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Abstract: Micromodels are important for studying various pore-scale phenomena in hydrogeology.
However, the fabrication of a custom micromodel involves complicated steps with cost-prohibitive
equipment. The direct fabrication of micromodels with a 3D printer can accelerate the fabrication
steps and reduce the cost. A stereolithography (SLA) 3D printer is one of the best options because
it has sufficient printing performance for micromodel fabrication and is relatively inexpensive.
However, it is not without drawbacks. In this report, we explored the capability of an SLA 3D printer
for micromodel fabrication. Various parameters affecting the printing results, such as the effects of
geometries, dimensions, printing axis configurations, printing thickness resolutions, and pattern
thicknesses were investigated using microtomography for the first time. Eventually, the most optimal
printing configuration was then also discussed. In the end, a complete micromodel was printed,
assembled, and used for fluid displacement experiments. As a demonstration, viscous and capillary
fingerings were successfully performed using this micromodel design.

Keywords: stereolithography; 3D printer; micromodel; porous media; accuracy evaluation; microto-
mography; fluid displacement

1. Introduction

Studies of multiphase flow in porous media are important in various hydrogeol-
ogy applications, such as petroleum production [1–3], groundwater contamination [4–9],
geological carbon sequestration [10–13], and geological energy storage [14,15]. Various
phenomena, such as fluid displacement [16–20], dispersion [21], capillary trapping [8,22,23],
dissolution [4–7,12,13,24], and precipitation [25], affect various processes in these applica-
tions. Therefore, a further understanding of these phenomena can improve productivity
and sustainability in managing the related applications.

To elucidate the underlying mechanisms of these phenomena, pore-scale studies are
usually required because they offer detailed observation of the mechanisms. Moreover,
by understanding the pore-scale processes, upscaling to core-scale and field-scale can
be explained from the pore-scale studies [26–28]. Thus, with the recent development in
measurement technologies, pore-scale studies have become the staple research investigation
in the field of multiphase flow in porous media.

To perform pore-scale experimental studies, in general, two kinds of approaches,
which are microtomography and micromodeling, are possible. The first approach is
performed using microtomography, such as X-ray microcomputed tomography (micro-
CT) [1,4,10,16,23,24] and magnetic resonance imaging [6–8]. However, although it offers
the possibility to study 3D porous media systems, the temporal resolution is still limited,
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and the equipment is rather expensive. The second approach is performed by using a
micromodel [3,4,9,12,13,15,17]. By fabricating micromodels resembling porous media, var-
ious multiphase flow experimental simulations can be performed for studying various
phenomena. Although this method is limited to a 2D porous media system, it offers high
temporal resolutions due to direct observation with a digital camera. As a result, swift-
occurring phenomena, such as a snap-off [29] and a Hainess jump [30], can be observed
directly. However, the main drawback of this method lies in the complexity of the fabrica-
tion method because it involves complicated and time-consuming processes. In addition,
because the uses of micromodels are dominated by application in chemistry, biochemistry,
nanotechnology, and biotechnology [31–33], most of the available micromodel designs
provided by fabricating companies are for these applications. Ordering for a custom model
leads to an expensive research budget.

The common fabrication method of a micromodel is by using a combination of pho-
tolithography, soft lithography, and plasma treatment [31]. In short, photolithography is
used to generate the mold or template of the micromodel inside a cleanroom facility. The
mold is then used as the pattern for micromodel fabrication by using polydimethylsiloxane
through soft lithography. Finally, the formed micromodel pattern is bonded to a glass
plate through plasma treatment. In particular, this process is time-consuming, has poor
repeatability, and cannot be automated [32,33]. As a result, changing the micromodel
design is not a simple task. Moreover, because it requires expensive and complicated
facilities, such as a cleanroom and a plasma generator, not all researchers have access to
this fabrication method.

Several attempts have been made to reduce the complexity and cost of micromodel
fabrication. To reduce the required resources for photolithography and eliminate the
photolithography mask, Behm et al. [30,34] and Love et al. [35] developed a microscope
projection technique. However, a cleanroom, which is one of the most complicated and
cost-prohibitive facilities, was still required for coating and development procedures.
Comina et al. [36,37], on the other hand, developed a method to make the mold or template
by using a 3D printer instead of photolithography, removing the necessity of a cleanroom.

