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Abstract: Within the last century, the global sea level has risen between 16 and 21 cm and will likely
accelerate into the future. Projections from the Intergovernmental Panel on Climate Change (IPCC)
show the global mean sea level (GMSL) rise may increase to up to 1 m (1000 mm) by 2100. The
primary cause of the sea level rise can be attributed to climate change through the thermal expansion
of seawater and the recession of glaciers from melting. Because of the complexity of the climate and
environmental systems, it is very difficult to accurately predict the increase in sea level. The latest
estimate of GMSL rise is about 3 mm/year, but as GMSL is a global measure, it may not represent
local sea level changes. It is essential to obtain tailored estimates of sea level rise in coastline Florida,
as the state is strongly impacted by the global sea level rise. The goal of this study is to model the sea
level in coastal Florida using climate factors. Hence, water temperature, water salinity, sea surface
height anomalies (SSHA), and El Niño southern oscillation (ENSO) 3.4 index were considered to
predict coastal Florida sea level. The sea level changes across coastal Florida were modeled using both
multiple regression as a broadly used parametric model and the generalized additive model (GAM),
which is a nonparametric method. The local rates and variances of sea surface height anomalies
(SSHA) were analyzed and compared to regional and global measurements. The identified optimal
model to explain and predict sea level was a GAM with the year, global and regional (adjacent basins)
SSHA, local water temperature and salinity, and ENSO as predictors. All predictors including global
SSHA, regional SSHA, water temperature, water salinity, ENSO, and the year were identified to have
a positive impact on the sea level and can help to explain the variations in the sea level in coastal
Florida. Particularly, the global and regional SSHA and the year are important factors to predict sea
level changes.

Keywords: climate change; sea level rise; Florida coast; statistical modeling; nonparametric methods;
generalized additive models

1. Introduction

The global sea level has risen about 20 cm in the last century [1,2], and Intergovern-
mental Panel on Climate Change (IPCC) projections show an expedited increase in the
global mean sea level (GMSL) [3–5]. The accelerated sea level rise is mainly due to the
thermal expansion of seawater and the recession of glaciers from melting attributed to
climate change. The modeling and prediction of sea level rise is a challenging problem
due to the complexity of climate and environmental factors impacting sea level changes.
The latest GMSL rise estimate is about 3 mm/year, which does not represent the sea level
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variations in localized areas. In Florida, there are 8436 miles of coastline, all of which are
directly affected by sea level rise. Displacement, infrastructure, and city planning, along
with rapid population growth, make it imperative to gain a better understanding of sea
level rise in this area.

GMSL, Global Surface Temperature Changes (GSTC) relative to 1850–1900, and the
September Arctic Sea Ice Area (SASIA) are depicted in Figure 1. GMSL has risen between
16 and 21 cm within the last century [1,2] and will likely accelerate in the future. For
example, projections by the IPCC depicted in Figure 1 indicate that the global mean sea
level may increase up to 1 m by 2100 [3–5]. The projections represent five different scenarios
of Shared Socio-economic Pathways (SSPs) based on four factors including sustainable
development, regional competition, inequality, and fossil-fuel consumption [4].

Geosciences 2023, 13, x FOR PEER REVIEW 2 of 20 
 

 

variations in localized areas. In Florida, there are 8436 miles of coastline, all of which are 
directly affected by sea level rise. Displacement, infrastructure, and city planning, along 
with rapid population growth, make it imperative to gain a better understanding of sea 
level rise in this area. 

GMSL, Global Surface Temperature Changes (GSTC) relative to 1850–1900, and the 
September Arctic Sea Ice Area (SASIA) are depicted in Figure 1. GMSL has risen between 
16 and 21 cm within the last century [1,2] and will likely accelerate in the future. For ex-
ample, projections by the IPCC depicted in Figure 1 indicate that the global mean sea level 
may increase up to 1 m by 2100 [3–5]. The projections represent five different scenarios of 
Shared Socio-economic Pathways (SSPs) based on four factors including sustainable de-
velopment, regional competition, inequality, and fossil-fuel consumption [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Selected indicators of global climate change under five models/scenarios used in IPCC 
2021[4]. 

