditions. However, this equation, by itself, does not allow users to gain insights
into the hierarchy of the importance of input parameters, preventing from performing data-
informed budget allocation and prioritization analyses. Furthermore, such equation is static
in the sense that as more data become available, it cannot be directly modified, but it needs
alternate and/or updated functional forms and/or equation coefficients. ML approaches
solve both issues, allowing for robust feature importance analyses and generating dynamic
solutions which do not rely upon a fixed functional form and equation coefficients but can
be seamlessly modified as more data become available.

In this study, for the first time, an ML algorithm is utilized for predicting the seismic
bearing capacity of shallow foundations located close the crest of geosyntethic-reinforced
soil structures. The random forest algorithm was selected and used because it is very
versatile and is one the most employed in geotechnical engineering applications [39–42].
The algorithm is based on a database, generated as part of this study, developed using a
robust upper-bound limit analysis. In addition to proposing a novel algorithm, we also
investigate the importance of key input features, unveiling the most important factors for
such problems.

2. Data and Methods
2.1. Dataset

Limit analysis approaches are often used to analyze the bearing capacity of foundations
built on natural slopes [43,44]. The dataset used in this study was developed using a robust
upper-bound limit analyses to calculate the seismic bearing capacity of strip footings placed
close to the crest of geosynthetic-reinforced structures, developed by Ausilio [18]. This
method uses the kinematic theorem of the plasticity theory to evaluate the seismic bearing
capacity of a strip footing of width B on a geosynthetic reinforced soil slope with angle β at
a distance D from the edge. Figure 1 shows the schematic representation of the problem. In
this approach, seismic actions are considered as pseudo-static equivalent horizontal and
vertical forces acting on both the foundation and the soil underneath it. The kinematically
admissible mechanism considered in this approach is characterized by a log-spiral failure
surface [45], which is assumed to pass through the right edge of the strip footing on the
surface of the reinforced slope with r0, which is the radius at initial angle θ0, while θh is the
final log-spiral angle (Figure 1).

This approach uses three parameters to characterize the soil portion of the system:
(1) γ (soil unit weight), (2) c (cohesion), and (3) ϕ (friction angle). In this approach, a
uniformly placed geosynthetic reinforcement is considered with average tensile strength
per unit cross-section (kt = T/d) equal to the tensile strength of a single reinforcement layer
per unit width (T) divided by the vertical distance between the layers of the reinforcement
layers (d). The solution (q) is then obtained by equating the rate of external work to the
rate of energy of dissipation:

q =

1
2 ktr0

[
sin2 θhe2(θh−θ0)tgϕ − sin2 θ0

]
+ cr0

2tan ϕ

[
e2(θh−θ0)tgϕ − 1

]
− (1 − kv)γr2

0( f1 − f2 − f3)− khγr2
0( f4 − f5 − f6)

B
[
(1 − kv)

(
cos θ0 − B

2r0

)
+ khsin θ0

] (1)
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where functions f1–f6 are dependent on ϕ, β, θ0, and θh. Equation (1) represents a lower-
bound solution for the ultimate bearing capacity of a footing placed at the crest of a
reinforced slope considering a log-spiral failure mechanism. The best estimate of q should
then be derived using Equation (1) by minimizing it with respect to θ0 and θh. Once these
angles are found, the limit load is calculated, substituting these values into Equation (1) [18].
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Figure 1. Geometry of the reinforced soil structure with the log-spiral failure surface (adapted
from [18]).

The dataset developed and used in this study uses the same input parameters pre-
sented by Ausilio et al. [34] and comprises: γ, ϕ, T, d, B, D, β, and the horizontal seismic
intensity coefficient (kh). Rather than directly using the direct value of these input pa-
rameters, we conveniently adopted the following three dimensionless factors: (1) the
dimensionless edge distance (D/B), (2) the geosynthetic factor (γB/kt), (3) the horizontal
seismic coefficient (kh), along with the slope angle (β). The resulting values in terms of
bearing capacity were also transformed into a dimensionless form (q/γB). The resulting
dataset comprises a total of 732 data points. The range of variables used in the model is
presented in Table 1. In this study, we decided to keep ϕ constant and equal to 35◦. This
choice was made because in most real applications backfills comprise sandy materials char-
acterized by values that are often equal or close to this value. Figure 2 shows histograms of
these input parameters, providing a global overview of the parameter space that will be
used to construct the prediction model.

