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Abstract: El Olivo Cave (Pruvia de Arriba, Llanera, Asturias, Spain) is a small karst cave located in the
Aboño River basin and formed in the Cretaceous limestone of the Mesozoic cover of the Cantabrian
Mountains (north of the Iberian Peninsula). It contains an important upper Pleistocene sedimentary,
archaeological, and paleontological record, with abundant technological evidence and faunal remains.
The archaeological record shows a first occupation that could correspond to the Middle Paleolithic and
a second occupation in the Middle Magdalenian. The stratigraphic sequence inside and outside the
cave was studied with geoarchaeological methodology. In this paper, the lithostratigraphic sequence
is analyzed, and the data from the granulometric, mineralogical, edaphological, and radiometric
analyses are presented. The results of these analyses enable an accurate interpretation of both the
lithostratigraphy of the deposit and the processes responsible for its formation and subsequent
evolution. The available numerical dates allow us to locate the first sedimentation episode in the cave
in OIS 7a, in the Middle Pleistocene, the base of the outer fluvial sedimentation in the cold OIS 3a
stage of the Upper Pleistocene and the Magdalenian occupation in the Last Glacial Maximum (OIS 2)
at the end of the Late Pleistocene.

Keywords: karst; cave sediments; upper Pleistocene; Cantabrian zone; Northern Iberia

1. Introduction

El Olivo Cave is situated in the Cantabrian Region, northern Iberian Peninsula
(Figure 1A), at UTM coordinates (Zone 30 N; ETRS89) X. 275,133 Y. 4,815,338, and an
altitude of 145 m a.s.l. The cave is 10 m long and has an entrance 2 × 3 m in diameter. It
formed in Mesozoic limestone. The cave is close to the Cabornio stream, belonging to the
Aboño River basin (123 km2 in size), which flows towards the N (Figure 1).
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Figure 1. (A) Location of El Olivo Cave in the northern Iberian Peninsula. (B) Geological areas in 
the surroundings of the cave, which is in the Aboño River basin. Geology after. The red rectangle 
indicates the studied area of Venta de Puga. (C) Orthophotography of the Puga sales studio area, 
where the El Olivo Cave is located. 

The cave, well known by the locals, was used as a refuge during the Spanish Civil 
War (1936–1939). Even though a speleological group explored and inventoried El Olivo 
Cave in 1985, an archaeological exploration of the cave was never carried out. In July 2012, 
a survey was carried out in El Olivo due to the excavation of the open-air Mousterian site 
of El Barandiallu, located about 3 km to the west of the cave [1]. In this first year, a test pit 

Figure 1. (A) Location of El Olivo Cave in the northern Iberian Peninsula. (B) Geological areas in
the surroundings of the cave, which is in the Aboño River basin. Geology after. The red rectangle
indicates the studied area of Venta de Puga. (C) Orthophotography of the Venta de Puga study area,
where the El Olivo Cave is located.

The cave, well known by the locals, was used as a refuge during the Spanish Civil War
(1936–1939). Even though a speleological group explored and inventoried El Olivo Cave
in 1985, an archaeological exploration of the cave was never carried out. In July 2012, a
survey was carried out in El Olivo due to the excavation of the open-air Mousterian site
of El Barandiallu, located about 3 km to the west of the cave [1]. In this first year, a test
pit was excavated to verify the existence of a Paleolithic deposit. Between 2013 and 2017,
systematic archaeological fieldwork was conducted in the cave (Figures 2 and 3) [1–5].
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(B), and interior of the cave showing the excavated areas (the numbers 6 and 7 and capital letters D, 
E and F indicate the names of the excavation squares) (C). 

In this paper, we present the results of the geoarchaeological investigations carried 
out in El Olivo Cave, which reveal complex fluviokarstic evolution of its sedimentary fill, 
at the same time that they show important action of external geomorphological agents 
during the Last Glacial Maximum (LGM) and the Late Glacial period in this sector of the 
northern coastal strip of the Iberian Peninsula, as also occurs in other deposits with similar 
chronology, such as Bañugues (Gozón, Asturias) [6,7] and El Barandiallu (Llanera, Astu-
rias) [1,8,9]. 

Figure 2. General view with the location of El Olivo Cave ((A), yellow arrow), detail of its access (B),
and interior of the cave showing the excavated areas (the numbers 6 and 7 and capital letters D, E
and F indicate the names of the excavation squares) (C).

In this paper, we present the results of the geoarchaeological investigations carried
out in El Olivo Cave, which reveal complex fluviokarstic evolution of its sedimentary fill,
at the same time that they show important action of external geomorphological agents
during the Last Glacial Maximum (LGM) and the Late Glacial period in this sector of
the northern coastal strip of the Iberian Peninsula, as also occurs in other deposits with
similar chronology, such as Bañugues (Gozón, Asturias) [6,7] and El Barandiallu (Llanera,
Asturias) [1,8,9].
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The objective of this work is threefold: (i) to develop the evolutionary geoarchaeo-
logical model of El Olivo Cave karst and its surroundings, (ii) to characterize the archae-
ological site geoarchaeologically, and (iii) to establish the chronostratigraphy of its depos-
its. This geoarchaeological study addresses the following aspects: 
Study of the sedimentary sequence of the archaeological site; 
Interpretation of the formation and transformation processes that gave rise to the current 
configuration of its archaeological record; 
Differentiation, to the extent possible, of natural processes (N transforms) and/or cultural 
processes of anthropic origin (C transforms) [10]; 
Identification of sedimentary processes; 
Identification of diagenetic and postdepositional processes [11]; 
Establishment of the geoarchaeological evolution of the site. 

 
Figure 3. El Olivo Cave plan [4], with indication of the excavation grid and the excavated squares 
(in gray) (numbers and capital letters indicate the names of the pexcavated squares; black arrows 
indicate slopes). 

2. Materials and Methods 
The applied work methodology combined geological, geomorphological, geoarchae-
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El Olivo Cave and its surroundings and the archaeosedimentary fill at the site. 

2.1. Geomorphology 
To understand the origin and development of El Olivo Cave and the local landscape 

evolution during the Pleistocene, the geomorphology of the cave and its surroundings 
were mapped using a combination of photo interpretation, GIS tools, and fieldwork in 
ArcGIS 10.2 [12]. Specifically, the cave plan was created following the method outlined by 
Ballesteros et al. [13], which involves collecting survey data using the DistoX2 laser range-
finder [14] and processing it in Compass 5.09 software [15]. 

Figure 3. El Olivo Cave plan [4], with indication of the excavation grid and the excavated squares (in
gray) (numbers and capital letters indicate the names of the excavated squares; black arrows indicate
slopes).