Figure 1. Selected indicators of global climate change under five models/scenarios used in IPCC
2021 [4].

The primary cause of the global increase in sea level can be attributed to climate change
through the thermal expansion of seawater and the recession of glaciers from melting [6,7].
However, estimating local and regional sea level rise is a difficult task because of the
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complexity of climate and environmental factors that influence its change. The latest global
mean sea level rise estimate indicates that it has increased to about 3.7 mm/year (for the
period 2006–2018, Figure 1) [8,9]. However, this rate has considerable local and regional
variability that depends on both environmental and climate factors [8,10].

Given its extensive shoreline and large coastal population, Florida is of particular
concern with respect to SLR. Hence, it is essential to discern whether or not SLR trends
in Florida are consistent with the global rates. The Florida coastline comprises two ocean
basins, the Atlantic and the Gulf of Mexico (GOM). In addition, the landmass of Florida
is sinking, which increases the threat of local flooding especially during high impact
events such as tropical cyclones. GMSL is projected to rise between 0.3 and 0.7 m by 2060
relative to 1850–1900, depending on the SSP [3,4]. Approximately two-thirds of the global
coastline is projected to have regional SLR within +/−20% of the global mean increase
(Figure 1). Hence, even for midrange GMSL projections (i.e., on the order of 0.75 m by
2100) this represents a substantial difference of about 30 cm. The localization of projected
SLR is an active and challenging area of research [11–17]. This process typically involves
observations from in situ tide gauges and satellite altimetry, which can be used to evaluate
and/or calibrate GCM projections.

Previous sea level studies in Southeastern United States suggest that temperature,
salinity, and El Niño are relevant factors in this region [18]. Large-scale weather patterns
(winds) can also help to explain some of the observed (decadal) variability in coastal sea
level. Furthermore, a number of recent studies indicate that global SLR has accelerated
during the past several decades [19–21]. The implications of SLR on the region and the
direct threat that it poses to populated coastal areas are significant. In particular, there are
8436 miles of vulnerable coastline that is susceptible to flooding in Florida while, according
to the US Census, 16 million Floridians—or three-quarters of the state’s population—live in
coastal counties. Florida’s population growth ranked second in the nation—adding almost
a quarter of a million residents in 2021. However, despite the increasing threat to coastal
infrastructure and population, Florida sea level studies are a decade old [3,18,22–24].

The objectives of this study are to (1) compare estimates of local sea level rise along
the Florida coastline with the global estimates of sea level rise and to (2) model the sea
level in coastal Florida using climate factors. A schematic of the proposed work is depicted
in Figure 2, demonstrating the required tasks from data collection to modeling. Satellite
altimetry and climate factors including water temperature, water salinity, El Niño southern
oscillation, and basin-scale sea level trends are collected to implement a predictive model
of sea level at selected tide gauge locations along the Florida coast. The local rates of
sea surface height were compared to regional and global measurements, and the sea level
changes across coastal Florida were then modeled using both parametric and nonparametric
methods.
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Figure 2. Schematic of the required steps of the proposed approach for modeling and prediction of
sea level in coastal Florida.