Table 1. List and ranges of input parameters used in this study.

Input Parameter Range

Slope angle, β 20◦–85◦

Dimensionless geosynthetic factor, γB/kt 0.4–2.72
Dimensionless edge distance, D/B 0.25–6
Horizontal seismic coefficient, kh 0–0.5
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Figure 2. Histograms showing the distributions of the input parameters comprising the presented
dataset: (a) D/B, (b) β, (c) kh, and (d) γB/kt.

The total number of data points (732) was obtained considering various combinations
of each individual input parameter. As a result, the distributions of such dimensionless
parameters are somewhat sparse and do not follow any specific probability density function.
Some background on the rationale used to build such dataset is provided below. Half
of the processing was completed for static conditions (kh = 0). As a result, the kh = 0
bar in Figure 2c represents half of the dataset. The remaining portion of the analysis
is representative of pseudo-static conditions. In such cases, most of the processing was
completed for kh = 0.2, which was selected as a representative value of the conditions often
encountered in professional applications in active seismic zones for typical earthquake
return periods. The calculations for the remaining kh values (other than 0 and 0.2) were
performed to obtain a balanced dataset among them. However, when the kh increases,
the number of slopes converging to a solution decreases. As a result, for higher kh values,
the dataset has a smaller number of data points. The slope angle distribution follows a
log-normal distribution that was built around four discrete values: (1) 30◦, (2) 45◦, (3) 60◦,
and (4) 75◦. Such distribution was defined to have a modal value equal to 45◦. Values
between these angles were added to have a sufficient quantity of data points in gap zones
of the parameter space. Values of γB/kt were chosen to identify the role of strong (0.4) and
weak (2.226) reinforcements. These two values were selected for standard values of T/d
(tensile strength divided by the between-reinforcement distance). Other values were added
with a random distribution to fill the parameter space gap between these two values. Values
of D/B were initially selected to sample the parameter space homogeneously. However, as
this parameter goes up, the number of slopes converging to a solution goes down. As a
result, the final distribution of D/B roughly decreases as D/B increases.

2.2. Random Forest Model

As mentioned earlier, the use of ML algorithms is becoming increasingly popular in
geotechnical earthquake engineering applications. ML can be used in regression problems
to predict continuous response value. In general, each variable is called a feature, while the
prediction is called a target. In a tree-based method, such as the random forest (RF) model
used in this study, the prediction is made based on the division of the entire domain into
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smaller regions, each able to capture different relationships among features. This method
develops multiple decision trees using different parts of the datasets and/or a subset of
features. The combination of all trees, taken as the mean among them and which forms
the so-called “forest”, defines the final prediction model. A proper validation of an ML
model requires the subdivision of the dataset into train and test data. The latter is used
after the train phase to evaluate the performance of the model. This performance analysis
is performed using data that were not used to train the algorithm. In this study, the size
of the test data is 20% of the whole dataset. In addition to this division, cross validation
is performed during the training of the model. This automated procedure randomly
subdivides the dataset into (k) smaller sets, and it uses (k − 1) sets to train the model and
one set to validate it. In this study, this procedure is repeated k = 10 times during the training
of the model. RF algorithms are also often used to identify the importance of each feature
based on their predictive power. When using ML models, a hyperparameter optimization
algorithm is used to set the optimal set of model parameters. The variables considered are:
(i) maximum depth of each tree, (ii) number of estimators (trees), (iii) maximum number
of features considered for node splitting, and (iv) the function to measure the quality of a
dataset split (criterion). In this study, the overall performance of the RF model is evaluated
by means of a residuals analysis. Residuals are computed as the difference of the natural
log of q/γB from the analytical procedure and that predicted using the RF model.