The objective of this work is threefold: (i) to develop the evolutionary geoarchaeologi-
cal model of El Olivo Cave karst and its surroundings, (ii) to characterize the archaeological
site geoarchaeologically, and (iii) to establish the chronostratigraphy of its deposits. This
geoarchaeological study addresses the following aspects:

Study of the sedimentary sequence of the archaeological site;
Interpretation of the formation and transformation processes that gave rise to the current
configuration of its archaeological record;
Differentiation, to the extent possible, of natural processes (N transforms) and/or cultural
processes of anthropic origin (C transforms) [10];
Identification of sedimentary processes;
Identification of diagenetic and postdepositional processes [11];
Establishment of the geoarchaeological evolution of the site.

2. Materials and Methods

The applied work methodology combined geological, geomorphological, geoarchaeo-
logical, and geochronological techniques to establish the geomorphological evolution of El
Olivo Cave and its surroundings and the archaeosedimentary fill at the site.

2.1. Geomorphology

To understand the origin and development of El Olivo Cave and the local landscape
evolution during the Pleistocene, the geomorphology of the cave and its surroundings
were mapped using a combination of photo interpretation, GIS tools, and fieldwork in
ArcGIS 10.2 [12]. Specifically, the cave plan was created following the method outlined
by Ballesteros et al. [13], which involves collecting survey data using the DistoX2 laser
range-finder [14] and processing it in Compass 5.09 software [15].
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2.2. Lithostratigraphic Study

The geoarchaeological study of the site was carried out through the detailed analysis
and lithostratigraphic description of the archaeosedimentary sequences obtained in the
archaeological excavations located inside and outside the cave. These sequences were also
appropriately sampled for sedimentological and edaphological analyses, the results of
which are detailed below.

2.3. Sedimentological Analyses

Sedimentological analyses carried out involved the textural classification of the sedi-
ments using:

Laser granulometry for the fraction finer than 2 mm;
Phi granulometry for the total sediment, including the coarse section;
Mineralogical identification using X-ray diffraction (XRD) of the fraction finer than 0.63 mm.

These analyses were conducted at the Assistance Center for Research in Geological
Techniques at the Complutense University of Madrid.

The granulometric analysis was carried out following this protocol:

Suspension of a known quantity of each of the samples;
Sample disintegration;
Sieving at 700 µm, the upper limit of technical measurement capacity in laser granulometric
equipment;
Phi scale granulometry of the fractions greater than 700 µm with the 4, 2, and 1 mm mesh
size sieves;
Laser granulometry for fractions finer than 700 µm.

The laser granulometric analysis was carried out with Honeywell Microtrac x100 equip-
ment, with the capacity to measure fractions from 700 to 0.10 µm. The statistical treatment
of the granulometry data was performed with the GRADISTAT software version 8.0 [16,17],
which allows the sediment in the detrital samples to be grouped statistically into different
textural groups depending on the greater or lesser presence of gravel, sand, and mud
(silt and clay). To do this, we have applied the granulometric classification adopted by
the program that comes from the modification of the Udden (1914) [18] and Wentworth
(1922) [19] scales: pebbles (clasts with diameters greater than 64 mm), gravel (clasts with
diameters between 64 mm and 2 mm), sand (grains between 2 mm and 62 microns), silt
(grains between 62 and 2 microns), and clay (particles smaller than 2 microns).

A Brucker D8 ADVANCE model diffractometer was used to obtain X-ray diffraction
data. Disoriented dust diffraction diagrams to characterize the mineralogy of the total
sample were obtained in an angular interval from 2 to 65◦, a step size of 0.02◦, and a step
time of 1 s. Using Brucker’s EVA software, the semiquantitative analysis followed Chung’s
(1975) [20] method.

2.4. Soil Analyses

Soil analyses carried out in the Laboratory of Edaphology in the Department of Geol-
ogy and Geochemistry at the Autonomous University of Madrid consisted of determining
color, pH, total carbonates -CaCo3-, organic matter -OM-, organic charcoal -OC-, electrical
conductivity, salts, cation concentration, and osmotic pressure.

For the precise determination of the color -dry- the Munsell Soil Color Charts [21]
were used as a reference for an objective description and a standardized denomination. For
the color description, these tables use three basic parameters expressed in the following
order: hue + value + chroma.

The pH was measured following the Soil Science Society of America criteria [22] from a
soil:water = 1:2.5 ratio to obtain the current acidity since the soil, given its dynamics, is very
sensitive to changes in its evolution. One of the related factors to such modifications is the
hydrogen ion concentration. The concept of pH used here is the same as for true solutions
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despite being a heterogeneous system. Its measurement is a technique that, despite its
simplicity, acquires very useful routine data.

The addition of a known amount of acid that causes the dissolution of the carbonates
and the subsequent titration of the excess of added acid (acid not consumed) with a base
was used for the quantitative determination of inorganic charcoal. The primary reaction is
CaCO3 + 2HCl→ CaCl2 + CO2 + H2O.

The determination of total charcoal, including different forms of C presentation such as
carbonates, condensed forms, plant residues, etc., was calculated using the easily oxidizable
organic matter. For this reason, its determination was made via wet oxidation of organic C
by the excess of potassium dichromate in a strongly sulfuric medium, using the dilution
heat of this acid to facilitate oxidation according to the formula 3C + 2K2Cr2O7 + 8H2SO4
→ 2K2SO4 + 2Cr2(SO4)3 + 3CO2 + 8H2O. Excess of dichromate is titrated with ferrous
ammonium sulfate, (NH4)2Fe(SO4)2·6H2O, Mohr’s salt, in the presence of phosphoric acid,
using diphenylamine as the indicator.

2.5. Geochronology

Three different ages were determined using a speleothem, a cave fluvial deposit,
and a paleontological remain to establish the chronological framework for El Olivo Cave.
Flowstone on the cave walls was selected for dating using alpha-spectrometry at the U/Th
Geoscience Barcelona Institute-CSIC (Spain) laboratory. The flowstone was identified as a
perched ledge located 2.05 m above the cave floor (before archaeological excavation). To
obtain a sample for dating, the OL-3 sample was collected using a hammer and chisel, and
approximately 20 g of carbonate powder was extracted using a hand diamond drill in the
laboratory. The U and Th isotopes separation and purification procedures followed the
Bischoff et al. (1988) method [23] and the isotope electrodeposition method developed by
Talvitie (1972) [24], modified by Hallstadius (1984) [25]. The radioisotope concentrations
were determined using an ORTEC OCTETE PLUS spectrometer equipped with eight BR-
024-450-100 detectors developed by Ivanovich and Harmon (1992) [26]. The speleothem
age was calculated based on the time of analysis (the year 2017) using the Rosenbauer
(1991) method [27] and expressed in years before the time of analysis with an uncertainty
error of two standard deviations (2σ).

