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Abstract: Convolutional neural networks (CNN) are currently the most widely used tool for the
classification of images, especially if such images have large within- and small between- group
variance. Thus, one of the main factors driving the development of CNN models is the creation of
large, labelled computer vision datasets, some containing millions of images. Thanks to transfer
learning, a technique that modifies a model trained on a primary task to execute a secondary task,
the adaptation of CNN models trained on such large datasets has rapidly gained popularity in many
fields of science, geosciences included. However, the trade-off between two main components of
the transfer learning methodology for geoscience images is still unclear: the difference between
the datasets used in the primary and secondary tasks; and the amount of available data for the
primary task itself. We evaluate the performance of CNN models pretrained with different types
of image datasets—specifically, dermatology, histology, and raw food—that are fine-tuned to the
task of petrographic thin-section image classification. Results show that CNN models pretrained on
ImageNet achieve higher accuracy due to the larger number of samples, as well as a larger variability
in the samples in ImageNet compared to the other datasets evaluated.

Keywords: transfer learning; convolutional neural networks; petrography; thin-section images

1. Introduction

Although the roots of convolutional neural networks (CNN) emerged in the 1980s [1,2],
they were only widely adopted in the 2010s, after a model used by Krizhevsky et al. [3]
won the 2012 ImageNet competition challenge [4] by a large margin [5] when competing
against traditional machine-learning algorithms. ImageNet [6] is one of several computer
vision datasets (e.g., [7–9]) that contributed to the development of CNN models, as well
as the standardization of models’ analysis. CNN models used for the classification of
images are trained on datasets containing pairs of input data (images) and labels (classes).
During training, CNN models need to learn mapping from the input data to the desired
labels. Compared to fully connected (fc) layers, convolutional layers are neurons that
better exploit the locality, stationarity, and compositionality of signals that are well suited
to image data. It is generally useful to have a large dataset for training CNNs for two
main reasons: image data have a very high dimensionality, e.g., a red-green-blue (RGB)
image with 224 × 224 pixels is one sample in 150,528 dimensions space; and CNN models
are usually built with very large number of parameters (in the order of millions). The
widespread adoption of training and evaluating models in standardized datasets by the
computer vision community facilitated the distribution of the trained models at large.
The popularization of pretrained models supported the adoption of transfer learning
(e.g., [10–13]) by other fields of science in which the amount of labelled data is not as large.
The field of geosciences is one of many in which the use of transfer learning has recently
become popular.

The main idea behind transfer learning comes from the realization that the represen-
tation of the input generated by the layers in a neural network are generic for the layers
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closer to the input, and more complex and abstract for layers closer to the output (or
label), especially when trained with datasets of natural images such as ImageNet. The
interpretability of CNN filters and their outputs is an active area of research, with several ex-
amples showing how images activate filters differently, for example [14–17]. Although the
representations learned by CNN models contain the information needed to map the input
to the output, these transformations can be useful for solving other outputs (tasks), and this
procedure tends to be more successful if the tasks are related in some aspect [12,13,18,19].
In transfer learning, a model trained on a primary task (e.g., to classify the ImageNet
dataset) is repurposed for a secondary task (e.g., to classify thin-section images). The
repurposing step generally requires an adaptation of the model, as well as further training.
Zamir et al. [19] investigated how different visual tasks were related to each other as a
means of proposing better transfer learning strategies. Their results show, for example,
that 2D segmentation is a task more similar to colorization and in-painting than to image
denoising. They also observed that the results they found are model- and data-specific,
meaning there are still knowledge gaps that should be studied. The objectives of this paper
are well aligned with such observations. Here, we investigate the transferability of models
trained on different datasets for the task of petrographic classification at a thin-section scale.

In many transfer learning applications, the similarity between the primary task and
the secondary task is simplified up to the point of the type of data used. For instance,
many transfer learning applications rely on the fact that the ImageNet is a dataset of RGB
images; thus, the parameters learned by CNN models to classify an ImageNet dataset can
be repurposed to classify other RGB image datasets. For example, Norouzzadeh et al. [20]
repurposed CNN models pretrained on ImageNet to automate animal identification in
a dataset composed of camera trap images. Tschandl et al. [21] used transfer learning to
repurpose a model pretrained on ImageNet to classify pigmented lesions from different
populations; Kather et al. [22] used transfer learning to identify microsatellite instability
directly from histological images in gastrointestinal cancer. Both Hu et al. [18] and Pires
de Lima and Marfurt [23] studied the use of transfer learning for the classification of
high-resolution remote-sensing images, both using models pretrained on ImageNet. The
list of studies using transfer learning for the classification of geoscience images is also
expanding. Examples include Pires de Lima et al. [24], who used transfer learning for the
classification of lithofacies using pictures of core data. In contrast to some of the examples
cited, Baraboshkin et al. [25] reported inferior performance when using transfer learning
than when training a CNN model with randomly initialized weights. Transfer learning
showed itself to be highly valuable in the classification of petrographic thin-section images
(e.g., [26–29]). All these transfer learning examples for the classification of geoscientific
images repurpose models pretrained on ImageNet at some point in their analyses.