Given the current progress of 3D printer technology, this interest in the direct fabrica-
tion of micromodels with a 3D printer is now rising [32,33]. 3D printing is highly automated,
which means it does not need an operator, removing training time and operating time.
Therefore, it is suitable for prototyping various designs in various engineering fields, such
as mechanical tools [38], mechanical components [39], and bioengineering [40], including
micromodels [41–46]. This idea of incorporating 3D printers in micromodel fabrication
has captured the attention of other researchers in hydrogeology. One of the advantages of
micromodel fabrication in the field of hydrogeology is that the channel dimension does
not need to be as small as in chemistry, biochemistry, nanotechnology, and biotechnology,
resulting in a larger tolerance for the fabrication. Beauchamp et al. [32] categorized micro-
models based on minimum channel dimension: millifluidic (>1000 µm), sub-millifluidic
(500–1000 µm), large microfluidic (100–500 µm), and true microfluidics (<100 µm). Most of
the reported works of micromodel fabrication in the field of hydrogeology [41–46] are in
the category of large microfluidic, which is enough to investigate the pore-scale phenomena
in hydrogeology.

Watson et al. [41] fabricated a three-channel micromodel directly using a 3D printer
and performed dispersion experiments. Yang et al. [42] 3D printed various micromodels
of channels and reservoirs to investigate fluid displacement in a fracture-vug medium.
Dimou et al. [43] further explored this method by printing micromodels resembling ho-
mogeneous and heterogeneous porous media. Osei-Bonsu et al. [44] also fabricated a
micromodel resembling homogenous porous media directly from a 3D printer and in-
vestigated foam flow. Ahkami et al. [45] fabricated a micromodel resembling fractured
porous media and investigated the fluid flow by incorporating particle imaging velocimetry
(PIV). Mousavi et al. [46] fabricated a micromodel with an enlarged network of rock and
demonstrated fluid displacement phenomena.
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Given the reported works of micromodel fabrication in the field of hydrogeology [41–46],
two types of 3D printers have mainly been used for the fabrication of micromodels. The
first type is based on the selective curing of photosensitive polymer, stereolithography
(SLA) [41,43], and digital light projection (DLP) [46], and the second type is based on poly-
mer droplet jetting: multijet [45] and polyjet [42,44]. In terms of popularity, as mentioned
by Beauchamp et al. [32] and Gyimah et al. [33] in their comprehensive reviews, SLA is
the most popular 3D-printing type for micromodel fabrication. It is easy to use, produces
smooth surfaces, has a high resolution (~25–100 µm), and is affordable (~6000 USD). Al-
though DLP uses a similar method, SLA produces a better surface finish and is less complex
technologically, resulting in a lower price and less complexity. Multijet and polyjet, on the
other hand, are much more expensive (~60,000 USD) even though they offer similar results
with SLA. However, the lower price of SLA 3D printers is not without drawbacks. Although
the printing resolutions among multijet, polyjet, and SLA are similar (~25–100 µm), SLA
prints the object under resin immersion, whereas multijet and polyjet print the object by
jetting resin droplets. As a result, the escape route for the immersing resin of the SLA 3D
printer needs to be considered. Because the resin possesses a relatively high viscosity and
interfacial tension [47], it could remain during the printing process, resulting in defects and
low accuracy.

Though SLA printing is suitable for printing micromodels, comprehensive accuracy
checks on the fabricated micromodels have never been reported. The only performed
accuracy check was by Watson et al. [41], which was just a point accuracy check performed
on some parts of the channels. The best techniques to fabricate and assemble micromodels
with the optimum accuracy and minimum leakage are rarely discussed as well. Most of
the reported works [42,43] have only demonstrated the capability of the SLA 3D printer to
fabricate a micromodel, followed by experimental demonstrations.

In this work, we fabricated a micromodel with a consumer-grade SLA 3D printer
and, for the first time, performed a comprehensive accuracy evaluation by using micro-CT.
Comprehensive accuracy evaluations, including the effects of geometries, dimensions,
printing axis configurations, printing thickness resolutions, and pattern thicknesses, were
performed. In the end, a micromodel printed with the most optimal settings was printed,
assembled, and used for fluid displacement experiments of capillary and viscous fingerings.
Because leakage is also one of the major problems in 3D-printed micromodels [46], this
micromodel design was also addressed to overcome this key problem. Therefore, we believe
that this paper could become a reference for other researchers in fabricating micromodels
using an SLA 3D printer.