The sample OL-4 of cave fluvial deposits was dated using optically stimulated lu-
minescence (OSL) at the Institute of Geology Isidro Parga Pondal, University of Coruña
(Spain). To extract the sample, an opaque PVC tube (20 cm long, 55 mm diameter, and
4 mm wall) was driven into a homogeneous quartz-rich sand layer (OL.Exterior.3) at a
depth of 0.97 m. The tube was immediately covered with duct tape foil to prevent light
exposure and preserve humidity and sediment deformation. In the laboratory, samples
were processed under red light conditions. The sand in the tubes was dried, sieved, and
treated with HCl and H2O2 to remove potential carbonate and organic matter. Quartz
was separated from feldspar and heavy minerals using centrifugation and diluted in HF
to obtain pure quartz. The purity of the quartz was verified using infrared stimulated
luminescence (IRSL), and preheat and bleached-aliquot recovery tests were carried out
following the methods of Murray and Wintle (2003) [28]. OSL signals were recorded using
an automated RISØ TL/OSL-DA-15 reader equipped with a photomultiplier EMI 9635
QA (PMT) and a 90Sr/90Y source. A 6 mm thick Hoya U-340 filter was placed between the
aliquots and the PMT to measure the UV range emission. The single-aliquot regeneration
(SAR) protocol of Murray and Wintle (2000) [29] was applied to 35 multigrain aliquots to
estimate the equivalent dose (De) using the central age model [30] to date the sample. The
activity of radioisotopes (40K, 238U, 235U, and 232Th) was inferred using low background
gamma-ray spectrometry. Calcined and ground sediments were measured using a coaxial
Canberra XTRA gamma detector (Ge Intrinsic) model GR6022 within a 10 cm thick lead
shield. The alpha dose rate was neglected due to the HF etching step, the beta dose rate
was corrected [31], and the cosmic dose rate was estimated using the methods of Prescott
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and Hutton (1994) [32] and Guerin et al. (2011) [33]. The OSL age is expressed in years
before the time of analysis (the year 2009) with a corresponding 2σ uncertainty.

The third date was obtained through the AMS radiocarbon method at the Beta Analytic
laboratory, using a sample of fauna (from a medium-size ungulate) taken from Sublevel
OL.2b of the inner excavation. The conventional dating result was originally calibrated and
published using the INTCAL13 calibration curve [3,34], and it has now been re-calibrated
with INTCAL20 [35].

3. Geomorphology

El Olivo Cave is a limestone conduit with a rounded ceiling of phreatic/epiphreatic
origin (Figure 4A), suggesting the formation of the cave passage at a paleo-water table.
Cave walls exhibit flowstone preserved as ledges perched 2 m above the detrital infill
(cave floor) containing the archaeomaterials (Figure 4B–D). The flowstone would have
precipitated on a detrital deposit, partially or totally removed later by natural erosion.
Therefore, the perched flowstone marks the occurrence of an earlier cave infill (represented
as the former cave floor in Figure 4C). A sample has been taken from this flowstone for
dating using the U/Th method. Afterward, a period of fluvial incision occurred because El
Olivo Cave is 13 m higher than the Cabornio stream belonging to the Aboño River system
(Figure 4C). The present cave infill is detailed in Section 4 and includes fluvial sediments
(Figure 4E), breakdown deposits, and archaeological remains.
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Figure 4. (A) El Olivo Cave showing the archaeological excavation into fluvial deposits at the cave
entrance. (B) The cave geomorphological map with the perched flowstone projected outside the cave
outline is preserved on the cave walls. (C) Profile from the cave to the present-day fluvial network,
showing the position of the perched flowstone (which marks a former cave floor) and the cave detrital
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infill made of fluvial and breakdown sediments with archaeological remains. (D) Perched flowstone
and sample. (E) Fluvial deposits with quartzite and sandstone pebbles reported in the archaeological
excavation performed inside the cave. Red rectangle: area of the photographs in Figure 6.

The Aboño River once flowed through a fluvial basin covering an area of 123 km2,
extending northward towards the Cantabrian Sea, which lies just 15 km away. The river
basin shows narrow V-shaped valleys resulting from fluvial incisions during the Quaternary.
Surrounding the cave under study, the fluvial basin showcases alluvial, karst, slope, and
anthropic deposits depicted in Figure 5. The alluvial deposits containing quartzite and
sandstone pebbles found in the cave and the Aboño River basin are likely derived from the
erosion of Paleogene siliceous conglomerate and sandstone located approximately 530 m S
of El Olivo Cave (Figure 5). These detrital rocks are situated on the Cretaceous bedrock
and form the Llanera plain, an approximately 100 km2 paleosurface that rises to 200–250 m
altitude. The steep slope of the headwaters of the Aboño River indicates the migration of
the water divides to the S, resulting in the Aboño watershed capturing the Llanera plain.
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past. Proof of this is visible on the walls of the cave, where remains of speleothems can be 
observed 2 m above the current floor, where it was sampled for U/Th dating. At the same 
time, numerous patches of sand are adhered to the walls below the speleothems as rem-
nants of a first fill that was dismantled. To the right, the cave continues in an N-NW di-
rection through a narrow passage or sink, which was also filled before the excavations 
began. The archaeological work in the cave allowed us to observe that the sink continues 
inwards through a conduit, which was also filled with clastic sediments of autochthonous 
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which caused a dragging of sediments toward the interior of the cave. The sink was filled 
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Figure 5. Alluvial deposits associated with the Cabornio stream in the surroundings of El Olivo Cave.
Alluvial sediments came from the erosion of the Llanera plain, made of Paleogene conglomerate and
sandstone. The plain surface is being captured by the Aboño River basin at the present time. The star
indicates the location of the El Olivo Cave. Numbers indicate the altitudes above sea level in m of the
main elevations.

4. Geoarchaeology
4.1. The Sequence
4.1.1. Lithostratigraphy

El Olivo Cave is partially filled, although its sediments reached higher levels in the
past. Proof of this is visible on the walls of the cave, where remains of speleothems can
be observed 2 m above the current floor, where it was sampled for U/Th dating. At the
same time, numerous patches of sand are adhered to the walls below the speleothems as
remnants of a first fill that was dismantled. To the right, the cave continues in an N-NW
direction through a narrow passage or sink, which was also filled before the excavations
began. The archaeological work in the cave allowed us to observe that the sink continues
inwards through a conduit, which was also filled with clastic sediments of autochthonous
character. In this area, water circulation followed the wall–ceiling plane of the drain, which
caused a dragging of sediments toward the interior of the cave. The sink was filled with
autochthonous boulders that partially blocked it. These boulders were embedded in fine
orange-colored sediments on which a package of fluvial boulders rested in a highly erosive
manner. In the innermost part, the accumulation of these sediments and rocks completely
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filled the channel. Above all these deposits, in the cave’s main chamber, other more recent
deposits with a partially mixed appearance were deposited.