What is curious about these examples is that training a CNN model for the classifica-
tion of ImageNet, an image dataset composed of a wide range of objects and scenes, always
seems to improve the model’s performance when transferred to a secondary task, even
if the images from the secondary task are visually dissimilar to ImageNet (e.g., histology
or skin lesion images). The classes in ImageNet have a within-class variance that is much
larger than what we usually expect for petrographic thin-section classifications. To put this
in perspective, ImageNet-trained models should be able to identify dogs or cats, indepen-
dent of their scale, lightning conditions, or background. In fact, ImageNet is specifically
constructed so that objects in images have different appearances, background clutter and
occlusions, as well as varying positions, viewpoints, and poses [6]. In contrast, thin-section
images are obtained in well-defined configurations, rendering images that have a much
smaller variance, especially when the photographs are taken at the same zoom level. The
hypothesis that leads the experiments presented in this manuscript is that models primarily
trained on a dataset more visually similar to the secondary task should outperform models
primarily trained on a dataset dissimilar to the secondary task. In other words, adapting
the weights should be easier when tasks are related, which aligns with recent findings
(e.g., [19]). The evaluation of similarity here is somewhat qualitative, but enough to discuss
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the findings in depth. To perform such analysis, we evaluate the results of using transfer
learning to classify thin-sections images using models primarily trained on ImageNet, the
HAM10000 dataset [21], the RawFooT dataset [30], and part of Kather et al. [22]’s dataset
(hereinafter, MSI vs. MSS standing for microsatellite instable vs. microsatellite stable).
These datasets were selected based on their resolution, the number of samples available,
and because they were previously used to train CNN models. Moreover, these datasets
have standardized images, reducing unnecessary variance in the samples imaged—a con-
trast with ImageNet that aims to include variations, as described above. Understanding
how the similarity between visual datasets affects the classification of petrographic thin
sections can help us create better models, as well as better petrographic datasets.

The main contributions of this manuscript can be summarized as follows:

• An evaluation of how the difference between the dataset used to train a CNN model
for the primary task affects the performance of such model when used for transfer
learning for the classification of petrographic thin sections for the secondary task;

• The optimization of models that can accurately classify thin-section images from the
Sycamore formation with two different magnification levels;

• How the amount of data affects CNN models used for transfer learning;
• How the similarity between primary and secondary tasks affects CNN models used

for transfer learning;

Section 2 presents the datasets used for the primary task of image classification, as well
as the CNN architectures used and the general methodology of the study. Section 3 shows
the results of all experiments conducted, as well as their interpretation. Section 4 shows
the discussion regarding the results obtained with the proposed experiments. Section 5
presents the conclusions.

2. Materials and Methods
2.1. Petrographic Thin-Section Data

The central data used for transfer learning of this study are 98 thin sections acquired
from 5 different cores from the Sycamore formation (early Mississippian strata) in the
Ardmore basin, Oklahoma, the same thin sections used in [26]. We took roughly five
randomly placed and generally non-overlapping photographic images for every thin
section using plane polarized light and a 2.5× or 10× magnification zoom, attaining a total
of 513 samples. Then, we classified the thin sections in four microfacies (classes) based on
the texture and mineralogical composition. Although this classification took into account a
general knowledge about the origin, depth, and geological background of the thin sections,
some bias was introduced into the dataset, as the microfacies were defined based on our
interpretation. Note, we mixed images with 2.5× and 10× magnification zoom. Even
though the relative grain sizes are different at different magnification levels, we argue that
the petrographic characteristics that explain the interpreted microfacies are well defined in
both scales; thus, this will not negatively affect the models. Table 1 shows the count for each
one of the microfacies interpreted, as well as the count of samples in the train and test sets.
Except for Argillaceous mudstone (AMdst), the classes are somewhat well balanced. The
images were then color balanced following [31], which assumed that the highest values of
RGB observed in a photograph corresponded to white and the lowest values corresponded
to black (Figure 1a). Moreover, [32] investigated the use of color balancing and found it
helpful for image classification using CNN. The same methodology is used in [26]. We then
resized the images to 646 × 484 pixels, maintaining the same aspect ratio of the original
photograph and maintaining the same pixel area relation. During training and inference,
we used the five-crop technique to augment the data, extracting 224 × 224 samples from
the corners and the center of the images (Figure 1b). The final prediction for a given sample
was the resulting mean average prediction across the five crops. The five-crop is a common
technique frequently used in computer vision tasks and somewhat simpler than what was
discussed in [26]. We then computed the mean of the RGB channels of the training, as well
as their standard deviations useful for the normalization of the data, and obtained (0.3579,



Geosciences 2021, 11, 336 4 of 25

0.2924, 0.3122) for the mean and (0.2028, 0.2011, 0.1877) for the standard deviation. Figure 2
shows examples of images in the test set.

Table 1. Thin-section data details.

Class Microfacies Description Train Test

AMdst Argillaceous mudstone Clay-rich mudstones. Structureless or slightly laminated. 63 20
BMdst Bioturbated mudstone Clay-rich mudstones. Evident bioturbation at 10X magnification. 134 20

MCcSt Massive calcite cemented siltstone Silt-rich mudstones. Structureless, abundant calcite cemented
and calcareous pellets. 104 20

MCSt Massive calcareous siltstone Silt-rich mudstones. Structureless, some calcite cement. 132 20

Figure 1. Thin-section data: (a) color balancing effect;(b) five-crop technique. The bottom row shows each one of the five
crops extracted from the original sample and used for training and inference.
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Figure 2. Examples of images in the petrographic thin-section test set and their corresponding labels.
The figure shows two images for each one of the classes. The top image of each class is taken with a
magnification zoom of 2.5×, the bottom image with 10×. The red labels in the bottom right-hand
corner are randomly present in some 10× images, indicating 200 µm. Class names and descriptions
are provided in Table 1.