2. Materials and Methods
2.1. Printing with an SLA 3D Printer

In short, printing with an SLA 3D printer can be described in four steps: digital design,
printing, washing, and curing. The workflow of printing with an SLA 3D printer is shown
in Figure 1.
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The first step is to generate a 3D image of the object. To generate the 3D image, we
utilized Fiji software (version 1.53c) [48], which is an open-source software. With Fiji,
the 3D image could be generated from a stack of cross-sectional images (Figure 1a). By
incorporating a programming code, each cross-sectional image could be made based on a
coordinate design, resulting in an accurate result. The 3D image was then generated by
converting the stacked image of the micromodel design to a stereolithography file (STL)
(Figure 1b). This STL file was then uploaded to the 3D printer for printing.

For the 3D printer, a Form 3 SLA 3D printer (Figure 1c) from Formlabs (Somerville,
MA, USA), was used. This 3D printer utilized low-force stereolithography and consisted of
two main components: a flexible resin tank and a scalable light-processing unit. Low-force
stereolithography is mainly designed to reduce the exerted force on the freshly solidified
resin, which is still delicate and easily torn. By using a flexible resin tank, which will
deform when the printing platform moves in and out, the exerted force can be reduced,
resulting in a lower possibility of torn, solidified resin. A scalable light-processing unit
is used to minimize the error from the radiation light area. By utilizing a series of laser
reflections delivered from a galvanometer, a fold mirror, and a parabolic mirror, it ensures
a perpendicular laser radiation to the resin tank, leading to pinpoint precision with high
accuracy. This 3D printer utilized a single violet diode laser source with a wavelength of
405 nm and a laser power of 250 mW. Given that the laser spot size was 85 µm, the XY
printing resolution was 25 µm, whereas the thickness resolution could be changed to 25, 50,
and 100 µm. The maximum build dimension was 145 × 145 mm2 horizontal area with a
height of 185 mm.

The resin used in this work was a standard clear resin provided by Formlabs (Somerville,
MA, USA). The resin composition was proprietary to the company. However, according to
Ishutov [47], the main compositions of the resin are methacrylate monomers and oligomers,
acrylate monomers, and photoinitiators. At 25 ◦C, which is the heated temperature during
printing, the density and viscosity of the resin are 1090–1120 kg/m3 and 850–900 mPa·s,
respectively, whereas the contact angle of the printed resin is 87.1 degrees [47]. Throughout
this work, only this resin was used because it was the only resin with a transparent
or clear color.

In short, SLA printing utilizes a photopolymerization process of resin by laser radiation.
Through successive solidification from the photopolymerization process, the desired 3D
object is printed layer-by-layer (Figure 2). First, a sweeper arm was used to uniformly attach
the resin from the tank to the print platform (Figure 2a). Afterward, the print platform
was pushed down to the resin tank, causing a slight deformation to the bottom layer of the
flexible resin tank. The LPU was then moved horizontally to sweep the deformed bottom
layer while irradiating the resin, resulting in a layer of solidified resin (Figure 2b). This
solidified resin was then lifted out from the resin tank. A new layer of resin was then
attached to the solidified resin using the sweeper arm (Figure 2c), and the process was
repeated to build successive, solidified layers resembling the 3D design.
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The last two stages are washing and curing. After the printing, the printed object
should be washed immediately in isopropyl alcohol for 20 min. Leaving the printed object
too long without washing could affect the accuracy of the sample due to the solidification
of the remaining resin on the surface. The effect of this prewashing time after printing is
also given in the supplementary material document S1. By using an automated cleaning
chamber, FormWash, from Formlabs (Somerville, MA, USA) (Figure 1d), the sample was
washed automatically under stirring to ensure the removal of the remaining IPA and to
provide a clean surface finish.

Lastly, for the curing, the printed sample was cured either by using a curing chamber,
FormCure, from Formlabs (Somerville, MA, USA) (Figure 1e), or naturally by leaving
it open at room conditions. These post-processing methods resulted in more optimal
material mechanical properties and smooth surface finishes. Inside the curing chamber, the
sample was heated up to 60 ◦C and was irradiated by 13 light emitting diodes using the
same light source as the printing (405 nm wavelength) while rotating at 1 revolution per
minute. However, if the micromodel design was too thin, the 3D-printed sample tended to
bend due to the fast curing rate. Therefore, depending on the sample thickness, we chose
between these two methods. The effect of this rapid curing process is also given in the
supplementary material document S2.