In the archaeological trench excavated inside the cave, the following levels are ob-
served from bottom to top (Figures 6 and 7):
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OL.7 Level: Known basal level of the sequence. More than 60 cm of reddish-brown
clays and black spots due to dark oxides, with fine and medium quartz sands, well rounded
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and abundant gravel and pebbles (10 cm centile and 3 cm average) arranged chaotically.
Most of them are autochthonous limestone clasts with very irregular geometry and sharp
edges, together with other moderately rounded limestone clasts. It is structured in two
sections: the lowermost (sample OL.7b), characterized by the greater presence of dark
oxides, especially at the top (sample OL.7 Ox) that stain the faces of the limestone clasts;
and the uppermost (sample OL.7a), with less presence of oxides, separated from the
previous one by a horizontal thin level of dark oxides. It contains interspersed lithic and
faunal remains arranged chaotically in the deposit. The lithic industry is no longer laminar,
quartzite is more abundant than flint, and the fauna is large. The two samples sent for
radiocarbon dating (AMS direct and Beta Analytic) lacked sufficient collagen because the
bones were highly altered. There is plentiful evidence of dark oxides on the faunal remains,
and it is possible that the level was formed in a context with abundant water. However, the
recovered lithic collection is very scarce [4,5]. The base of this level has not been reached.

OL.6 Level: Contains 40 cm of well-rounded fine and medium quartz sand, predom-
inantly yellow with silt and clay (sample OL.6), which appears finely laminated with a
depositional slope towards the cave’s interior (N-NW). The sand is affected by hydro-
morphism that results in a mottled coloration (white, yellow, and orange). This level is
strongly erosive on OL.7, and planar carbonate concretions appear in some areas in the
contact between both. Ascending up the passage, it is possible to observe how the sands
vertically pass to some red clay with silt and very fine quartz sand and some gravel (sample
OL.6. Arcillas), massive, inclined towards the interior with a carbonated crust on top and a
desiccation crack filled by carbonates. It is heavily eroded by OL5 and OL.4. It presents
faunal remains that show the action of carnivores at the top of the level.

OL.5 Level: From 30 to 120 cm of a heterometric clast-supported conglomerate (sample
OL.5), yellowish with gray tones, formed by quartzite pebbles and quartz gravels, spherical
to subspherical and very well rounded (12 cm centile and mean 2 cm), with a scarce reddish
matrix of clay and silt with coarse, fine and very fine quartz sand. The fine fraction is
composed mainly of quartz grains with little presence of calcite. The size of the clasts
varies from 2 to 12 cm from bottom to top, resulting in a grain-increasing arrangement,
although internally, the deposit presents a massive appearance, with a certain horizontal
organization of the planar clasts. The uppermost part is heavily eroded, hence its thickness
variation, and the erosive scar generated is filled by OL.3, which, as we will see, is made
up of angular autochthonous limestone clasts. It contains some isolated quartzite flakes
with a strong patina. It can be correlated with the OL.Exterior.2 level of the exterior trench,
although the contact between the OL.5 pebbles and the OL.6 sand inside the cave is about
2 m below the same contact in the exterior trench.

OL.4 Level: From 20 to 30 cm of clayey silt with fine and medium quartz sand, slightly
angular and rounded, ranging in color from white, yellow, orange, and red (sample OL.4),
which towards the lowermost part becomes silty-clayey sand with limestone gravel in thin
levels (sample OL.4. Gravas). They are laminated with a depositional inclination towards
the cave’s interior, overlying the large scar that erodes the underlying conglomerates, and
they gradually decrease in thickness in a stepped manner until they disappear.

OL.3 Level: From 40 to 50 cm of clayey fine sand, light brown with whitish areas
(sample OL.3), with scattered gravel and large irregular blocks of autochthonous limestone,
both rounded and angular, together with fragments of stalagmitic crusts arranged chaot-
ically towards the interior of the cave. It is partially cemented by carbonates, giving it a
breccia-like appearance. The level is disturbed, with isolated faunal and lithic remains.

OL.2 Level: Deposit of yellow sand internally structured in two sections:
OL.2b: Lower section, 0 to 10 cm thick, formed by yellow quartz sand, fine and very

fine, well rounded, silty and clayey, with whitish tones and some angular limestone pebbles
and gravel (2 cm centile) (sample OL.2b). The fine fraction is predominantly quartz with
very little presence of sodium feldspar and calcite. It wedges towards the east, resting on
the underlying rock of the substratum, while towards the west, it is abruptly interrupted
without reaching the wall, as it is supported by a patch of yellow sand attached to the wall,



Geosciences 2023, 13, 301 11 of 27

possibly a remnant of a previously eroded deposit. Its appearance is massive. It does not
appear to be altered. A fauna sample from this sub-level has provided a radiocarbon age of
13,960 ± 40 BP [4].

OL.2a: Upper section, 35 to 40 cm of yellow quartz sand, fine to very fine, well
rounded, clayey and silty, with scattered gravel and pebbles (sample OL.2a). It includes
angular limestone pebbles (centile 7 cm and mean 2 cm) and some scattered red sandstone
pebbles, as well as small-sized rounded pebbles (centile 3 cm) and well-rounded quartzite
gravels, arranged chaotically. The fine fraction (silt and clay) is mainly composed of quartz
with a limited presence of calcite. It is wedged laterally, and its overall appearance is
massive. It contains soft mud pebbles up to 8 cm in diameter, fragments of carbonized
organic matter, and archaeological remains from the Middle Magdalenian period [9]. The
upper part shows traces of alteration due to the intrusion of isolated modern material.

OL.1 Level: Reworked deposit with modern materials (ceramics, earthenware, bullet
casings, and glass) and Palaeolithic artifacts (lithic and fauna from Level OL.2) that can be
divided into two sections:

OL.1b: Lower section 25 cm thick of clast-supported conglomerate with autochthonous
limestone clasts and rounded pebbles with a limited clayey-silty matrix. Laterally, it transi-
tions to yellow sands and silts. It wedges laterally and exhibits strong erosive characteristics
on the underlying level.

OL.1a: Upper section formed by 45 cm of reddish-brown to orangish sands and silts,
with some autochthonous clasts and pebbles.

The rounded pebbles in this level appear to originate from the dismantling or exca-
vation of level OL.Exterior.2 in the part of the entrance that occurred in modern times,
creating this artificial stratigraphy.

Surface level: A 2 cm thick dark layer composed of organic matter, possibly resulting
from the modern use of the cave. It is highly compacted due to trampling.

Attached to the sink’s left wall (W) is a small patch 30 cm wide and 20 cm thick,
composed of medium, fine, and very fine, well-rounded quartz sand. It is likely a remnant
from a previous fill (OL.Arenas anteriores) (Figure 8).
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We also took a sample of the orange sand outside the cave (OL.Arenas exteriores),
which adhered to the wall. It consists of medium quartz sand grains that are well rounded
(Figure 8).