2.2. ImageNet

ImageNet is one of the most popular computer vision datasets. The full dataset is com-
posed of over 15 million labeled high-resolution images belonging to roughly 22,000 classes.
The dataset images were of variable resolutions and were collected from the internet and
labelled by humans. Many computer vision experiments are conducted on a subset of
the ImageNet dataset that originated from an annual competition called the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC). The ILSVRC subset of ImageNet has
roughly 1000 images in each of the 1000 categories [3,4]. Weights from models trained with
the ILSVRC (hereinafter simplified back to ImageNet) are likely the most widely available
and are used for transfer learning. We downloaded pretrained weights directly from [33].
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2.3. HAM10000

Tschandl et al. [21] released the “Human Against Machine with 10,000 training
images”—HAM10000 dataset to facilitate training of neural networks for automated diag-
nosis of pigmented skin lesions. The dataset contains dermatoscopic images from different
populations, acquired and stored by different modalities. The published dataset consists
of 10,015 dermatoscopic images which can serve as a training set for academic machine-
learning purposes. The images comprise a representative collection of many important
pigmented lesion categories. Figure 3 shows some samples of the test set. Over 50% of the
imaged lesions were confirmed through histopathology, and the remaining samples were
confirmed through either follow-up examination, expert consensus, or confirmation by
in vivo confocal microscopy. The train/test split is provided by the authors. We computed
the mean of the RGB channels for the train set (0.7637, 0.5461, 0.5707), with a standard
deviation of (0.0897, 0.1184, 0.1330).

Figure 3. Examples of images in the HAM10000 [21] test set and their corresponding labels. Table 2
shows class names and number of samples in the dataset.
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Table 2. The HAM10000 dataset details.

Class Description Train Test

bkl benign keratosis-like lesions (solar lentigines/seborrheic keratoses
and lichen-planus like keratoses) 871 228

nv Melanocytic nevi 5367 1338
df Dermatofibroma 87 28

mel Melanoma 887 226

vasc Vascular lesions (angiomas, angiokeratomas, pyogenic
granulomas and hemorrhage) 121 21

bcc Basal cell carcinoma 421 93
akiec Actinic keratoses and intraepithelial carcinoma/Bowen’s disease 258 69

2.4. RawFooT

The Raw Food Texture (RawFooT) dataset was designed to study the robustness of
classification methods with respect to variations in lighting conditions. The dataset includes
images of food with different visual texture, acquired under 46 lighting conditions, with
variations in the light direction, in the illuminant color, in its intensity, or in a combination
of such factors. The dataset contains 68 classes of raw food and includes different kinds
of meat, fish, cereals, bread, and other food [30]. The dataset is available in full image
(800 × 800 pixels) and tile (200 × 200 pixels) formats. We used the tiles in this study. The
tile images correspond to subdivisions of the original 800 × 800 images into 16 square
regions. The authors of the RawFooT dataset proposed a checkerboard pattern and selected
eight square regions to be part of the train set, while the remaining eight square regions
were allocated to the test set. We used the split defined by the authors. We calculated the
mean of the RGB images in the train set (0.3765, 0.2743, 0.1351) and the standard deviation
(0.0571, 0.0537, 0.0433). Figure 4 shows examples of images in the test set. Table 3 shows
the table with the class names and the count of samples per set.

Table 3. The RawFooT dataset details.

Class Description Train Test Class Description Train Test

0001 chickpeas 368 368 0035 hazelnut grain 368 368
0002 corn 368 368 0036 flour 368 368
0003 salt 368 368 0037 bread crumbs 368 368
0004 cookie 368 368 0038 pasta (stars) 368 368
0005 lentils 368 368 0039 cut spaghetti 368 368
0006 candies 368 368 0040 pastina 368 368
0007 green peas 368 368 0041 red cabbage 368 368
0008 puffed rice 368 368 0042 grapefruit 368 368
0009 spelt 368 368 0043 hamburger 368 368
0010 white peas 368 368 0044 swordfish 368 368
0011 cous cous 368 368 0045 bread 368 368
0012 sliced bread 368 368 0046 candied fruit 368 368
0013 apple slice 368 368 0047 chili pepper 368 368
0014 pearl barley 368 368 0048 milk chocolate 368 368
0015 oat 368 368 0049 garlic grain 368 368
0016 black rice 368 368 0050 curry 368 368
0017 quinoa 368 368 0051 pink pepper 368 368
0018 buckwheat 368 368 0052 kiwi 368 368
0019 puffed rice 368 368 0053 mango 368 368
0020 basmati rice 368 368 0054 pomegranate 368 368
0021 steak 368 368 0055 currant 368 368
0022 fennel seeds 368 368 0056 pumpkin seeds 368 368
0023 poppy seeds 368 368 0057 tea 368 368
0024 brown sugar 368 368 0058 red lentils 368 368
0025 sultana 368 368 0059 green adzuki 368 368
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Table 3. Cont.

Class Description Train Test Class Description Train Test

0026 coffee powder 368 368 0060 linseeds 368 368
0027 polenta flour 368 368 0061 coconut flakes 368 368
0028 salami 368 368 0062 chicory 368 368
0029 air-cured beef 368 368 0063 pork loin 368 368
0030 flatbread 368 368 0064 chicken breast 368 368
0031 corn crackers 368 368 0065 carrots 368 368
0032 oregano 368 368 0066 sugar 368 368
0033 black beans 368 368 0067 salmon 368 368
0034 soluble coffee 368 368 0068 tuna 368 368

Figure 4. Examples of images in the RawFooT [30] test set and their corresponding labels. Table 3
shows class names and number of samples in the dataset.

2.5. MSI vs. MSS

Knowing that gastrointestinal cancer MSI patients respond exceptionally well to
immunotherapy, and that not every patient is tested for MSI, Kather et al. [22] show that
ResNets can predict MSI directly from H&E (hematoxylin and eosin stain) histology images.
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Kather et al. also used tiles of larger high-resolution slides for their analysis, and made the
tiles available for download. The tiles available for download are separated into train and
test set samples with 224 × 224 pixels, which is equivalent to 0.5 µm per pixel. We used the
colorectal cancer images only. Figure 5 shows examples of the dataset. Table 4 shows the
number of samples in the train and test sets. We computed the mean RGB (0.7263, 0.5129,
0.6925) and standard deviation (0.1444, 0.1833, 0.1310) of the images in the train set. This
dataset is named MSI vs. MSS in this study.

