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Filling gaps using multiple linear regression. 
Let y be a variable for which we have n observations. Each observation is denoted by 

yi, i=1,...n. 
Let {xk}be a set of m variables. Hereafter y will be considered as the dependent vari-

able, and xk will be the independent variables or predictors. We also have n observations 
of the predictors or independent variables corresponding to the n observations of the de-
pendent variable. That is: we have xi,k with i=1,...n, k=1,...m 

In the present case, y will be the sea level measured at a certain location, and xk will 
be the sea level measured at m nearby locations. Each of the n observations of the depend-
ent and independent variables correspond to the same time. 

Initially we consider that there is a linear relationship between the dependent varia-
ble (the sea level time series that we want to reconstruct), and the independent variables 
or predictors (see level at the close tide gauges). This can be expressed as: 
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β0 is the interception at the origin and ε represents the part of y that is not reproduced 

by the linear model. 
This equation can be expressed in matrix form: 

y=Xβ+ε      (S.1) 

y is a column vector with the n observations of the dependent variable. 
X is anx(m+1) matrix, where all the elements of the first column are equal to 1, and 

the other m columns are the observations of the predictors xk. 
βis a (m+1)x1 column vector with the true (unknown) coefficients that relate the sea 

level time series (y) with the sea level at the nearby tide gauges xk. Notice that this relation 
could not exist, and the true value of the coefficients, could be zero. 

εis a n x 1 column vector with the part of y not explained by the linear model and will 
be named as the residuals hereafter. 

These coefficients will be estimated minimizing the sum of the squares of the residu-
als (least squares fit). If b represents the estimation of β, we have to minimize the expres-
sion: 

( ) ( )Ty Xb y Xb− −  

 
where T denotes transpose. 
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Deriving respect to b, we obtain the set of m + 1 equations: 

( )T TXX b X y= (S.2) 

 

And the estimated coefficients are: 

( ) 1T Tb XX X y
−

= (S.3) 

 
The residuals can be estimated as: 

ˆ y Xbε = − (S.4) 

 
Even in the case that the sea level y was not related with the sea level at the nearby 

locations used in the regression, the expression (S.3)could yield values of b different from 
zero. Therefore we should determine whether the linear relation obtained is significant or 
not from a statistical point of view. 

Then we make the null hypothesis (H0): 

H0: all βk, k=1,...m are equal to zero 

Then we test this hypothesis. To do so, it can be shown that the statistic: 
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follows adistribution F-Fisher with m and n-m-1 degrees of freedom. 
Notice that in this case the b and the X in the numerator only contain the values and 

columns corresponding to the predictors (not the column of 1). 
Once the value F has been calculated, we can consider the following question: Con-

sidering that the null hypothesis is true (the βk are zero) which is the probability of obtain-
ing a value of F as large as the one we have obtained. This question can be answered using 
the cumulative probability function Fm, n-m-1. If the probability of obtaining the F value is 
lower than 0.05 (another threshold could be used), we can say that it is very unlikely that 
this value has been obtained by chance, and we reject the null hypothesis. Therefore, we 
accept that the βk are different from zero and thatthe linear regression is significant at the 
0.05 significance level (we insist that other significance level could be used). 

Expression (S.5) shows the ratio between the variance of y expressed by the linear 
model and the variance of the residuals, that is, the part not explained by the linear model. 
The interpretation of this result is that, if F is very large, the linear model explains a large 
fraction of the variance of y, much larger that the part out of the model. Then, we cannot 
accept that the linear relation does not exist.  

We can also estimate the percentage or fraction of the variance of y, explained by the 
model. If y  is the sample mean of the observations: 
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And the square root of this expression is R, the multiple correlation coefficient. 
Even in the case that we reject the null hypothesis and we accept that the linear re-

gression is statistically significant, it could be true that the contribution of some of the 
predictors (xk) were not significant. In other words, the variance explained by the linear 
model, bT(XXT)b could be large, but the contribution of some of the predictors could be 
omitted from the model. We have rejected the null hypothesis: All the βk =0. But still, some 
of them could be zero. 

In other to test the significance of the contribution of each single predictor, we esti-
mate the statstic F-partial. 

For instance, let us consider that we want to test the significance of the contribution 
of the xm independent variable. First we fit a linear model without including xk: 
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Then the sum of squares explained by this model (without xm) can be calculated: 

( )1 T TS b XX b=  

Then, we include xm in the model and estimate the coefficients (which in general will 
not be the same) and estimate the new sum of squares estimated by the model (including 
xm): S2. 

The statistic: 
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is distributed as a F-Fisher with 1 and n-m-1 degrees of freedom. 
Once again, the probability of obtaining such F-partial value can be calculated. If this 

probability is lower than a certain threshold, we accept that the contribution of xm is sig-
nificant and we retain it in the model . Otherwise, this predictor should be removed from 
the model. 