In the archaeological excavation conducted outside the cave (Squares G1 and G2), on
the existing terrace in the access area to the cave, a sequence can be observed consisting of,
from bottom to top (Figure 9):
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OL. Exterior.3 Level: (140 cm visible) Medium, fine, and very fine quartz sand finely
laminated horizontally, light orange in color, similar to the sand in the interior level OL.6.
A sample taken from the uppermost part of this level for OSL dating provided a date of
23,500 ± 6200 years old (we use the expression “years old” because, in the case of OSL
dating, it is not appropriate to use the term “BP”, which should be restricted to radiocarbon
dates, as was recently pointed out [36]).

OL. Exterior.2 Level: (95 cm) Heterometric and growing grain conglomerate, with
a clast-supported structure, containing a matrix of medium and fine quartz sands, well
rounded, reddish-brown in color, similar to the interior level OL.5. It is divided into two
sections: a lower section with fewer pebbles and gravel (IIb), and an upper section with
abundant rounded clasts (IIa)

OL. Exterior.1 Level: (40 cm) Dark brown to black clay, with quartz sand and abundant
organic matter.
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4.1.2. Archaeology

In level OL.7, although the lithic assemblage recovered is very scarce, it presents
characteristics that allow us to assign this level to the Middle Palaeolithic provisionally.
Laminar production is absent, with a predominance of sidescrapers and denticulated.

Levels OL.6 and OL.5 are practically sterile from an archaeological point of view, with
3 and 7 lithic pieces, respectively, which are not diagnostic.

Level OL.4 contains 122 lithic remains, where laminar supports predominate and a
basal fragment of a single basal bevel sagaie stands out. Due to the type of pieces it contains
and its chronostratigraphic position in the sequence, its probable chronocultural ascription
is to the Lower Magdalenian.

Only 15 pieces of flint lithics were recovered from level OL.3, with a predominance of
laminar production. Given the characteristics of this level, it is a reworked context with
secondary position materials that probably come from the underlying level OL.4.

Level OL.2, with a total number of 74 pieces, including burins, endscrapers, and
retouched blades, as well as a decorated sagaie, fits well in the context of the Middle
Magdalenian, both for the lithic and bone industry, as well as for the AMS dating obtained.

4.2. Sedimentological and Edaphological Analysis
4.2.1. Granulometry

The granulometric analyses of samples from the excavation inside El Olivo Cave have
identified a fining-upward detrital sequence, with a predominance of the fine fraction (sand,
silt, and clay), with three pulses of gravel and pebble input in the base, middle, and upper
part, with the latter being less intense. Sand is predominant in the fine fraction, with a
higher presence in the basal and middle parts, while silt and clay increase slightly towards
the top (Figure 10).
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In the outer excavation, sand predominates in its lower section, whereas pebbles and
gravel dominate in its middle section. Silt and clay are prevalent in the upper section
(Figure 11). In the samples obtained from the interior and exterior walls of the cave, sand
predominates with a low proportion of silt and clay (Figure 11).
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As observed in the triangular diagram representing the overall grain size distribution
(gravel, sand, and mud) of the samples (Figure 12A), there is a certain homogeneity in the
sediments forming the levels in El Olivo Cave. They fall within the range of silty, muddy
sands with varying amounts of gravel and sandy gravel with silt and clay. This allows for
the differentiation of two sediment groups with slightly different meanings:

Group A encompasses sediments from the textural group of muddy sandy gravel (OL.5,
OL.7a, OL.7b, OL.7 Ox, and OL.Exterior.2);
Group B consists of sediments corresponding to the textural groups of gravelly muddy
sand (OL.2a, OL.2b, and OL.4 gravas), slightly gravelly muddy sand (OL3, Ol.6 Arcillas,
and OL.Arenas anteriores), muddy sand (OL.6, OL.Exterior 3 and OL.Arenas Exteriores),
gravelly mud (OL.Exterior 1), and sandy mud.

If we exclude the gravel fraction and focus on grain sizes smaller than 2 mm (sand, silt,
and clay) (Figure 12B), the sediment homogeneity of the different units increases, as most
of the samples fall within the group of silty sand, except for two samples that correspond
to sandy silt (OL.4 and OL.Exterior 1) and muddy sand.

Both diagrams exhibit very similar characteristics to those described for the fluvial
sediments of Coímbre Cave (Peñamellera Alta, Asturias) [37].

The granulometric curves of the overall fraction are also quite homogeneous, but four
families can be distinguished within them (Figure 13):

• G-A Family: Includes the samples belonging to Group A in the triangular diagram
of the total fraction (OL.5, OL.7a, OL.7b, OL.7 Ox, and OL.Exterior 2), which exhibit
curves with an initial segment dominated by fine gravel and very coarse to fine sand,
accounting for approximately 80 to 90% of the sediment. This is followed by a flatter
segment containing very fine sands, silts, and clays, which comprise around 20%
of the sediment (Figure 13). It corresponds to two types of deposits: on the one
hand, clast-supported conglomerates with a limited matrix, indicating high-energy
environments with subsequent settling of the finer particles that make up the matrix
(OL.5 and OL.Exterior 2); and on the other hand, debris flow deposits with a minimal
matrix that include both fluvial-derived and autochthonous clasts;
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G-B1 Family: It includes the samples OL.2a, OL.2b, OL.3, OL.4, and OL.4 gravas, which
exhibit sigmoidal curves with three well-defined segments: an initial flat segment with
varying presence of coarse and medium-grained sands, a steep middle segment with
abundant fine sands and coarse silts, and a flat final segment with the remaining silts and
clays (Figure 13). These curves indicate an essential population centered around fine sand
and coarse silt, accompanied by silts, clays, and varying amounts of coarse sand and gravel.
They indicate a typically fluvial environment with high to medium energy, characterized
by freight transport through reptation, saltation, and suspension;
G-B2 family: It includes samples OL.6, OL.Exterior 3, OL.Arenas Anteriores, and OL.Arenas
Exteriores that exhibit curves with a strongly sigmoidal shape with three distinct sections.
The first section is relatively flat and includes fine gravel and very coarse, coarse, and
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medium sands. The second section is steep and rapidly ascending, ranging from fine sands
to coarse silts. The third section is again relatively flat and consists of the remaining silts
and clays, extending to clays (Figure 13). These sections indicate the presence of a dominant
population, the central one composed of fine sands and very coarse silts transported by
saltation and suspension. These curves are typical of high-energy fluvial environments
with a high sorting capacity;
G-B3 family: It includes the samples OL.Exterior 1 and OL.6 Arcillas, which exhibit slightly
sigmoidal curves. The first section is relatively flat and includes fine gravel and very coarse
sand. The second section is steep and corresponds to an increase in the remaining sands
until it reaches 50% of the sample. The final section, consisting of silt and clay (Figure 13),
represents the remaining portion of the sample. This corresponds to fluvial sedimentation,
where significant settling follows the initial bedload deposition.