Table 4. The MSI vs. MSS dataset details.

Class Description Train Test

MSI Microsatellite instable 46,704 28,335
MSS Microsatellite stable 46,704 70,569

Figure 5. Examples of Kather et al. [22]’s images in the MSI vs. MSS test set and their corresponding
labels. Table 4 shows class names and number of samples in the dataset.

2.6. Transfer Learning and Implementation Details

The methodology behind transfer learning is well described in many studies
(e.g., [12,13,18,23]). For instance, [26,27,29] described the technique using petrographic
thin-section data. Thus, in this paper, we provide only a brief explanation of the trans-
fer learning methodology. Initially, CNN models are created with randomly initialized
weights. During training, the weights are updated according to the objective function,
reducing the loss of the model regarding the output. For classification problems, the loss
is computed according to the true and predicted labels. After training, the weights of the
models are in a stage such that they are useful for classifying the input image data. In
other words, the models learn to extract features that are useful for classification. What
was described is the default training methodology, when the weights of the model were
randomly initialized and updated through gradient descent during training. In the transfer
learning training methodology, the model previously trained with randomly initialized
weights for the primary task is further trained on the secondary task. The trained models
can be used as feature extractors, when part of the weights of the models is not updated
for the secondary task, or they can be fine-tuned, when all the weights are updated, onto
the secondary task. Here, we use the fine-tuning technique.

We used residual nets (ResNets [34]) as the CNN architecture for the experiments,
specifically ResNet18 and ResNet50. ResNets introduce shortcut connections to CNN
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architectures as a way to address the problem of vanishing gradients. The skip connections
allow the gradients to flow from layers close to the output, where the loss is computed,
to layers closer to the input. This strategy enabled the adoption of deeper networks,
facilitating the optimization of large models. ResNet18 (ResNet50) is composed of 18
(50) parameter layers, either convolution or fc layers. ResNets end with a global average
pooling layer, followed by an fc layer. For ResNets trained on ImageNet, the fc layer placed
after the global average pooling layer contains 1000 neurons (fc 1000), one for each class of
the dataset. In the implemented transfer learning methodology, we randomized the fc 1000
and added another fc layer, with a neuron for each one of the classes of the new dataset. In
the fine-tuning technique implemented here, only the fc layers were updated in the first
five epochs; then, the remaining layers were unfrozen and all the weights were updated
for the remaining epochs.

For all experiments, 20% of the train dataset was randomly selected to be part of the
validation set. The model continues training while the validation loss decreases, with a
patience of five epochs unless otherwise noted. Patience is a hyperparameter indicating
the number of epochs after which the model stops training. The thin-section data was
cropped to desired dimensions of 224 × 224 pixels using the five-crop technique described
previously. The images of the remaining datasets were resized to 224 × 224 pixels. After
cropping or resizing, the images were normalized following the computed dataset mean
and standard deviation. Data augmentation was used for the train set only, not on the
validation or test sets, and used the following pipeline: horizontal flip, vertical flip, and
rotation limited to ± 5 degrees, all with 50% probability. The hyperparameter search
included mostly batch size by accumulation of gradients, learning rate, and optimizers.
Adam [35] was the preferred optimizer, but RMSprop [36] was also evaluated. We used the
PyTorch [33] framework for implementation, following PyTorch Lightning [37] structures.
Experiments were tracked with Weights and Biases [38].

3. Results and Interpretation
3.1. Results

We start this section showing the results obtained training ResNet18 and ResNet50 for
the classification of the HAM10000, RawFooT, and MSI vs. MSS datasets. To recall, these
datasets were chosen because they are more visually similar to petrographic thin-section
image than the ImageNet; samples from the former, for example, are in the same scale
and there are no backgrounds. We evaluated different hyperparameters using the models
and datasets described in Section 2. Appendix A (Tables A1 and A2) shows details of the
hyperparameters used for training the CNN models on the primary task. Table 5 shows the
accuracy of the best performing models on the test set for each one of the datasets, using
both ResNet18 and ResNet50. Other performance metrics are important for the evaluation
of classification tasks, especially when there are different costs for different classes or when
dealing with unbalanced datasets (e.g., [39,40]), but these are omitted here for the sake
of simplicity. The results in Table 5 show some overfitting for both MSI vs. MSS and
RawFooT datasets, even though the train data were augmented during training. Moreover,
the accuracy of ResNet18 on the RawFooT dataset is noticeably higher than the ResNet50.
The difference in accuracy between train and test sets for the MSI vs. MSS is considerably
larger—0.2 for ResNet18 and 0.19 for ResNet50. Nonetheless, the trained models learned
weights that can serve as effective feature extractors for the classification of each one of
the datasets, unlike the initial random weights. Thus, the models are then adapted to the
secondary task.

The baseline for the classification of thin-section data is a model started with ran-
domly initialized weights. We performed a hyperparameter search training ResNet18 and
ResNet50 with the petrographic thin-section data described in Section 2.1. Figure 6 shows
the computed accuracy and loss during training for the best performing hyperparame-
ters in ResNet18 and ResNet50 models. Although the train and validation metrics walk
closely together for ResNet50, the model takes longer to achieve a higher performance.
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Thus, we increased the patience for all ResNet50s to 10 to accommodate possible spurious
fluctuations in the validation loss that could make the model stop training before desired.
ResNet18 decreases the loss (increases the accuracy) more rapidly; however, it also shows
signs of overfitting earlier. ResNet18 models are maintained with a patience of five.