Once the coefficients of the regression have been determined, they can be used to 
estimate the value of y for that times where the predictors are known and the dependent 
variable is unknown. 
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Table S1. shows the tide-gauges used for the analysis of long-term changes, the tide gauges used 
for the linear multiple regression,the F values for the regression, its probability (p-value), the mul-
tiple correlation coefficients, and the coefficients of the linear regression. 

Cádiz II 
Ceuta 

Málaga 
Tarifa 

F = 42.51 
p ∼0 R = 0.69 

b0= 88±9 
b1=0.23±0.13 
b2=0.41±0.10 
b3=0.34±0.14 

Algeciras 

Cádiz III 
Ceuta 

Málaga 
Tarifa 

F =213.47 
p ~0 R=0.84 

b0= 18±3 
b1=0.04±0.04 
b2=0.24±0.06 
b3=0.37±0.08 
b4=0.19±0.06 

Tarifa 

Algeciras 
Cádiz III 
Málaga 

 

F=124.23 
p~0 R=0.7 

b0= -7±5 
b1=0.39±0.14 
b2=-0.05±0.05 
b3=0.48±0.12 

Ceuta Málaga F=269.30 
p~0 R=0.54 b0=-3±3 

b1=0.45±0.05 

Málaga 
Cádiz III 

Ceuta 
Tarifa 

F=418.92 
p~0 R=0.84 

b0=-2±3 
b1=0.18±0.04 
b2=0.14±0.08 
b3=0.61±0.06 

Alicante_out Alicante_in F=1309 
p~0 R=0.84 

b0=19±2 
b1=0.87±0.05 

 

L'Estartit Barcelona F=1582 
p~0 R=0.92 b0=8±3 

b1=0.80±0.04 

It should be noticed that the tide gauges shown in the second column of table S1 are 
those used when data were available. Some periods of time had to be reconstructed using 
a lower number of predictors. 

Forward stepwise regression. Influence of meteorological factors and steric level. 
In this case the dependent variables are the monthly time series of reconstructed sea 

level. First, the average seasonal or annual cycle was subtracted. The procedure was the 
following. First, a mean value was calculated for each month of the year using the com-
plete time series. For instance, the time series of sea level at Málaga has 65 years that ex-
tend from 1944 to 2018. The mean value of the 65 months of January was calculated. Sim-
ilarly, the mean value for the 65 months of February was calculated, etc. In this way we 
obtain 12 values that represent the average seasonal or annual cycle. Then this cycle was 
subtracted to the original time series. Then a straight line was fitted to the de-seasoned 
time series and was also subtracted. This procedure was also applied to the monthly time 
series of atmospheric pressure (P), U and V components of the wind, and the thermosteric 
(ηT) and halosteric variability of sea level (ηH). 

For each tide gauge, the variability of sea level is caused by changes in the atmos-
pheric variables, which can induce local redistributions of mass, and changes in the den-
sity of sea water. We could propose the following linear model to explain the variability 
of sea level: 

0 1 2 3 4 5 5TP U Vη β β β β β η β η ε= + + + + + +  (1)

Nevertheless, we have considered the following approach. It was not assumed a pri-
ori which variables have a significant influence on the sea level variability. P, U, V, ηT, ηH 
were considered as candidate predictors. We calculated the correlation between the sea 
level (η), and each of the possible predictors. That predictor which the highest correlation 
was considered as the first candidate to be included in the linear model. Just to fix ideas, 
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let us consider that P was the variable with the highest correlation. Then, the proposed 
model is: εββη ++= P10 . As always, ε is the part of η not explained by the model. We 
test the significance of this model at a certain level of significance (in the present work we 
have used the level 0.05). If the regression is not significant, the procedure is over, and the 
model selected is simply: εβη += 0  

On the other hand, if the regression is significant, we accept the proposed model 
εββη ++= P10 and we consider the possibility of including a new predictor in the 

model. The following step is to regress all the other candidate predictors (U, V, ηT, ηH) on 
P. We estimate the residuals for these regressions, that is, we obtain the part of the other 
predictors not explained by P, and we calculate the correlation between these residuals, 
and the part of η not explained by P (residuals of the initial linear model). The variable 
with the highest correlation is considered as a candidate to be included in the linear model. 
Let us suppose that such variable is U, then the new candidate model is: 

εβββη +++= UP 210  
We test the significance of this new model, and we also test the F-partial for each of 

the predictors in the model. If the new regression is significant, and the contribution of all 
the predictors (F-partial) is significant, then we accept the new model 

εβββη +++= UP 210 . If the regression is not significant, the procedure is over and 

the selected model is εββη ++= P10 . Otherwise, we test the possibility of including a 
new predictor. It is important to notice that at any step, a predictor that had been included 
in a previous step, can be excluded if its F-partial becomes not significant when including 
some new predictors. The significance level to include a new predictor should be lower 
than the significance level used to get a predictor out of the model. In the present work 
we have followed the usual criterion of 0.05 to get in, and 0.10 to get out. 

Table 4 in the main text of this work, shows the models selected by the forward step-
wise regression for each of the sea level time series and for each period of time. 