In the curves of the fine fraction (<2 mm), two families can be distinguished:
F-1 family: It includes the curves of the samples from G-A, G-B1, and G-B2 (Figure 13).

The curves of this family present a typically fluvial morphology, as occurs in the total
granulometry with the curves of the G.B1, GB.2, and GB.3 families;

F-2 family: It is identical to the G-B3 family of the coarse fraction (OL.6 Arcillas,
OL.Exterior.1) (Figure 13). They are fluvial curves where important decantation follows the
initial bedload deposition.

The curves of the samples that make up the families of the total fraction G-A, G-B1,
and G-B2, in the case of the fine fraction, are unified, given that by not counting the clasts
larger than 2 mm, the curves of the fine sediments (sands, silts, and clays) are all very
similar, and can be grouped into a single family (F-1). The F-2 family curves are still very
different morphologically from those of F-1, as is the case with the total fraction curves.

In general, the deposits of the archaeo-sedimentary sequence of the El Olivo Cave
correspond to fluvial sedimentation. The morphological characteristics of the curves in the
described families, both in the overall and fine fraction, show significant similarities with
the grain size curves of predominantly sandy fluvial sediments from Coímbre Cave [37].

4.2.2. Mineralogy

The interior and exterior excavation sequences are homogeneous in their mineralogy
(Figure 14). They are characterized by the predominance of quartz, accounting for over
80% in all samples except for OL.6 Arcillas, which only reaches 70%. Phyllosilicates are
present in all samples, but their percentages are below 15%, except for OL.6 Arcillas, OL.4,
and OL.3. There is a slight increase in OL.2b (3%) and OL.2a (4%). In the exterior sequence,
calcite is only found in the middle section, specifically in OL.Exterior 2 (3%). Goethite is
present throughout the interior sequence and in the middle and upper levels of the exterior
sequence but with values below 8%.
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The minerals that appear in the different levels (quartz, phyllosilicates, calcite, and
goethite) are frequently found in detrital deposits of karstic cavities [38]. The presence of
silicate minerals in the fine fraction of the sediments is compatible with the mineralogy of
the rocks in the areas surrounding the cavity. It corresponds to tectosilicates and phyllosili-
cates of allochthonous origin since the limestone in which the cavity develops is very pure.
The levels of the interior sequence’s upper section and the exterior’s intermediate level
contain autochthonous calcite, related to the presence of limestone clasts in those same
levels.

4.2.3. Calcium Carbonate, Organic Charcoal, and Organic Matter

In the interior excavation, the presence of these three components is minimal (<1%),
with variations in CaCO3 that notably increase in the samples OL.6 Arcillas (2.68%), OL.2b
(4.2%), and OL.2a (2.04%) (Figure 15). The presence of organic matter (OM) and organic
charcoal (OC) also increases in the OL.4 sample, reaching 3.47% and 2.01%, respectively
(Figure 15). In the exterior excavation, the basal level lacks CaCO3 and has a minimal
presence of OM and OC. The middle level exhibits almost 5% CaCO3 and minimal levels
of OM and OC, which experience a significant increase in the upper level while CaCO3
disappears. The samples labeled “arenas anteriores” and “arenas exteriores” hardly contain
these components.
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Figure 15. El Olivo Cave. Calcium carbonate, organic carbon, and organic matter of the sediments
from the interior and exterior excavations.

The highest percentage of CaCO3 is related to the presence of limestone clasts, while
the highest presence of organic matter and organic carbon is related to human presence
(OL4) and edaphic processes (OL.Exterior 2).

4.2.4. Color and pH

From determining the dry color of the sediments in the exterior sequence, certain
differences can be observed between the colors of its different levels. The basal level OL.7
exhibits a brown color with a hue of 10YR and 7.5YR and high brightness and chroma
values. On the other hand, OL.6 is beige with high brightness and chroma values. The
middle section, between OL.5 and OL.4, displays brown colors with a hue of 7.5 YR, ranging
from darker tones with low brightness and chroma to darker tones with higher brightness
and chroma. The OL.3 level exhibits a reddish-brown color with a hue of 5YR and high
brightness and chroma values. OL.2b, a yellowish-brown color, returns to a hue of 10YR
with high values of brightness and chroma, while OL2a, a brown color, has a hue of 7.5YR
with high brightness and chroma values. The wet color follows a similar pattern with
greater color homogeneity. In the exterior sequence, there is a progressive darkening of
the color, with a hue of 10YR and brightness and chroma values transitioning from high to
low in the uppermost part, both in dry and wet conditions. The “arenas anteriores” and
“arenas exteriors” are brown with a hue of 7.5 YR and identical brightness and chroma in
wet conditions.

The dark colors are related to the greater presence of organic matter, either from
anthropic contribution (OL.5) or from edaphic origin (OL.Exterior 1), and with the presence
of iron oxides at the OL.7 Ox level.

The pH values (Figure 16) of the sediments in the interior excavation sequence are
slightly basic, around 8, with a minimum in OL.7 Ox. However, there is a significant
variation in pH in the exterior core sequence. The basal level exhibits a pH close to 7, which
increases to 8 in the middle level and then becomes slightly acidic (6.91) in the uppermost
part. The “arenas anteriores” and “arenas exteriores” samples have the highest basic pH
values among the samples (8.25).
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5. Geochronology

The chronological framework of the archaeological site (Table 1) is derived from
three U/Th, OSL, and radiocarbon ages. The perched flowstone sample U-OL-03 has a
234U/238U isotopic ratio close to 1, indicating that the geochemical system remained closed
after speleothem precipitation. Furthermore, the detrital contamination is negligible due to
the 230Th/232Th ratio being higher than 2. As a result, the age of 189 ± 17 ka for flowstone
OL-03 is robust despite the lower concentration of 238U (0.46 ppm). This U/Th age marks
the end of the former cave sedimentary aggradation within El Olivo Cave during OIS-7a.

Table 1. Dates obtained in El Olivo Cave.