Table 5. Accuracy of the best performing models for the classification of each one of the datasets
used for the primary task.

Dataset Model Train Validation Test

MSI vs. MSS ResNet18 0.94 0.91 0.71
RawFooT ResNet18 0.98 0.96 0.88

HAM10000 ResNet18 0.79 0.77 0.76

MSI vs. MSS ResNet50 0.91 0.90 0.71
RawFooT ResNet50 0.89 0.87 0.73

HAM10000 ResNet50 0.80 0.76 0.75

Figure 6. Training accuracy and loss for models trained on the thin-section data when the model
starts with randomly initialized weights: (a) accuracy by epoch for the train and validation sets of
models ResNet18 and ResNet50; (b) corresponding loss by epoch.

Table 6 shows the hyperparameters searched while training ResNets with randomly
initialized weights on the petrographic thin-section data. Due to GPU memory limitations,
ResNet18s are trained with a batch size of 16 while ResNet50s use a batch size of 4. The
batch size is increased before the optimizer steps by the accumulation of gradients. Results
show that minor changes in the choice of hyperparameters can have significant effects in
models’ performances. For example, changing the batch size (accumulated) for ResNet18
from 32 to 64 increased the accuracy by 0.03 in the test set, but increasing it again from
64 to 128 reduced the accuracy by 0.03 (Test accuracy, rows 1, 2, and 4 in Table 6). Some
hyperparameters bring the performance to noticeable sub optimal results (e.g., rows 5 and
8). The model in row 5 trained only for 8 epochs, which was smaller than most of the
experiments reported for ResNet18. This happened because the model achieved a small
validation loss in epoch three and then oscillated with slightly larger validation loss values.
Due to the patience (five epochs), the model stopped after epoch eight. Changing only
the learning rate (row 4), the model is able to improve the accuracy in the test set by 0.2.



Geosciences 2021, 11, 336 12 of 25

Results in rows 8 and 10 show that the optimizer can have a significant impact on the
performance of ResNet50, where Adam improves the accuracy in the test set by 0.16 when
compared to RMSprop with the same hyperparameters. ResNet18 achieves a mean average
of 0.82 for test accuracy, with the worst model achieving 0.66 and the best model reaching
0.89 accuracy. Hereinafter, we summarize the information just provided as: 0.82 (0.66, 0.89).
ResNet50 achieves accuracies of 0.75 (0.64, 0.82). Training ResNet18 with the petrographic
thin-section data, and using the five-crop strategy, is relatively cheap, with one epoch
taking less than one minute with a laptop-based GTX 1050 GPU. ResNet50 training is a
little more expensive, taking roughly 1.2 min per epoch with the same hardware.

Table 6. Training hyperparameters and performance for models trained on the thin-section data when the model starts with
randomly initialized weights.

Model Batch Size
(Accumulated) Optimizer Learning

Rate Last Epoch Train
Accuracy

Validation
Accuracy

Test
Accuracy

ResNet18 128 Adam 1.00 × 10−4 18 0.90 0.79 0.86
ResNet18 64 Adam 1.00 × 10−4 15 0.91 0.75 0.89*
ResNet18 32 Adam 5.00 × 10−5 15 0.90 0.67 0.81
ResNet18 32 Adam 1.00 × 10−4 10 0.86 0.72 0.86
ResNet18 32 Adam 1.00 × 10−3 8 0.78 0.67 0.66
ResNet50 256 Adam 1.00 × 10−3 33 0.79 0.64 0.76
ResNet50 64 Adam 1.00 × 10−3 46 0.93 0.75 0.74
ResNet50 128 RMSprop 1.00 × 10−3 31 0.58 0.53 0.64
ResNet50 128 Adam 1.00 × 10−2 38 0.71 0.70 0.77
ResNet50 128 Adam 1.00 × 10−3 36 0.84 0.71 0.80
ResNet50 128 Adam 5.00 × 10−3 56 0.73 0.72 0.82
ResNet18 128 Adam 1.00 × 10−4 18 0.90 0.79 0.86 *

* Best performing models shown in Figure 6.

With the results obtained by training CNN models with weights that were randomly
initialized as the baseline for the classification of petrographic thin-section images, we
continued with the transfer learning analysis. The ResNet18 and ResNet50 models were
pretrained on the datasets described in Sections 2.2–2.5, and are fine-tuned for the classi-
fication of the dataset described in Section 2.1. As before, we perform a hyperparameter
search to evaluate how the performance of the models is affected. The full combination
of hyperparameters, as well as train, validation, and test set accuracies, is presented in
Appendix B (Table A3).

Figure 7 and Table 7 show the most important summary of results of the transfer
learning experiments, with details on the test set accuracies. As before, results show that
ResNet18 tends to have better performance than ResNet50 in the petrographic thin-section
image data; this is likely due to the limited data size. Curiously, training the networks
with randomly initialized weights or fine-tuning the proposed datasets have, in general,
a comparable performance for mean accuracy. The mean accuracy of ResNet50 trained
on the HAM10000 and on the MSI vs. MSS is considerably smaller than the baseline
results. However, the best performing models, those showing higher accuracy on the test
set, are slightly larger for most of the fine-tuned models. The only exception is ResNet50
pretrained on the MSI vs. MSS dataset, which has the same maximum accuracy as the
ResNet50 trained with randomly initialized weights. Although the proposed pretraining
datasets provided only a marginal or comparable results than what can be achieved by
training networks trained with randomly initialized weights, the technique of pretraining
the model on the ImageNet showed the most stable and accurate results. Pretraining
the models on ImageNet improved the networks’ accuracy, and the results for ResNet18
are consistent, even with different choices of hyperparameters. Although RMSprop was
generally detrimental for models pretrained on the other datasets, RMSprop and Adam
optimizers with the same batch size and learning rage (64, and 1 × 10−4, respectively)
achieved the highest performance for ResNet18 pretrained on ImageNet. Figure 8 shows a
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comparison of the accuracy on the test set for different hyperparameters, identifying the
optimizer choice, for ResNet50 trained with randomly initialized weights and pretrained
on ImageNet. As previously demonstrated, the results show that pretraining on ImageNet
helps the model achieve higher accuracy. The figure makes it clear that RMSprop does not
affect the performance negatively when the model is pretrained on ImageNet, whereas
RMSprop is detrimental when using randomly initialized weights.