3. Results

This section presents the results of the application of the RF model presented in the
previous section. The RF model was trained and tested using the dataset summarized
in the “Dataset” section, with the input parameters shown in Table 1 and Figure 2. The
resulting RF model is published online and available in the DesignSafe [46] online data
repository [47]. The average cross validation score (which is a measure of the reliability of
the RF model) is 0.992. The training score (which describes how well the RF model predicts
the target in the training phase) is equal to 0.998. The testing score (which describes how
well the RF model predicts the target using the portion of the dataset excluded from the
training phase) is equal to 0.988. The overall score is 0.997. All of these scores are very high,
suggesting that the model works well in the parameter space covered by the data in the
used dataset. Another desirable feature of this model is that the cross validation, train, and
test scores are similar. This is proof that there is no model overfitting (a high train score
with a low test score would be present in case of model overfitting).

Figure 3 shows an ensemble representation of predictions made using the developed
RF model (crosses) and data points calculated using Equation (1) (circles). Figure 3 shows
both train and test data points used in the development of the model. A simple visual
inspection of Figure 3 suggests that predictions made using the RF model are consistent
with the target values. However, to better inspect the data and identify potential trends,
which would suggest model prediction biases, we also performed a residuals analysis. As
mentioned previously, residuals were computed as the difference of the natural log of q/γB
from the analytical procedure and that predicted using the RF model and are shown in
Figure 4. The analysis of Figure 4 confirms that the RF model is able to faithfully reproduce
the target results. This is evident by looking at binned means and standard deviation values.
The former do not have a persistent trend, although they tend to be more negative as γB/kt
increases. The latter show a low dispersion that is generally higher for γB/kt values greater
than 1.5. Based on this quantitative analysis, it is possible to conclude that the presented
RF model robustly captures the physical behavior of the system being analyzed and that it
can be confidently used for forward predictions analyses.
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Another important outcome of this study, which confirms the validity of using ML
models to analyze these types of problems, is the feature importance analysis. This analysis
presents the percentage importance of each model feature. These percentages are based on
the mean hierarchal position of each input feature in all of the decision trees comprising
the final model (i.e., the “forest”). Such analysis is very useful in the design phase of
engineering structures such as those analyzed in this study. Furthermore, they can support
funding allocation assessments that can be based on the importance of each analyzed
feature. Figure 5 presents the results of the RF-based feature importance analysis performed
in this study. The dimensionless ratio of the distance of the foundation from the edge and
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the width of the foundation is the most important input factor, weighing almost half of the
total feature percentage value. The second feature by importance is kh, which represents
the amplitude of the earthquake shaking. Interestingly, the dimensionless geosynthetic
factor is only ranked third. However, this feature still has a relatively high importance
(almost 15%). The fourth and least important feature is the slope of the reinforced structure,
which only accounts for less than 5% of the total importance. This last outcome may
seem counterintuitive as this parameter, when dealing with foundations on natural slopes,
significantly influences the bearing capacity of a foundation at the crest of a slope. This is
particularly true for foundations built adjacent to the slope (D = 0), in static conditions and
on natural slopes (e.g., [44]). However, the case analyzed in this paper considers completely
different conditions (distance from the edge of the slope, seismic conditions, and presence of
stabilizing forces represented by geosynthetics) from those typically analyzed when looking
at natural slopes. Therefore, under these conditions (this is no longer a natural slope at a
fixed distance from the crest, but rather a reinforced slope by means of geosynthetics with
variable distance from the crest), the slope angle becomes less influential when analyzing
the bearing capacity of a shallow foundation positioned on its crest. These results are very
important as they indicate that, when designing these structures, their slope is almost non-
important on the seismic bearing capacity. Given that D/B is usually a given quantity (the
footing location with respect to the edge of the reinforced structure is usually fixed), when
allocating funding in the design phase, a stronger emphasis should be placed on the seismic
hazard characterization (which relates to kh) and to the reinforcement characteristics.
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4. Use of the Cloud-Based Prediction Tool and Example Case Study