2.2. Printed Design

To investigate the 3D printer accuracy, the capabilities of the 3D printer to print holes,
channels, and porous media structures with different sizes and geometry were evaluated.
Two main accuracy test designs were used to evaluate them.

The first design was a chip with a row of holes and channels printed on it. The row
of holes consisted of 2 mm deep circular holes with varied diameters from 0.1 to 0.8 mm.
On the other hand, the row of channels consisted of 10 mm long square channels with
varied square sides from 0.1 to 1.0 mm. These channels were printed parallelly on top of
the chip (Figure 3a,b) with the same printing thickness resolution of 25 µm. The limitation
of the printer to print a channel and hole with the smallest size could be evaluated from
this design. In addition, this simple geometry design was also used to check the effect of
printing axis configuration on the printing results. Because it printed the object under the
immersion of the resin, the escape route of the resin could play an important role in the
accuracy of the printing result. Therefore, four configurations of the printing axis, called
wide, tall, flat, and tilted (Figure 3c), were used to print this design.

The second design was a chip with a uniform porous media pattern on it (Figure 4a–c).
As shown in Figure 4b, a simple geometrical design was used in this design to ensure the
uniformity of the porous media. By varying the values of GapX and GapY of the isosceles
triangle, the GapR could be controlled. Setting GapX to D/2, GapY to D/8, and D to 1.2 mm
led to a Gap R of 0.422 mm. Similar with the definition of the porous media pore-throat
network, this GapX and GapR were identical with the definition of a throat [49–51], which
is the constriction between pores. This uniform porous media pattern design was used to
evaluate the 3D printer in printing a structure of porous media networks. In addition, this
second design was used to check the effect of printer thickness resolution, depth of pattern,
and gap of the pattern. For the printed thickness resolution, this design was printed under
printing thickness resolutions of 25, 50, and 100 µm but with a constant pattern depth of
0.5 mm. For the depth of the pattern (Figure 4c), this design was also printed with different
pattern depths of 0.3, 0.5, and 1.0 mm but with the same printing thickness resolution of
50 µm. For the gap of the pattern, another variant of this geometrical design was generated
by changing the values of GapX to D/4 and GapY to D/16 but keeping the value of D to
1.2 mm, resulting in a GapR of 0.274 mm. Therefore, this also demonstrated porous media
with different pore–throat network structures.
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Lastly, the complete design of the micromodel, including the porous media pattern,
inlet, outlet, cover design, and tightening component, was made (Figure 5). Because fluid
leakage is a critical problem in micromodel fabrication, this design was also mainly made
to overcome this key problem [46]. Through trial and error, this design was found to be the
most optimal design.

For the porous media pattern, the first variant of the porous media pattern in Figure 4
with a GapX of D/2, a GapY of D/8, and a D of 1.2 mm was used. This pattern was printed
with a pattern depth of 0.5 mm and a printing thickness resolution of 50 µm. As a result,
the porosity of this porous media pattern was 0.536.

For the inlet and outlet, the open triangle shape in Figure 5a was used instead of a
branching-off pattern, as shown in Figure 1a,b. The branching-off pattern often results
in channel blockage by some trapped phases, causing a non-uniform flow. This inlet
and outlet design has also been used by other researchers in experiments to control fluid
displacement instability [52,53], which is a flow-sensitive experiment.
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For the cover, a thin, clear, plexiglass plate was used. This cover was then placed
on top of the micromodel and was tightened by using bolts and nuts surrounding the
pattern. However, because the center part of the micromodel was not tightened, leakage
at the porous media pattern often occurred. Therefore, a tightening module was intro-
duced to overcome this leakage. This module mainly consisted of two plates: smaller and
larger plates. The larger plate was also fixed to the micromodel by using bolts and nuts
surrounding the pattern. In addition, bolts and nuts were also used at the center of this
plate. By setting the height of the bolts, it could be used to tighten the middle part of
the micromodel. To distribute the force uniformly, the smaller plate was put between the
micromodel and the bolts. By choosing an opaque-colored plate, it acted as the background
for the micromodel pattern. To make it more leakproof, grease was added surrounding the
micromodel pattern to block any fluid flow.