Figure 7. Test set accuracy for the transfer learning experiments: (a) accuracy for fine-tuned ResNet18
and (b) accuracy for fine-tuned ResNet50. Solid bars indicate the mean accuracy values. Black
lines indicate minimum and maximum accuracy values. Blue bar on top indicates the baseline
models trained with randomly initialized weights, as discussed in the text. The mean, minimum,
and maximum values are shown in Table 7.

Table 7. Accuracies displayed in Figure 7.

Dataset Model Mean Minimum Maximum

Baseline ResNet18 0.82 0.66 0.89
ImageNet ResNet18 0.94 0.94 0.95

HAM10000 ResNet18 0.83 0.68 0.93
RawFooT ResNet18 0.81 0.65 0.93

MSI vs. MSS ResNet18 0.83 0.73 0.91

Baseline ResNet50 0.75 0.64 0.82
ImageNet ResNet50 0.84 0.76 0.90

HAM10000 ResNet50 0.70 0.49 0.89
RawFooT ResNet50 0.77 0.55 0.89

MSI vs. MSS ResNet50 0.71 0.54 0.82
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Figure 8. Experiment comparison by hyperparameter for ResNet50. This image shows some of the
hyperparameters tested, as well as the accuracy in the test set. The solid lines show results for when
the model is pretrained on the ImageNet and dashed lines show results for ResNet50 trained with
randomly initialized weights.

The following figures focus on ResNet18, as its results are better than ResNet50.
Figure 9 shows the best performing fine-tuned ResNet18 models when pretrained on the
ImageNet, HAM10000, and MSI vs. MSS datasets. ResNet18 pretrained on RawFooT
shows similar behavior; however, it trained for longer. Results show a break in continuity
around epoch five, when the full model is unfrozen and all the weights can be updated.
Such a break is more pronounced on the ResNet18 trained on ImageNet (grey curves in
Figure 9). Results show that the network tends to overfit after some epochs, with the
distance between the train and validation loss (accuracy) keeping somewhat constant or
increasing (decreasing). Regularization and decreases in the learning rate can help with
overfitting. We choose to present only the best performing models, but the curves obtained
during hyperparameter search behave similarly.

Figure 9. Training accuracy and loss for ResNet18 fine-tuned on the thin-section data: (a) accuracy
by epoch for the train and validation sets best performing ImageNet, HAM10000, and MSI vs. MSS
pretrained data; (b) corresponding loss by epoch.
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Figure 10 shows the confusion matrix computed on the test set for the best performing
models, including the baseline model trained with randomly initialized weights, as well
as the fine-tuned models for ResNet18. Results show, in general, that ResNet18 is capable
of correctly classifying most of the images. The most significative confusion seems to be
for the baseline between the classes BMdst and AMdst. ResNet18 pretrained with the
MSI vs. MSS dataset shows a similar performance, but also confuses one BMdst with
MCcSt. ResNet18 pretrained with the ImageNet dataset incorrectly classified AMdst as
BMdst twice. The remaining confusion is caused by very few, generally one or two, images
classified incorrectly. Results in Figure 10 indicate that ResNet18 can achieve high levels
of accuracy for the classification of thin-section image data, regardless of pretraining. It
also shows that adequate pretraining, when limited data are available, can aid in network
differentiation between classes in which the between-class variance is small. Appendix C
(Tables A4–A8) shows complementing metrics for the results in Figure 10.

Figure 10. Confusion matrix computed on the test set for ResNet18 models. The color of the bars
corresponds to the pretraining dataset. The size of the bar indicates the number of samples classified
in each of the actual vs. predicted locations. Description of each one of the classes is given in Table 1.

Moving away from the performance of the models, the next set of figures shows the
weights of the models. The first convolutional layer of ResNet18 is composed of 64 kernels
with a size of 7 by 7. They represent a fraction of the layers in ResNet18, but they are
closer to the model input and are thus easier to exhibit and interpret. Each one of these
64 kernels aligns with a RGB image; therefore, they can also be shown as RGB images.
Figure 11 shows the 64 weights of the baseline ResNet18, as well as the fine-tuned ResNet18
pretrained on ImageNet. The weights in Figure 11a are closer to random when compared
to the weights in Figure 11b. The weights in Figure 11b are very simi-lar before and after
fine-tune, meaning that there are almost not changes during the fine-tuning process.
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Figure 11. Weights for the first convolutional layer for ResNet18 used for the classification of the thin-section data:
(a) baseline weights; (b) ResNet18 pretrained on ImageNet and fine-tuned on the thin-section dataset.