2. Data Description

The focus of this study corresponds to the altimetry record that extends about three
decades beginning in 1992 and comprises a series of four satellites (TOPEX/Poseidon, Jason-
1, Jason-2, and Jason-3) [25]. For this study, gridded SSHA data on a 1/6th degree grid and
5-day intervals were extracted from the NASA PODAAC server [26]. The anomalies are
derived from a spatiotemporal mean map of SSH, which is computed using the average
of the grids from all available years (1992–2019), then subtracted from individual grid
values (the new data) to estimate the sea surface height anomalies. The SSHA (Figure 3) are
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corrected for an inverse barometer effect [27] but are not adjusted for isostasy effects (ocean
deepening), which increase global rates of sea level change on the order of 0.3 mm/year [28].
Also, altimeter data near the coast are prone to error from land contamination of the
radiometer, tidal impacts, and data interpolation issues [26]. Hence, direct comparison
with the tide gauges is important. The tide gauge data were obtained from the Permanent
Service for Mean Sea Level (PSMSL) web interface (Holgate et al., 2013; PSMSL, 2023).
Based on the analysis of sea-level pressure data, atmospheric pressure changes have been
reported to not have any significant trend [29], and numerous studies of GMSL using tide
gauges applied no corrections for the inverted barometer effect as this correction is small
on century time scales [30].
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Two environmental factors, water temperature and salinity (Practical Salinity Units, PSU),
were obtained from the Estimating the Circulation and Climate of the Ocean (ECCO) Version
4 Release 4 (R4) providing the latest ocean state estimate product [31–33]. The simulations
were performed using the Massachusetts Institute of Technology general circulation model
(MITgcm). When available, the model output has been fit to in situ and satellite observations
(sea level, sea ice, temperature/salinity profiles, SST, dynamic topography) using linear
regression [34]. The gridded output is available at depth (50 levels) to about 6000 m. However,
only the uppermost model level (5 m depth) is used here. Temperature and salinity are
important as they impact both sea level and ocean circulation. The horizontal resolution
varies spatially from 22 to 110 km, with the resolution increasing in high latitudes. The ECCO
temperature and salinity data depict variability along the Florida coastline (Figure 4).

El Niño has both global and regional impacts on sea level. El Niño or La Niña
events are defined when the El Niño 3.4 SST anomalies exceed +/−0.5C for a period
of 5 months or more. At large scales, precipitation is reduced over land, and there is
less evaporation over the ocean, which increases the GMSL. El Niño can also have a
significant impact on the regional weather. For example, in the SE US, it affects the
genesis region and path of extratropical cyclones over the eastern GOM by shifting the
Northern Hemisphere storm tracks toward the equator and downstream [35–37]. As a
result, coastal sea level variability in the northern and eastern GOM tends to increase
(October to March) with extreme sea level anomalies occurring during the ENSO warm
phase [38]. Factors responsible for the variability include increased runoff from land-
based precipitation, sea level pressure anomalies, and winds [36]. Here, the ENSO 3.4
index is used to account for the effects of El Niño events in the statistical modeling. The
data (available at https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
(accessed on 26 June 2021)) comprise a monthly timeseries from 1870 to 2020, based on sea
surface temperature anomalies over the equatorial Pacific from 5N to 5S and 120 to 170W.

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
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Tide Gauges Versus Altimetry

Using the SSHA at the nearest altimetry grid point, the SLR trends (1993–2019) were
calculated and compared with in situ tide gauges at 15 Florida locations (Figure 5). Altime-
try and tide gauge values for 15 Florida locations in this study along with the absolute
percentage error are listed in Table 1. Due to the satellite land mask, the two are not
co-located with nearest neighbor distances varying from 4 km to 40 km (with an average
separation of approximately 16 km). In order to compare with the PSMSL data, the SSHA
were upscaled to monthly averages. In general, the trends are higher for the tide gauges
at all but three locations (Apalachicola, Naples, and Fernandina Beach). The differences
are small at both Naples and Apalachicola (0.1 and 0.3 mm/yr, respectively), while the
altimeter rates are substantially higher with respect to Fernandina Beach (2.2 mm/yr).
The tide gauge trends at both Fernandina and Mayport (located close to each other) are
relatively low (2.8 and 3.5 mm yr−1, respectively). However, the SLR rates are quite high
for the Lake Worth tide gauge (7.2 mm yr−1, beginning in 2010) and the altimetry (8.8 mm
yr−1) for the overlapping period of 2010–2019. Because of the relatively short time series,
Lake Worth was excluded from the linear regression. Fernandina Beach was an outlier and
hence was excluded (the tide gauge is tucked inside an inlet near the confluence of the
St. Mary’s and Amelia rivers). The regression yields an R2 value of 0.49, an intercept of
2.55 mm yr−1, and a slope of 0.55. The discrepancy between the gauge and altimeter
decreases by increasing trends.

Because tide gauges actually record the sea level in situ, they are generally considered
as more accurate for sea level measurements [39]. However, a drawback of tide gauge
measurements is that the changes in the sea surface are recorded relative to the land. Hence,
in order to obtain a true sea level signal, vertical movements must be estimated to adjust
the tide gauge measurements [40].

www.unidata.ucar.edu/software/idv
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Table 1. Comparison between altimetry and tide gauge values, including their average, standard
deviation, and absolute percent error.