This micromodel design was then used for fluid displacement experiments to demon-
strate viscous and capillary fingerings. A solution of methylene blue with a viscosity of
0.89 mPa·s and a silicone oil with a viscosity of 90 mPa·s were used for the fluids. The
interfacial tension between these fluids was 35.9 mN·m. To demonstrate viscous fingering,
the micromodel was saturated with the silicone oil, and then the MB solution was injected
into the silicone-oil-saturated micromodel at a flow rate of 300 µL/h, corresponding to an
interstitial velocity [54] of 11.27 µm/s. For the capillary fingering, the silicone oil was in-
jected into an MB-solution-saturated micromodel at the same flow rate. All of the injection
processes were performed using a Terumo syringe and a KD scientific syringe pump; a EOS
60D from Canon (Tokyo, Japan) digital camera was used to capture the fluid displacement
throughout the experiment.

2.3. Measuring Accuracy with Microtomography

To check the accuracy of the printed sample, a micro-CT (Comscantechno Co. ScanXmate-
CF110TSS300) from Comscan (Kanagawa, Japan), was used in this work. The same X-ray
intensity (65 kV and 116 µA) and power (7.5 W) were used throughout the experiment to
provide identical brightness and contrast. The scanning method was the static mode in
which the sample remained still while the X-ray source and panel rotated around it. To
obtain high-quality images, the sample was scanned with 2400 projections throughout a
360-degree angle rotation. By using a projection rate of 2 frames per second, the whole scan
was finished in 1200 s (20 min). These projections were then used to generate 3D images
with a resolution of 2304 × 2304 × 1300 voxels. Depending on the case, the voxel size,
which represents the magnification, was changed accordingly. To evaluate the holes and
channels (Figure 3), a voxel size of 8 µm/voxel was used, whereas 10 µm/voxel was used
to evaluate the uniform porous media micromodel (Figure 4).
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After the sample was scanned with the micro-CT, an image-processing series was
carried out to extract the quantitative data. Figure 6a shows an example of a cross-sectional
image of the uniform porous media obtained with the micro-CT. Dark indicates the voids,
whereas bright indicates the solids. The distribution of the voxel gray value is shown in
Figure 6b as a histogram. The peak with a lower gray value corresponds to voids, whereas
the peak with a high gray value corresponds to solids. To improve the contrast and remove
noises, median filtering was also carried out, resulting in higher peaks and a wider valley
between the peaks. To differentiate between the void and the solid, a direct thresholding
method based on Otsu’s algorithm [55] was performed, resulting in the binarized image in
Figure 6c. After the binarized images were obtained, various data analyses were performed
to extract quantitative data for accuracy evaluation.
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First, the cross-sectional area of the printed geometry was measured. Figure 7a shows
the 3D binarized image of a 0.7 mm diameter printed hole. The measured cross-sectional
area was then plotted with the distance in Figure 7b to demonstrate the profiles of the
printed object. This analysis was performed on each of the printed holes and channels.
Both the equivalent diameter and equivalent side were described as follow:

De =

√
Ameas

4π
(1)

se =
√

Ameas (2)

where De as the equivalent diameter, se as the equivalent square side, and Ameas as the
measured area, were used as parameters to represent the cross-sectional area.
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Second, using a z-projection method, a depth map was generated. Z-projection is a
digital-image-processing method of analyzing a stack of images by applying projections
to each of the pixels of an image in the direction of the stack, which is the z-direction
(Figure 7c). By projecting the number of void pixels in a cross-sectional image to the stack
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direction, the depth of the object can be calculated in each pixel. As a result, a depth
map showing the structure of the printed object could be generated. This depth map was
suitable for displaying the structure of the printed channels and porous media patterns in
2D images.

Third, the measured printed geometry from the binarized 3D image was compared
with the actual 3D image design to calculate the overall error of the printing. The volume
error was calculated as follow:

η =

∣∣∣∣Vdes − Vmeas

Vdes

∣∣∣∣ (3)

where η is the overall volume error, Vdes is the volume of the 3D image design, and Vmeas is
the volume of the measured printed object.