This section illustrates where to find and how to use the presented model within
robust engineering frameworks. The RF-based prediction tool developed and presented in
this study is publicly available in the cloud on the cyber-infrastructure DesignSafe [46,47].
The tool was implemented as an interactive Jupyter Notebook. Its interface is intuitive and
can be ran by simply running the code from the Jupyter Notebook console. The following
input information are necessary to run the algorithm: β, D, B, γ, kt, and kh. To further
verify the proposed model, using the cloud-based tool available on DesignSafe, a case study
previously presented by Ausilio et al. [38] is analyzed and discussed. The input parameters
used in this case study are: β = 45◦, D = 6 m, B = 2 m, γ = 17 kN/m3, kt = 34 kPa, and
kh = 0.2. They produce the following dimensionless model input parameters: D/B = 3 and
γB/kt = 1. The RF model, as implemented in the cloud-based tool, provides a final bearing
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capacity value of 511 kPa. This solution matches the result obtained using the Ausilio [18]
solution. This value is obtained instantaneously after entering the input parameter and
is shown as output in the Jupyter Notebook, as well as a file contained in the DesignSafe
project folder, called “Output.txt.” This auto-generated file contains all input parameters,
as well as the final result. It also provides a log of user’s actions and any error messages
that may arise from wrong use of the tool (including dimensionless input parameters out
of the parameters space).

The proposed algorithm, as implemented in the cloud [47], can be readily used to
define the bearing capacity (q) value corresponding to any shallow foundation positioned
near the crest of a slope reinforced by means of geosynthetics in static and seismic conditions.
However, engineers may want to solve this problem within a performance-based design
framework. This is a viable approach when, for example, the seismic coefficient is very
high (e.g., for long return periods, corresponding to more intense design ground motions).
In these cases, it may be more reasonable to accept that the structure being designed
would suffer an acceptable level of permanent displacements. The proposed model can
be used in such a framework too. To do so, users will need to first define a target bearing
capacity value (q). Then, the seismic yield coefficient (ky) will need to be calculated by
iterations. Alternatively, ky can be calculated using the solution of Ausilio et al. [38].
Armed with ky and one or more scenario earthquake time series, users can calculate the
corresponding permanent displacement by means of the conventional Newmark’s sliding
block procedure (or surrogate models). If the resulting permanent displacement is higher
than a tolerable threshold (which has to be pre-defined based on the importance/type of
the structure and/or infrastructure system being analyzed), then a higher value of the
seismic bearing capacity can be obtained by changing design inputs such as the tensile
strength of the reinforcements.

5. Discussion and Conclusions

This paper investigates the potential of using RF techniques in predicting the seismic
bearing capacity of a strip footing resting on geosynthetic-reinforced soil structures. It
also provides a critical view on the most important parameters affecting this engineering
problem. Finally, it presents a robust engineering workflow on how to use the presented
model, using a direct approach and within a performance-based design framework. The
RF model presented in this study is based on data obtained using a robust limit analysis
approach [18]. The resulting dataset comprises more than 700 data points, sampling a wide
range of typical input parameters. The final model developed in this study relies upon four
composite input parameters: (1) D/B, (2) β, (3) kh, and (4) γB/kt. These parameters were
used in legacy models (e.g., [18]).

The main outcomes of this study are summarized and discussed in the remainder of
this section. The presented RF algorithm works well in predicting the ultimate seismic
bearing capacity of the strip footing resting on geosynthetic-reinforced soil structures.
The model developed in this study is publicly available [47] and can be readily used in
future forward prediction analyses. Such analyses can be performed by directly calculating
the seismic bearing capacity of the analyzed system (i.e., directly using the cloud-based
implementation of the presented RF-based prediction model [47]), or by means of a rationale
performance based-design approach framework, which leverages the model presented in
this paper. The latter would need to be performed combining the RF model developed in
this study with the following items: (1) one or more scenario earthquake time series and
(2) a model to calculate earthquake-induced permanent displacements (e.g., Newmark-type
sliding block procedures or surrogate models).

By performing an RF-based feature importance analysis, the following outcomes,
on the relative importance of all input parameters used in this study, were obtained.
The dimensionless edge distance, the horizontal seismic intensity coefficient, and the
dimensionless geosynthetic factor play a major role in predicting the ultimate seismic
bearing capacity of strip footing located close the crest of geosynthetic-reinforced soil
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structures. However, for design purposes, where D/B is a fixed value, the amplitude of the
earthquake and the geosynthetic reinforcement characteristics would be dominant factors.
The slope of the reinforced structure is the least important input feature (among those
considered in this study).

The results presented in this study confirm and reinforce the idea that ML models
in general, and RF algorithms in particular, can and should be leveraged when complex
geotechnical engineering problems need to be solved. This is especially so when large,
high-quality datasets are available.
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