El Olivo Cave. U/Th date

Unit Sample Lab
code

238U 232Th
234U/238U 230Th/232Th 230Th/234U Date

(ppm) (ppm)

Flowstone U-OL-3 917 0.46 0.58 1.05 ± 0.02 2128 ± 0.062 0.83 ± 0.03 188,927 +
18,323/−15,739

El Olivo Cave. OSL date

Unit Sample
beta dose gamma dose cósmic dose equivalent dose annual dose Date
(Gy/ka) (Gy/ka) (Gy/ka) (Gy/ka) (Gy/ka) (ka)

OL.Exterior.3 OSL-OL-4 0.66 ± 0.17 0.046 ± 0.12 0.13 ± 0.006 29.5 ± 3.5 1.25 ± 0.30 23.5 ± 6.2
El Olivo Cave. Radiocarbon date

Unit Sample Lab code Radiocarbon date BP 13C/12C Calibrated age 2σ cal BP
OL.2b C14-OL-1 Beta-375569 13,960 ± 40 −21 17,060–16,830

Sample OSL-OL-04 had a very low radioisotope content (<0.7 Gy·ka−1), and no
disequilibrium was observed in any U and Th decay chains. The OSL signals were dim but
fast. After accepting 35 aliquots, a central age model was applied because the equivalent
dose (De) distributions were non-skewed, the over-dispersion was low, and there was no
evidence of incomplete bleaching. As a result, the OSL age of 24 ± 6 ka is considered
reliable for inferring the timing of the second detrital deposition period, which is coeval
with OIS-3a (Table 1).

Finally, Table 1 provides the results of the radiocarbon dating obtained from medium-
sized ungulate remains recovered in the sublevel C14-OL.2b of the interior excavation. The
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conventional results indicate an age of 13,960± 40 BP, corresponding to the calibrated range
of 17,096–16,811 cal BP with 95% probability using the INTCAL20 curve. This places the
deposit and the remains of the Middle Magdalenian period it contains at the beginning of
the cold stage GS 2a of the Last Glacial Maximum within the OIS2 (Oxygen Isotope Stage 2),
coinciding with the onset of the Heinrich H1 event at the end of the Upper Pleistocene.

6. Geoarchaeological and Geomorphological Interpretation
6.1. Geoarchaeological Interpretation

Based on the results of the geomorphological analysis of the surroundings and the
cave, as well as the lithostratigraphic description, the chronological data, and the sedimen-
tological and edaphological characterization of the sediments from both the interior and
exterior sequences of El Olivo Cave deposits, it appears evident that its genesis is related to
typically alluvial sedimentation.

As previously observed, before the river incision, the Paleogene conglomerates and
sandstones formed a cover that extended over most of the Cretaceous limestone near the
cave. In this context and any case before the Middle Pleistocene, the cave was formed by the
circulation of phreatic water flow directed towards the NE. Subsequently, the development
and incision of the fluvial network of the Aboño River resulted in the dismantling of the
Paleogene cover from the north, while El Olivo Cave was nearly completely filled with
fluvial sediments that were sealed by a speleothem dated at 189 ± 17 ka. Evidence of this
fluvial deposit includes the sand adhered to the cave’s walls in its inner and outer zones,
referred to as “arenas anteriores” and “arenas exteriores”. These sands are identical and
exhibit strong similarities in grain size, mineralogy, CaCO3, OC, and OM with the basal
sands of the exterior excavation. However, differences can be observed in terms of pH and
color. Despite their geoarchaeological similarity, their different stratigraphic position in the
cavity suggests that the two sets of sand do not correspond to the same sedimentary process.
The sands adhered to the cave walls are believed to be a part of the initial sedimentation of
the cave, which was sealed by the speleothem dated at 189 ± 17 ka. In contrast, the sands
in the exterior excavation on the fluvial terrace are more recent. This sedimentary fill was
later eroded, leading to the near-complete emptying of the cave; only small remains of sand
were preserved in cavities in the walls of the cavity.

When the Cabornio stream had already cut down 70 m into the Paleocene cover, it
intersected El Olivo Cave, allowing it to communicate with the topographic surface and
resulting in the emptying of the sediments that filled the cave. From that moment on, the
cave began to refill with fluvial deposits, with episodes in which prehistoric human groups
occupied the cave. Furthermore, during that time, sedimentation of the exterior deposits
occurred, forming a small terrace. These detrital deposits, both interior and exterior,
originated from the dismantling of the Paleogene cover. Subsequently, the Cabornio stream
continued to incise, interrupting the influx of sediments into the cave.

During the Upper Pleistocene, the cave was once again filled with a sequence (interior
excavation) that begins with a well-documented sedimentation of muddy conglomerates
(level OL.7). These conglomerates comprise both angular autochthonous clasts and fluvial
rounded pebbles, with quartz being the predominant mineral accompanied by a low
proportion of phyllosilicates. A certain presence of goethite is detected, which stains the
surfaces of the clasts black and accumulates in a thin intermediate layer, indicating a
process of hydromorphism. These deposits consist of a clast-supported conglomerate that
exhibits characteristics of a debris flow. They contain archaeological remains that appear to
correspond to the Middle Palaeolithic [4].
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The sequence in the exterior trench excavated in this terrace presents a basal level
consisting of well-sorted fine sands, primarily composed of quartz with minimal phyl-
losilicates, no carbonates, and scarce organic matter. These sands exhibit fine horizontal
lamination. They were deposited around 23.5 ± 6.2 ka. Above them, a clast-supported
and grain-increasing conglomerate consists of rounded pebbles with a matrix of coarse
and medium quartz sands, with few fine sands and silts. This conglomerate serves as the
substrate for the current soil, which is rich in organic matter and dark in color.

The sequence inside the cave continues with high to medium-energy fluvial sedi-
mentation, contributing deposits transported through reptation, saltation, and suspension.
There is an initial low-energy episode where the sedimentation of the sandy bedload occurs,
followed by the settling of silts and clays (OL.6). These fluvial sands inside the cave may
correlate with the fluvial sands at the base of the exterior terrace (OL.Exterior.3), which
are dated around 23.5 ± 6.2 ka, during the final stages of the cold stage OIS 3a (Last Cold
Period).

Above these sands, fluvial conglomerate deposits (OL.5) enter the cave and extend
into the narrow passage at the NW end, blocking it. These deposits exhibit similar textural
and mineralogical characteristics to those in the middle level of the exterior sequence
(OL.Exterior 2), although the latter shows a higher presence of CaCO3 compared to the
interior levels.

Above these conglomerates, the sequence continues with predominantly sandy fluvial
sedimentation. It starts with fluvial gravel (OL.4 gravas), followed by a muddy section
(OL.4) associated with a ponding period with a predominance of decantation.

Above that, the sequence continues with fluvial sands containing abundant au-
tochthonous clasts and fragments of speleothems (OL.3), followed by fluvial sand and
silt with gravel (OL.2), sedimented during fluvial flood events that contain remains of
Middle Magdalenian occupations dated to 17,096–16,811 cal BP [3,4], corresponding to the
beginning of the cold stage GS 2a of the Last Glacial Maximum within OIS2.

The landscape during the human occupation of the cave was likely very similar to
the present day (with the cave entrance around 10/13 m higher than the Cabornio stream),
with well-developed river valleys and gentle hills. Immediately south of the cave would
be a small plain corresponding to the current area of Llanera and Noreña. At that time,
the distance from the cave to the sea was greater than the current 10 to 15 km, as the sea
level was between 115 and 80 m below the current level, which extended the coastal strip
between 6 and 15 km [7].