Location (FL) Altimetry Tide Gauge Average Std. Deviation Abs. Percent Error

Pensacola 4.5 5.6 5.05 0.778 0.218
Panama City 4.3 5.0 4.65 0.500 0.150

Panama City Beach 4.7 4.8 4.75 0.071 0.021
Apalachicola 4.7 4.4 4.55 0.212 0.066

Cedar Key 3.1 5.0 4.05 1.344 0.469
Clearwater Beach 5.3 6.0 5.65 0.495 0.124

St. Petersburg 4.3 4.8 4.55 0.354 0.110
Fort Meyers 4.5 5.1 4.8 0.424 0.125

Naples 4.6 4.5 4.55 0.071 0.022
Key West 3.4 4.2 3.8 0.566 0.211
Vaca Key 4.4 5.2 4.8 0.566 0.167

Virginia Key 4.1 4.9 4.5 0.566 0.178
Lake Worth Pier 8.8 7.2 8.0 1.130 0.200

Mayport 2.3 3.5 2.9 0.849 0.414
Fernandina Beach 5.0 2.8 3.9 1.556 0.564

3. Methods

Initially, multiple linear regression was used to model the sea level variations. Multiple
regression is a parametric method that can be used to model a response (here, sea level
rise) based on various predictors (and their potential interactions). The standard multiple
regression assumes a simple form for the following:

E
[
Y
∣∣X1, X2, ..., Xp

]
= β0 + β1X1 + β2X2···+ βpXp (1)
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where Y is the response, X1, X2, ..., Xp are p predictors, and β0, β1, β2, ···, βp are the coeffi-
cients of the predictors [41]. Six factors, including the year, global SSHA, regional SSHA,
water temperature, water salinity, ENSO, and each of their interactions were considered to
model sea level rise.

Generalized additive model (GAM) was also used to model the sea level variations.
GAM is a nonparametric model in which the response is modeled as the sum of the
smoothed functions of the predictors [42–44]. This adds substantial flexibility over multiple
regression in modeling sea level variations because the trend of each predictor is separately
modeled and added to discover the trend of the response. GAM is a generalization of the
additive model defined with the following:

E
[
Y
∣∣X1, X2, ..., Xp

]
= f0 +

p

∑
j=1

f j(Xj) (2)

where f0 is the intercept, and f j(·), j ∈ [1, p] are smoothing functions [43]. In the case of a
single predictor, the model becomes the following:

E[Y |X] = f (X) (3)

where the constant term f0 is suppressed and placed into the function. The smoothing
function f (X) can be estimated from the data using a reasonable estimate of E[Y |X = x].
One way of estimating the expectation is by using nonparametric local average estimates:

f̂ (xi) = yi =
∑j∈Ni

yj

n
(4)

where f̂ (xi) is the estimator of the smoothing function, xi is the ith realization of X out
of a total of n realizations, Ni is the neighborhood of xi, |Ni| is the number of points in
the neighborhood Ni of span w, and yi is the average of yj’s for j ∈ Ni. The type of
neighborhood considered here is the symmetric nearest neighborhood:

Ni =

{
max

(
i− (wn)− 1

2
, 1

)
, · · · , i− 1, i, i + 1, · · · , min (i +

(wn)− 1
2

, n )
}

(5)

where Ni has wn points, and it is assumed that wn is odd. The neighborhood becomes
truncated at the endpoints if there are not at least ((wn)− 1)/2 points available. This
truncation is shown in the smoothing matrix in Figure 6 where span w = 0.5 and n = 10.
In the first row, each of the points included only have a neighborhood of 3 points available.
When the smoothing function is estimated using local averaging, large bias occurs at the
endpoints. This bias is because of the truncation at the endpoints, as seen in Figure 6. To
address this, a parametric local linear regression can be used in place of the local averaging:

f̂ (xi) = β̂0i + β̂1ixi (6)

where β̂0i and β̂1i are the least-squares estimates for the points within Ni:

β̂1i =
∑j∈Ni

(
xj − xi

)
yj

∑j∈Ni

(
xj − xi

)2 (7)

and
β̂0i = yi − β̂1ixi (8)

where xi and yi are the following:

xi =
∑j∈Ni

xj

n
, yi =

∑j∈Ni
yj

n
(9)
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The local linear regression estimate of the smoothing function is dependent on the
neighborhood Ni. Shrinking the neighborhood causes the systemic or bias component of
the estimation error to decrease, and increasing the neighborhood sample size will decrease
the variance component of the error [45]. The span size w of Ni has a large impact on the
estimate. The value of the span should be between 1/|Ni| and 2 to trade off the bias and
variability of the estimate [43,44]. The neighborhood contains only xi for w = 1/n and
f̂ (xi) = ŷj = yi. This means the estimate will have a high variance, as each smoothed
point will be equal to its corresponding yj value and no smoothing will have occurred.
When w = 2, f̂ (xi) becomes the global least-squares regression line, which means that the
estimate may be biased. This is because Ni will contain all points. The estimate will be too
smooth, as any curvature of the underlying function will not be included. A data-based
criterion can be used to select the span of Ni if the estimates of E[Y|X] are considered as
local minimizers of the integrated prediction squared error (PSE):

PSE = E [ (Y− f (X ))2 ] (10)

where PSE is the squared error between the true response values and the smoothed predic-
tor values.

Generalized additive models (GAM) draw from both the generalized linear model
(GLM) and the additive model [42,44]. GAM generalizes the linear predictor, Y, as the
following:

η = g(µ) = f0 +

p

∑
j=1

f j
(
Xj

)
(11)

where η is the systematic component of the model, g(·) is the link function, and f j(·),
for j ∈ [1, p], are the smoot functions. The estimates for each f j(·) are found using
nonparametric smoothers such as cubic splines or local (nonparametric) linear regression.
The measurements used to analyze GAM in this study were the adjusted R2 (R2

Adj) and

Akaike Information Criterion (AIC). The R2
Adj is calculated with the following:

R2
Adj = 1−

(
1− R2)(n− 1)
(n− p− 1)

(12)

where n is the total sample size, and p is the number of independent variables. The AIC is
calculated with the following:

AIC = −2ln
(

L
(
θ̂
)
+ 2m (13)

where L
(
θ̂
)

is the maximum likelihood value for the model, and m is the number of
estimated variables [32,46]. Both R2

Adj and AIC quantify goodness of fit, with a high (R2
Adj)

or low AIC signifying a model that fits the data well.
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To provide visualizations for the GAM, graphical representations of the GAM were
smoothed using loess. Loess is a type of smoothing function based on locally weighted
polynomial regression in which the dependent variable is smoothed as a function of the
independent variable(s). The estimate, ĝ(x), provided by the loess smoother is a linear
combination of the yi :

ĝ(x) =
n

∑
i=1

li(x)yi (14)

where li(x) depends on the predictors xk, k ∈ {1, 2, · · · , n} [47,48].
Given the six potential predictors, there are 57 possible combinations to use in GAM.

All of model variations were run separately at each of the 15 locations. For each of the 57
variations, both the adjusted R-squared and AIC values were averaged across all tested
locations. The models were ranked from the highest to lowest average adjusted R-squared
and then from the lowest to highest average AIC to identify the optimal model for all
locations. After determining that the optimal model included the year as a predictor, the
model was modified to exclude year as a factor for all locations to check if a less ambiguous
model would fit the data just as well, since year is often considered a proxy variable for
many environmental and climate factors.

4. Results

Examining the trend and variance of the SSSHA data in the initial analysis led to the
confirmation that the global mean sea level (GMSL) rate is about 3 mm/year (not adjusted
for isostacy), as seen in Figure 7. Local sea level rise in Florida exceeds GMSL at 14 out
of 15 of the selected locations and ranges from about 2.5 mm/year (Mayport) to about
5 mm/year (Apalachicola). Local variability ranges from about 2000 (Lake Worth) to about
6200 (Apalachicola) mm2 and is greater than both regional and global variances.
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Figure 7. Sea surface height anomaly rate of change (trend) in mm/yr (a) and variance mm2 (b) across
the 15 selected Florida locations, as compared to the Gulf of Mexico (green line), North Atlantic Ocean
(orange line), and global mean sea level (red line).