3. Results and Discussions
3.1. Accuracy Check
3.1.1. Holes and Channel Rows

The cross-sectional profiles and 3D binarized images of the holes generated from four
different axis configurations are shown in Figure 8. Only holes from 0.8 mm to 0.4 mm
are shown because smaller holes failed to be printed in any axis configurations. This
limitation can be attributed to the high viscosity and interfacial tension of the resin. As the
hole diameter grew smaller, it became easier for the resin to stick inside the hole and was
then solidified by indirect printer radiation or curing radiation. This observation is also
consistent with the observation by Ishutov et al. [56]. They found that the SLA 3D printer
could print a hole with a diameter of 0.39 mm but could not print a hole with a diameter of
0.29 mm or smaller.
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For the effect of printing axis configuration, as shown in Figure 8a–e, the flat config-
uration generated the best outcome because it could print holes with diameters of 0.8 to
0.4 mm. The tilted configuration was the second-best. It could print holes with diameters
down to 0.6 mm, but not smaller. The wide and tall configurations, however, failed to
print any holes successfully at all. The effect of the printing axis configuration can also be
observed clearly from the 3D binarized image in Figure 8f–i. Because the movement of the
resin was strongly affected by gravity, the printing results were strongly affected by it. For
the wide and tall orientations, because gravity was perpendicular to the holes, resin tended
to be trapped in the middle of the holes due to the difficulty for the resin to flow out. The
flat orientation, in contrast, generated the best results due to the parallel direction between
the holes and gravity, which led to an easy escape route for the resin. However, some resin
remained trapped near the resin outlet passage, resulting in some error at the outlet. The
tilted orientation, on the other hand, generated mediocre results. Because the holes and
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gravity were not fully parallel, resin could still be trapped at the side of the holes and near
the resin outlet, which was the combination of the wide, tall, and flat orientations.

For the printed channels, the cross-sectional profiles of a channel and the depth maps
of the channel are shown in Figures 9 and 10, consecutively. The channels with square sides
of 0.2 and 0.1 mm are not given because they failed to be printed in any axis configuration.
Similar with the holes, this limitation could be caused by the high viscosity and interfacial
tension of the resin, causing the resin to be stuck inside. As a result, the minimum size of the
printed hole was similar with the minimum size of the printed channel. However, although
it could print down to a channel size of 0.3 mm, as shown in Figure 9h, the possibility of
error in this channel size was much higher than larger channel sizes. From Figure 10, some
defects were also found in this channel size due to some trapped resin.
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For the effect of printing axis configuration, similar to the printed holes, the flat
orientation demonstrated the best result, followed by the wide, tilted, and, lastly, the
tall orientations. The reason for this result can be explained with the depth map of the
channels in Figure 10. Similar to the printed holes, gravity direction also strongly affected
the outcomes. In the case of the flat configuration (Figure 10a), gravity was parallel to the
channel length. As a result, the resin accumulated at one of the channel edges with the
direction of gravity, resulting in an error at the edge. For the tall configuration (Figure 10b),
because gravity was perpendicular to the channel length, the resin accumulated along the
channel side with the direction of gravity. This, consequently, resulted in a large error
because it occurred along the channel of the flat configuration (Figure 10c). Because the
gravity direction was normal to the channel length and micromodel, it led to an easy escape
route for the resin. The tilted configuration (Figure 10d), on the other hand, demonstrated an
error combination of both the wide and tall configurations. The trapped resin accumulated
both at the channel-end edge and along the channel side with the direction of gravity,
leading to a medium error. Watson et al. [41] printed a three-channel micromodel with a
45-degree printing angle, which was similar to this tilted configuration, and found that the
depths of the channels were non-uniform from a point accuracy check. We believe that
this non-uniform depth was affected by the movement of the resin to the gravity direction,
similar to this finding.

The overall volume error of all the holes and channels generated with four differ-
ent printing axis configurations can be observed in Figure 11a,b. The flat configuration
demonstrated the best outcome, whereas the tall configuration demonstrated the worst
outcome in both holes and channels. The wide and tilted configurations were in the middle.
The wide configuration showed better results for holes, whereas the tilted configuration
showed better results for channels. In both holes and channels with all of the printing
configurations, a smaller hole diameter and channel size led to a larger overall volume
error. The error increased significantly when the hole diameter and channel side were
smaller than 0.6 mm. Nevertheless, by using the flat configuration, the overall volume
error of the holes was in the range of 0.2 to 0.5, whereas the overall volume error of the
channels was in the range of 0.05 to 0.3.
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3.1.2. Uniform Porous Media Pattern

For the effect of printing thickness resolution, Figure 12 shows the depth map of
uniform porous media generated from printing thickness resolutions of 25, 50, and 100 µm.
The occurrence of throat blockage, defined as a depth disturbance at the throat in which
the depth of the throat is lower than half of the pattern depth, and the pillar diameter were
also used for evaluation. All of these data are shown in Table 1.
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Table 1. The overall volume error and pillar average diameter of the printed uniform porous media
under different printing conditions and geometrical designs.