The sequence of the interior excavation concludes with a superficial deposit articulated
into two sub-levels. In these reworked fluvial deposits, Palaeolithic archaeological remains
are found alongside recent materials. There is evidence of the cave being used during
the Spanish Civil War, supported by Mauser bullet casings and the oral accounts of the
residents in the area. As far as we know, the cave was used as a refuge, primarily in 1937,
during the advance of Francoist troops towards Gijón. Subsequently, while residents are
aware of the cave and visit it, there is no record of any more recent activity or use [4].
Outside, the current top soil has developed on the conglomerate of the fluvial terrace.

6.2. Paleogeographic Evolution

Based on the geomorphological, geomorphological, and geochronological evidence
obtained from El Olivo Cave and its surroundings, we were able to reconstruct the paleo-
geographic evolution since the Chibanian, as illustrated in Figure 17. The model consists of
five phases:
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era plain due to fluvial incision and headwater upstream migration; cave aggradation until 189 ± 17 
ka. (C) Phase 3: Partial erosion of the former cave infill coeval to fluvial incision. (D) Phase 4: Allu-
vial deposition inside the cave in relation to alluvial fans during OIS-2. (E) Phase 5: Fluvial incision 
up to present-day coevally with human frequentation. The blue dashed lines indicate the water ta-
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The first phase began with the formation of El Olivo Cave within Cretaceous bedrock cov-
ered by Paleogene detrital rocks, which formed the Llanera plain (Figure 17A). The cave 
conduit originated when the water table was located 147 m above the present sea level. 
Therefore, Phase 1 took place a long time before the precipitation of the flowstone OL-03 
at 189 ± 17 ka; 
Phase 2 comprised the entrenchment of the Aboño river network on the Llanera plain in 
the vicinity of El Olivo Cave (Figure 17B). The headwaters migrated southwards, eroding 
the Llanera plain. The fluvial incision also caused the lowering of the water table and the 

Figure 17. Paleogeographic evolution of El Olivo Cave: (A) Phase 1: Cave formation within Cre-
taceous bedrock covered by Paleogene rocks (Llanera plain). (B) Phase 2: Erosion of the northern
Llanera plain due to fluvial incision and headwater upstream migration; cave aggradation until
189 ± 17 ka. (C) Phase 3: Partial erosion of the former cave infill coeval to fluvial incision. (D) Phase 4:
Alluvial deposition inside the cave in relation to alluvial fans during OIS-2. (E) Phase 5: Fluvial
incision up to present-day coevally with human frequentation. The blue dashed lines indicate the
water table.

The first phase began with the formation of El Olivo Cave within Cretaceous bedrock
covered by Paleogene detrital rocks, which formed the Llanera plain (Figure 17A). The cave
conduit originated when the water table was located 147 m above the present sea level.
Therefore, Phase 1 took place a long time before the precipitation of the flowstone OL-03 at
189 ± 17 ka;
Phase 2 comprised the entrenchment of the Aboño river network on the Llanera plain in
the vicinity of El Olivo Cave (Figure 17B). The headwaters migrated southwards, eroding
the Llanera plain. The fluvial incision also caused the lowering of the water table and the
vadose development of the cave. Finally, the cave was partially filled by detrital sediments
and flowstones precipitated at 189 ± 17 ka, coeval with the limit between OIS 7-6. These
detrital and speleothem deposits remain perched on the cave walls. The cave infill would be
related to the erosion of the Paleogene rocks (Figure 17B) and coincides with a sedimentary
aggradation event in karst caves along the Cantabrian Region during OIS 7-6 [39–41];
Fluvial incision, the drop of the water table, and the erosion of the Llanera plain continued
during Phase 3 (Figure 17C). At the same time, the cave sedimentary infill was partially
removed before or after the interception of the cave by the topographic surface. This led
to the creation of the cave entrance, which allowed the potential entrance of fauna and
humans, as shown by the probable presence of Neanderthal groups in the cave;
Phase 4 corresponds to the deposition of sandstone, quartzite pebbles, and quartz sand
transported by the Cabornio stream from Llanera plain to El Olivo Cave (Figure 17D). This
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implies the location of the Cabornio stream channel at the position of the cave. The alluvial
deposition within the cave occurred around 24 ± 6 ka and would be related to alluvial fans
developed under the dry and cold conditions of OIS-2;
Fluvial incision continued during Phase 5 (Figure 17E), and humans frequented El Olivo
Cave at the end of OIS-2, according to Álvarez-Alonso et al. (2018) [4]. Simultaneously, the
stream flooded the cave, leading to sandy-loamy sediment with reworked archaeological
remains during the OIS-2. Cabornio stream has descended 13 m from 24 ka to the present,
representing an incision rate of 0.54 mm·a−1.

7. Conclusions

El Olivo Cave has a long geological history that begins with its formation at an
undetermined time in the Neogene/Pleistocene before 189 ± 17 ka. During the Lower
and Middle Pleistocene, the Aboño River and its tributaries were embedded, and the
cave opened to the exterior. It was practically filled by sedimentation of fluvial sands,
culminating in a speleothem dated 189 ± 17 ka during the end of the warm stage OIS7a
in the Chibanian (Middle Pleistocene). Subsequently, these sands were eroded, leaving
remnants on the cave walls. Sedimentation resumed inside the cave, resulting in a fluvial
clastic sequence. In its lower section, there is a basal level containing archaeological
remains tentatively assigned to the Middle Paleolithic, followed by sands that correlate
well with a sandy deposit located at the base of the outer terrace, dated to 23.5 ± 6.2 ka,
at the end of the cold stage OIS3a (Last Cold Period) of the Upper Pleistocene. The
fluvial sequence continues, and in its upper section, there is an occupation during the
Middle Magdalenian period, dated within the calibrated range of 17,096–16,811 cal BP. The
sequence concludes with a disturbed deposit that contains contemporary remains, among
which notable artifacts from the Spanish Civil War, including weaponry, can be found.

Examining this archaeological site has yielded novel insights into the evolution of
the landscape in central Asturias during the Pleistocene. This region has been constrained
by the scarcity of sedimentary records, limiting the development of pertinent Quaternary
investigations. The northern central region of Asturias is characterized by continental
plains [41] and provides potential habitats for large herbivores, all documented in numerous
paleontological and archaeological sites throughout the region [42–44].

The occupation evidence corresponding to the Middle Magdalenian period is situated
within the context of significant human presence of a similar chronology in the Nalón
Valley. This led to new hypotheses regarding space organization, mobility, and territoriality
during the Upper Palaeolithic [3]. Thus, considering a new type of settlement, defined as a
“secondary camp” [3] based on the evidence from the OL.2 level, opens the door to new
interpretative perspectives regarding the cultural, economic, and social space that defines
Magdalenian territories.
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