Figure 12 shows a comparison of the weights when RawFooT is the dataset used for
the primary task. Figure 12a shows the weights of the first convolutional layer of the model
before fine-tuning, and Figure 12b shows the weights after fine-tuning on the thin-section
dataset. The weights in Figure 12a act as different colors and edges detectors. In contrast
to Figure 11b, the edge filters in Figure 12a show a sensitivity to color and are not as well
defined. There are also semi-circular filters, or color blobs. The weights in Figure 12b retain
some of such features, but exhibit weaker organization, moving towards values similar to
the baseline ResNet18 model (Figure 11a).

Figure 12. Weights for the first convolutional layer for ResNet18 used for the classification of the thin-section dataset:
(a) ResNet18 trained on RawFooT; (b) same weights after the model is fine-tuned on the thin-section dataset.
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This transition towards weights similar to what is observed for the baseline is also evi-
dent in the weights when MSI vs. MSS is the dataset used for the primary task. Figure 13a
shows the weights of the model trained on MSI vs. MSS before fine-tuning, and Figure 13b
shows the weights of the model after fine-tuning on the thin-section dataset. The weights in
Figure 13a show somewhat oriented edge detectors, as well as some color blobs. Much of
such organization, however, is lost after the model is fine-tuned on the thin-section dataset
(Figure 13b). ResNet18 pretrained on HAM10000 shows a similar behavior.

Figure 13. Weights for the first convolutional layer for ResNet18 used for the classification of the thin-section data:
(a) ResNet18 trained on MSI vs. MSS; (b) same weights after the model is fine-tuned on the thin-section dataset.

3.2. Interpretation

We interpret that the higher accuracy of ResNet18 when compared to ResNet50 in
Table 5 is an indication that the accuracy becomes saturated even with residual connections,
or an indication that ResNet50 is harder to train due to its larger number of parameters.
Further investigation and different hyperparameters might dimmish this issue, as accuracy
saturation is one of the issues ResNets were proposed to address. Table 5 also shows that
there is a large difference in accuracy between train and test sets for the MSI vs. MSS for
both ResNet18 (0.2) and ResNet50 (0.19). We interpret that one of the main reasons for
this difference is that the training data are perfectly balanced, whereas MSS data are much
larger than MSI on the test set (Table 4).

Table 6 shows that ResNet18 also has a better performance than ResNet50 in the thin-
section data. In this case, the interpretation is that the reduced performance is explained by
the large number of parameters in the larger model. Without a sufficiently large dataset,
ResNet50 has a greater capability to overfit the training data. The table also shows the
importance of the choice of hyperparameters. Two examples are easily noted due to their
weak performance in comparison to the other experiments, namely rows 5 and 8. As
described, the interpretation for the difference in performance is attributed to the choice
of hyperparameters.

The most noticeable pattern in the confusion matrix in Figure 10 is the misclassifi-
cations of the models between the classes BMdst and AMdst, where the models classify
BMdst as AMdst; this is stronger for the baseline model. This confusion is caused because
these two classes are very similar clay-rich facies; the only difference between them is the
amount of bioturbation, which is higher in the BMdst. Additionally, this bioturbation is
described using 2.5× magnification, but it is not particularly evident when using 10X zoom.
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However, this demonstrates the accuracy of the models when it comes to differentiating
between two classes, even if only showing small differences and being described using
different magnifications than the ones used in the model. Figure 10 also shows that the
ResNet18 pretrained on RawFooT was the only model that did not incorrectly classify
BMdst samples as AMdst. We interpret that the combination of lighting and texture present
in RawFooT helped the model to learn filters that are also useful for bioturbation detection,
although this is not clearly defined in the weights in Figure 12. In contrast to the challenges
between AMdst and BMdst, the models show better results when differentiating between
MCSt and MCcSt. The difference between them, MCSt and MCcSt, is the amount of calcite
cement that is evident at different scales. Moreover, the samples are stained with red
Alizarin, which is used for calcite identification, which also helps the models.

The results in Figure 7 and Table 7 are somewhat unexpected because they indi-cate
that training the networks with randomly initialized weights or fine-tuning the proposed
datasets provide similar mean accuracy results, whereas fine-tuning net-works pretrained
in ImageNet achieves higher performance. Based on Figures 11–13 our interpretation is
that the features learned by models trained on ImageNet are more general. For exam-
ple, Figure 11b shows several edge detectors mostly black and white, indicating color
invariance, and some well-defined color blobs. Results in Figures 12a and 13a show some
similarity to the ImageNet weights, however sensible to color contrast (the edge detectors
are colorful and blobs are not surrounded by a grey background). As the weights obtained
when trained on the proposed datasets seem more specific to each one of the datasets
used in the primary task, these weights are more disturbed during the fine-tuning and, in
general, move towards the values found for the baseline in Figure 11a. Curiously as well,
these baseline weights do not show easily recognizable features and visually appear almost
random. This is likely due to a combination of the small number of samples in the dataset,
the general nature of the thin section images where minerals are generally somewhat
randomly distributed, and the small subsection of weights (only one layer) investigated.

4. Discussion

As previously observed in several studies, the results presented here show once again
that CNNs can achieve high levels of accuracy for the classification of petro-graphic thin
section image data. Using transfer learning and repurposing models pre-trained for the
classification of the ImageNet can help increase the performance of the CNN models.
Unlike most of the previous studies, here we evaluate the performance of pretraining
CNNs on different datasets that are visually more similar to petrographic thin section
images than the natural images of ImageNet. On average, pretraining ResNet18 and
ResNet50 on the proposed datasets did not improve the accuracy significantly compared to
training such models with randomly initialized weights (Figure 7 and Table 7). However,
hyperparameter tuning shows that pretraining ResNet18 (ResNet50) on the proposed
datasets can lead to improvements in accuracy of up to 4% (7%) in the performance of
classification of petrographic thin section image data as the “Maximum” column in Table 7
shows. In the experiments described here, we limited the search of hyperparameters,
selecting among some of the most common hyperparameters as that was sufficient for
the proposed analysis. However, several hyperparameters and training strategies could
be evaluated when the objective is directly related to improving models’ accuracy. For
example, regularization and decaying the learning rate can help with overfitting. Bello
et al. [41] studied how training strategies and hyperparameters can affect the performance
of ResNets.