Printing Design Overall Volume
Error

Throat
Blockages

Pillar Average
Diameter (µm)

Thickness resolution 25 µm 0.316 0 1378
Thickness resolution 50 µm 0.163 29 1278

Thickness resolution 100 µm 0.517 126 1431
Pattern depth 300 µm 0.199 0 1270
Pattern depth 1000 µm 0.315 25 1303

GapX 300 µm GapR 274 µm 0.442 most 1305

A printing thickness resolution of 50 µm generated the best result with no throat
blockage at all. On the other hand, the printing thickness resolutions of 25 and 100 µm
showed 29 and 126 throat blockages, respectively. All of these throat blockages occurred
at the GapR of 0.422 mm, which was the smallest gap in the porous media network. In
addition, given the color bar, while the error of the 25 and 50 µm thickness resolutions was
lower than 50 µm, the error of the 100 µm thickness resolution was larger at around 50 and
100 µm depths.

This observation was the opposite of the observation by Dimou et al. [43]. They found
that the printing thickness resolution of 100 µm showed the least throat blockage, whereas
the printing thickness resolution of 25 µm generated more throat blockage. However,
because they observed the blockage only from the top by using a digital camera, the
throat blockage observation could not be performed as the same detail as using micro-CT.
Furthermore, these results demonstrated that a smaller printing resolution does not always
generate more accurate outcomes, which was probably due to a technical error from the
radiation for the printing.

The thickness resolution of 50 µm demonstrated the best results with an overall volume
error of 0.163, followed by the thickness resolutions of 25 and 100 µm with overall volume
errors of 0.316 and 0.517, respectively. Additionally, the pillar average diameter was also
measured and compared. The most accurate pillar average diameter was consistent with
the overall volume error, with the printing thickness of 50 µm as the best result, followed
by 25 and 100 µm, respectively.

For the effects of structure height and pattern gap, similarly, the depth map, the overall
volume error, the occurrence of throat blockage, and the pillar diameter were also used for
evaluation. All these data are also shown in Figure 13 and Table 1.

For the pattern depth, as shown in Figure 13a,b, changing the pattern depth to 0.3 mm
still resulted in no throat blockage, with a depth error of about 25 and 50 µm, whereas
changing the pattern depth to 1.0 mm generated less accurate results, with 29 throat
blockages and a depth error of 100 µm. In addition, the throat blockages did not only occur
at GapR but also at some GapX locations, and they were concentrated at the center area of
the pattern. Reducing the GapR to 0.274 mm and the GapX to 0.3 mm resulted in a much
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worse outcome (Figure 13c). Most of the throats were blocked at both GapR and GapX,
especially at the center of the pattern.
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From the overall volume error in Table 1, the pattern depths of 0.3 and 1.0 µm gener-
ated an overall volume error of 0.199 and 0.315, respectively. The pillar average diameter
was also consistent with this trend of the overall volume error with a value of 1270 µm for
the pattern depth of 300 µm and a value of 1303 µm for the pattern depth of 1000 µm. For
the smaller GapR and GapX, the overall volume error was the highest at 0.442, and the
pillar average diameter was also the largest at 1305 µm.

These results demonstrated that a deeper pattern resulted in a larger error than a
shallower pattern and could result in a larger chance of throat blockages. Reducing the
throat gaps also increased the risk of throat blockages. This sudden increase of throat
blockages was consistent with the observation of the printed square channels in Section 3.1.1.
A channel with a square side of 0.3 mm was the limitation for printing. Therefore, throat
gaps lower than 0.3 mm were susceptible to blockages due to the higher possibility of
trapped resin. As a result, some of the GapX of 0.3 mm were also blocked. In addition,
these results also demonstrated that the limiting geometry was the gap or width of the
channel instead of the depth.

3.2. Fluid Displacement Experiments in the Fabricated Micromodel

To predict the generation of viscous and capillary fingerings, nondimensional numbers
of viscosity ratio and capillary number were described as follows:

M =
µi
µd

(4)

Ca =
µiv
σ

(5)

where M as the viscosity ratio, Ca as the capillary number, µi as the invading fluid viscosity,
µd as the defending fluid viscosity, v as the interstitial velocity, and σ as the interfacial
tension were used. The viscosity ratio and capillary number of the viscous fingering setup
in this work were 9.89 × 10−3 and 2.793 × 10−7, whereas for the capillary fingering setup,
the viscosity ratio and capillary number were 1.01 × 102 and 2.824 × 10−5. By using
the fluid displacement map [18,19], the viscous fingering setup in this work fell into the
category of viscous–capillary transition [16], while the capillary fingering setup in this
work fell into the category of capillary–stable transition.