First, multiple regression was used to model the sea level rise for the selected locations
along the Florida coast. The full multiple regression model with all predictors is as follows:

E[Local SSHA] = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 (15)

where x1 is year, x2 is regional SSHA, x3 is global SSHA, x4 is ENSO, x5 is water temperature,
and x6 is water salinity. The multiple regression model for Pensacola is depicted in Figure 8
(top). The multiple regression model with the lowest average BIC of about −67 is as follows:

E[Local SSHA] = β0 + β1x1x2 + β2x1x3 + β3x3x4 + β4x2x4 + β5x5x6 (16)
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where the values x1, x2, · · · , x6 are the factors of the model. As seen in Figure 8 (middle),
the sea level data are fairly normal, and the multiple regression model provides a satis-
factory fit. However, a nonlinear trend is visible in the residual plot (Figure 8 (bottom)).
Additionally, the model consisted only of interaction terms between variables. Hence, a
nonparametric model, such as GAM, is more relevant to fit sea level data and was used for
modeling the nonlinear trends in sea level changes. The best model is selected based on
two goodness of fit criteria, R2

Adj and AIC. All six predictors including year, global average,
adjacent basin anomalies, water temperature, water salinity, and ENSO 3.4 Index were
identified as significant predictors in the selected GAM. This model will be abbreviated
as SLR-M1 (sea level rise model 1), standing for year, adjacent basin SSHA, global SSHA,
ENSO, salinity, and temperature.
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The average R2
Adj value for the selected locations was 0.86, with the lowest value of

0.70 for Mayport and the highest value of 0.95 for Pensacola (Table 2). The average AIC
value for the SLR-M1 model at each selected location was −137.61, with the highest being
−115.62 for Mayport and the lowest value of −159.05 for Pensacola (Table 2). The fitted
model using GAM from Lake Worth, FL with R2

Adj of 0.85 and AIC of −139.09 is depicted
in Figure 9 (Top Left). The assumptions for whether or not the conditions for this model
are met at that particular location are shown in Figure 9 (Top Right) and (Bottom).

Table 2. R2
Adj and AIC values obtained at different locations using the SLR-M1 Model.

Location (FL) R2
Adj AIC

Apalachicola 0.86 127.40
Cedar Key 0.77 133.49
Clearwater Beach 0.92 144.21
Fernandina Beach 0.95 153.74
Fort Myers 0.93 146.24
Key West 0.71 116.77
Lake Worth 0.85 139.09
Mayport 0.70 155.62
Naples 0.91 146.35
Panama City 0.90 141.47
Panama City Beach 0.92 150.77
Pensacola 0.95 159.05
St. Petersburg 0.89 132.59
Vaca Key 0.80 118.43
Virginia Key 0.87 138.86
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Figure 9. (Top Left) The optimal GAM (SLR-M1) fitted at Lake Worth, FL; the predicted values using
GAM (black dots); and the smoothed loess fit (blue line). Verifying the GAM assumptions for the
model at Lake Worth, FL: (Top Right) Normal Q—Q Plot; (Bottom) Residuals vs. fitted values.
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The fitted SLR-M1 GAM model to sea level data at Lake Worth, FL versus each
predictor is depicted in Figure 10 (black diamonds). The smoothed trend of each predictor
is obtained using loess (blue line). While the year does partially represent time, it is mostly
a proxy variable that includes other factors that may influence sea level change. Due to
this, we looked at a GAM that did not include year as a predictor. This new model will be
abbreviated as SLR-M2 (sea level rise model 2), standing for adjacent basin SSHA, global
SSHA, ENSO, salinity, and temperature. The adjusted R-squared values were lower (on
average) for all tested locations, with an average of 0.83, and the AIC values were on
average higher for all tested locations, with an average of −134.07 (Table 3). However, this
model is less ambiguous due to the omission of year as a predictor. The smoothed predictor
functions for this model fitted at Lake Worth, FL are shown in Figure 11.
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Figure 10. Predicted SSHA using the SLR-M1 GAM vs. individual predictors at Lake Worth, FL.
Predicted values using GAM (black dots) and smoothed trends obtained using loess (blue lines)
along with the associated confidence intervals (gray shading). Starting from top left and moving in
clockwise direction, predictors are year, North Atlantic (regional) SSHA (m), global SSHA (m), water
temperature (◦C), water salinity (PSU), and ENSO 3.4 Index.

Table 3. R2
Adj and AIC values obtained at different locations using the SLR-M2 Model.

Location (FL) R2
Adj AIC

Apalachicola 0.85 127.43
Cedar Key 0.75 151.50
Clearwater Beach 0.88 136.15
Fernandina Beach 0.95 155.60
Fort Myers 0.87 132.53
Key West 0.66 113.51
Lake Worth 0.85 139.81
Mayport 0.71 117.27
Naples 0.87 128.57
Panama City 0.88 139.89
Panama City Beach 0.93 152.31
Pensacola 0.95 161.07
St. Petersburg 0.80 119.58
Vaca Key 0.74 115.49
Virginia Key 0.88 140.37
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Figure 11. Predicted sea level trends using the SLR-M2 GAM vs. individual predictors at Lake
Worth, FL. Predicted values using GAM (black dots) and smoothed trends obtained using loess (blue
lines) along with the associated confidence intervals (gray shading). Predictors starting from top left
and moving in clockwise direction are North Atlantic (regional) SSHA (m), global SSHA (m), water
temperature (◦C), water salinity (PSU), and ENSO 3.4 Index.

Figure 12 shows a matrix of the response of the SLR-M2 model at every tested Florida
location in which the sea surface height anomalies (m) are modeled using the sum of
functions of the predictors. It is important to note that all but four of the locations show
an increasing trend for SSHA. Due to the sparseness of data points on the right side of
the plots, the gray confidence intervals widen, and some prediction clarity is lost. Hence,
predictions with a relatively high sum of predictions should be made with caution. Since
the SLR-M2 model does not account for time, this is indicative of the fact that while sea
level is increasing in Florida over time, time is not the only factor contributing to sea level
rise.
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Figure 12. A matrix of the predicted SSHA (m) using the SLR-M2 model for the Florida locations in
this study.

Figure 13 shows a comparison between the SLR-M2 GAM predicted SSHA and the
observed SSHA plotted as a function of time. For some of the locations, such as Pensacola,
FL in Figure 13a, the trend was very different for each of these two plots. This validates the
fact that the increasing/decreasing trends of SSHA are due to predictors other than year in
the SLR-M2 GAM. For other locations, such as Virginia Key, FL in Figure 13b, the trends
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for both plots were similar. This shows that sea level increases due to the other predictors
having a similar pattern to sea level rise over time.
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Figure 13. The predicted SSHA (m) using the SLR—M2 GAM (top row) and the observed SSHA time
series (bottom row) for Pensacola, FL (a) and Virginia Key, FL (b).

A matrix where the SSHA for each of the Florida locations was plotted as a function
of time is depicted in Figure 14. All of these plots in the matrix show an increasing trend
in sea level rise. This is a good indicator that there is an overall increasing trend of rising
sea levels in Florida. However, both the SLR-M1 GAM and the SSHA time series depicted
in Figure 14 seem to show that the increase in sea levels in coastal Florida becomes more
severe as time progresses.

Figure 15 shows the altimetry data from three tide gauge stations. These stations were
compared to each other to demonstrate the difference in sea level rise trends in Florida
and in Texas. The decompose () function in R was used to decompose the altimetry data
into trend, seasonal, and random components. An additive model is used to construct
the different components from the altimetry data. The trend component is constructed
using a moving average of the observed data. The seasonal component was constructed by
averaging the data. The random component is what is left over after removing the trend
and seasonal components from the observed data. The locations chosen for this comparison
were Pensacola, FL (Figure 15 (top)), Key West, FL (Figure 15 (middle)), and Corpus Christi,
TX (Figure 15 (bottom)). Pensacola is the closest tide gauge station to Corpus Christi, and
Key West is another Florida location used to compare to Corpus Christi.
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For each of the tide gauge locations, there is an increasing trend over time. It can be
seen that the Pensacola and Corpus Christi trends are similar, whereas the Key West trend
has less fluctuations with an overall increasing trend. Pensacola and Corpus Christi show
increasing trends after 2010, but this is not visible in Key West. However, all locations show
similar trends from 2010.