The results of the viscous fingering setup are shown in Figure 14a–c, and the results
of the capillary fingering setup are shown in Figure 14d–f. In addition, animations of the
sequential fluid injections in binarized images are also included as supplementary material
animations S3 and S4. As the quantitative parameter, invading fluid saturation was defined
as follows:

Si =
Vi

Vtotφ
=

Vi
Vvoid

(6)
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where Si as the invading fluid saturation, Vi as the volume of the invading fluid, φ as
the porosity, Vtot as the total volume of the micromodel, and Vvoid as the void volume
were used.
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As shown in Figure 14a–c and supplementary material animation S3, the fluid dis-
placement pattern displayed a forward-progressing pattern with a streak-like structure
resembling some branches. For this condition, the viscous force was dominant over the
capillary force, and a pressure gradient was generated in the flow direction. Therefore,
after the displacement front became unstable, it created a positive feedback condition
to the preferential invading fluid displacement due to the low viscosity of the invading
fluid. As a result, the invading fluid generated a streak-like structure, which is a typical
pattern characteristic of viscous fingering. Due to this pattern, the invading fluid saturation
tended to be low. When the invading fluid broke through the micromodel, the invading
fluid saturation was only 0.149, which is consistent with other reports of viscous fingering
studies [16–19].

For the capillary fingering, as shown in Figure 14d–f and supplementary material
animation S4, the fluid displacement structure demonstrated a more compact structure. In
this condition, the capillary force was dominant over the viscous force. As a result, the fluid
displacement was more controlled by the capillary force. Although the displacement was
more compact, some defending phase remained as a trapped phase. This trapped phase is
one of the characteristics of capillary fingering. Another characteristic of capillary fingering
is the backward direction of the invading fluid, which occurred on several occasions during
this injection. However, because the previous viscous fingering case was in the regime of a
viscous–capillary fingering transition, this phenomenon was also observed in the previous
viscous fingering. At the breakthrough, the invading fluid saturation was around 0.577,
which is also a common value in capillary fingering studies [16–19].

4. Conclusions

In this report, comprehensive accuracy check evaluations on the printed objects from
an SLA 3D printer were performed using micro-CT followed by a series of image-processing
methods. The effects of geometries, dimensions, printing axis configurations, printing
thickness resolutions, and pattern thicknesses were evaluated. The smallest hole that could
be printed was 0.4 mm in diameter, whereas the smallest square channel that could be
printed had a 0.3 mm square side. However, with the decrease in hole and channel size, a
higher error was expected. Printing with a flat configuration and a thickness resolution
of 50 µm was found to produce the most accurate results. Increasing the depth of the
porous media pattern escalated the possibility of throat blockage and vice versa. Printing a
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uniform porous media pattern with pattern depths down to 0.3 mm produced results with
less error, but they were still less accurate than printing with a pattern depth of 0.5 mm.
Decreasing the throat gap of the porous media pattern lower than 0.3 mm led to a high
chance of throat blockage.

The design of a complete micromodel, including a porous media pattern, inlet, outlet,
cover, and tightening module, generated with an SLA 3D printer was also given in this
work. This design could overcome the leakage problem and generated a uniform flow.
With this design, fluid displacement experiments depicting capillary and viscous fingerings
were also successfully performed as a demonstration.

We believe that the results of this investigation can become a reference for other
researchers using not only SLA but also DLP 3D printers because the working concept of
DLP is also similar. Given the low-cost option of this SLA 3D printer, it can be a solution
to increase the availability of micromodels for other researchers around the world by
reducing the cost of micromodel fabrication. This work can also be used as a reference
for the fabrication of 3D artificial porous media using an SLA 3D printer, which is the
future work and development of 3D printer implementation in various fields, including
hydrogeology [47,57], chemical engineering [54,55,58,59], and bioengineering [40].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/geosciences12050183/s1, Document S1: effects of prewashing
time after printing, Document S2: effects of rapid curing in curing chamber, Animation S3: viscous
fingering sequential animations; Animation S4: capillary fingering sequential animations.
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