5. Discussion

The global sea level has risen between 16 and 21 cm within the last century. It is
predicted that this rate will be accelerated into the future due to climate change. The
primary causes of this increase in sea level can be attributed to the thermal expansion of
seawater and the recession of glaciers from melting. Projections from the IPCC show the
global mean sea level rise may increase up to 1 m by 2100. Yet, obtaining accurate estimation
of sea level rise is challenging because of the complexity of climate and environmental
factors. The latest GMSL rise estimate is about 3 mm/year that sums up to 231 mm by
2100. However, this estimate does not represent changes in local areas. In Florida, there
are 8436 miles of coastline, all of which is directly affected by sea level rise. Displacement,
infrastructure, and city planning, along with rapid population growth, make it imperative
to gain a better understanding of sea level rise in this area.

In this study, a model of sea level rise that takes into account altimetry, water tempera-
ture, water salinity, and El Niño southern oscillation (ENSO) 3.4 index for coastal Florida
was proposed. The local rates and variances of sea surface height anomalies (SSHA) were
analyzed and compared to regional and global measurements. The sea level changes across
coastal Florida were modeled using both multiple regression and GAM. Both the SLR-M1
GAM and the SLR-M2 GAM show that water temperature, salinity, and ENSO 3.4 are
all relevant factors for predicting sea level change in Florida. Alongside the significance
of the climate and environmental factors, all of the Florida stations have an increasing
trend in sea level rise (Figure 14). This suggests that the Florida coast has a greater rate of
sea level rise than the global mean sea level rise. The climate and environmental factors
in the model signify a relationship between local sea level rise and climate change. Due
to the accelerating climate change effects, the SLR-M1 GAM suggests that the local sea
level rise will also accelerate. The SLR-M2 GAM also suggests that time is not the driving
factor behind sea level rise. As seen in Figure 12, most of the GAMs for the coastal Florida
locations have an increasing trend in sea level rise. This indicates that the climate and
environmental factors are contributing to the increasing rate of sea level rise.

The SLR—M1 GAM and SLR—M2 GAM also show that regional and global SSHA
contribute to local sea level changes. Sea level changes in larger-scale systems are reflected
in the sea level changes in smaller-scale systems and can be used to improve predictions
for those smaller systems. Although local variations are comparable across coasts, the local
sea level variations are higher than both regional and global variations (Figure 7). This
indicates that there is more variability in sea level rise on the local level than there is on a
larger scale.

6. Conclusions

While global estimates for sea level rise provide a general trend that can be used in
planning and policy making [4], local estimates would provide more accurate estimates to
prepare and plan. Additionally, there is a noticeable jump in the trend across all Florida
locations in 2011 (Figure 14) that is not present in other nearby geographical locations (for
example, Corpus Christi, TX, Figure 15 (bottom)). Due to its relative recency, this jump has
not been extensively covered by previous climate change reports in the region. Further
investigation of the sea level change in this period in the Florida region would be helpful
for understanding additional factors that could lead to rising sea levels in the state and
would contribute to the body of knowledge on sea level rise in the general southeastern
region of the United States.
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Factors such as average monthly winds, atmospheric pressures, and coastal currents
have been found to be significant in sea level changes based on previous studies [41]. Hence,
to improve the proposed models in this study, additional climate and environmental factors
will be considered in our future work. Moreover, using tide gauge data as “ground truth”,
in addition to the altimetry data, would provide a more accurate SSHA model [46,49]. The
15 locations along the Florida coast were selected specifically so that this study can be
replicated with tide gauge data. Repeating this study with tide gauges would also align
the results with previous sea level reports from Florida.
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