Although MSI vs. MSS dataset was the largest of the proposed datasets, with more
than 90k samples in the train set (Table 4), pretraining ResNets on MSI vs. MSS did not
improve the classification significantly when compared to HAM10000 (roughly 10k samples
in the train set, Table 2) or RawFooT (roughly 25k samples in the train set Table 3) datasets.
This is unexpected, as the larger dataset was anticipated to help the model generate more
robust filters compared to the smaller datasets. In fact, the results obtained by pretraining
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the models on the proposed datasets are similar, except for ResNet50 pretrained on the
RawFooT dataset that shows a slightly improved mean average and minimum value. This
is likely due to ResNet50 learning more generic filters, such as edge and texture detectors,
on RawFooT than in the other proposed datasets.

Results of the experiments show that the widely adopted strategy to use models
pretrained on ImageNet is usually very favorable for the classification of petrographic
thin-section data, even though the datasets have different distributions. Models pretrained
on ImageNet tend to exhibit strong performance with a wide selection of hyperparameters,
making them easier to train. We argue that such superior performance is due to two main
factors: ImageNet number of samples and variability and general GPU hours employed
for hyperparameter tuning. As previously described, the number of samples in ImageNet
is one or two orders of magnitude larger than the number of samples of the proposed
datasets. Computer vision researchers training models with ImageNet datasets generally
have access to more powerful GPUs and higher experience in computer vision tasks, and
are thus able to perform more experiments in the search for a good hyperparameter setting
than the average geoscientist researcher. Moreover, the weights for models trained on
ImageNet are easily available in the most popular deep learning frameworks. Thus, using
models pretrained on ImageNet remains a valuable approach for the classification of
petrographic thin-section image data. Yosinski et al. [13] showed that transferring features
even from distant tasks can be better than training models with randomly initialized
weights, although feature transferability reduces as the distance between the primary and
secondary task grows. The results presented here are then partially aligned with what
was observed before in [13]. The initial expectation was that the proposed datasets would
facilitate transferability; however, results show that more accurate models can be obtained
by fine-tuning models previously trained on ImageNet.

In the study presented here, we use a five-crop technique to accommodate for images
larger than what is generally used as input for CNN models and to generate models that
are able to classify petrographic thin-section images based on an average of the image.
Extracting patches averaging their predictions is a common strategy widely used to increase
performance (e.g., [3,42]). Sultana et al. [43] showed that multiple cropping strategies often
outperform single cropping strategies. The five-crop technique is somewhat easier than
what was presented in [26], with the advantage of also being incorporated in some deep
learning frameworks. Generally, in [26], the thin-section photograph was split into six
smaller crops, and each crop was treated as one independent sample. The final classification
of the full photograph was given based on the classification of each one of such smaller
crops. Such technique allows for a finer control on the number of crops extracted from a
single photograph, however converting the final probabilities to a single class for each one
of the crops, i.e., converting a continuous value to a categorical value might attenuate small
differences that are better accommodated based on a photograph mean average.

Results of the experiments presented here also show that the petrographic thin-section
image could correctly be classified, even though the images were taken with two dif-
ferent magnification levels, expressing that CNNs can be trained to be scale invariant.
Thin-section images at different magnifications were successfully used before, for exam-
ple, by Koeshidayatullah et al. [28], who assembled thin-section images with different
magnifications for carbonate petrography. Graziani et al. [44] observed that CNN trained
on natural images must achieve scale invariance due to viewpoint variations, and they
studied this property in models trained on ImageNet. It is helpful to know that CNN
models did not struggle with such variations in the characteristics of the data, as this can
be used to facilitate the assemblage of larger petrographic thin-section datasets. That said,
we anticipate that the variable magnification strategy might fail for some objectives. For
example, the magnification level necessary for a sandstone modal analysis is very different
to the magnification level needed to identify types of clays in the same sample, which
indicates the same dataset likely needs labels for different levels of magnification. We
believe multiple magnification levels can be used if the general characteristics of the thin
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section leading to the defined classification (e.g., mineralogical composition and texture)
can be observed at different scales.

In general, the results presented for the best performing ResNet18s pretrained on
different datasets show comparable performances. Moreover, [26] showed that the accuracy
of such models tends to decrease when applied to classify thin section data processed by
different laboratories. Larger datasets would be helpful to understand what characteristics
of the images make the models fail the classification. Although petrographers often
photograph locations of the thin section on which the grains/crystals—or fossils—exhibit
different behaviors, rather than the average behavior used for the thin-section description
and microfacies classification, we believe the creation of a larger petrographic thin-section
dataset can be helpful for many geoscientists. With larger models, our community would be
able to pretrain robust petrographic classifiers and make weights available for fine-tuning
on specific formations. However, the results of this paper, specifically the transfer learning
analysis performed with the MSI vs. MSS dataset, indicate that such a petrographic dataset
should likely have hundreds of thousands of samples.

5. Conclusions

The number of studies using models pretrained on ImageNet, and the fine-tuning of
such models for the classification of thin-section data, is increasing. Despite the difference
in characteristics of the samples from ImageNet, a dataset with a wide range of classes
and image characteristics, with the samples of petrographic thin-section image data, the
fine-tuning strategy proved itself reliable and generated models that achieved the best
performance in experiments conducted with thin sections from five different wells from
the Sycamore formation. Although expected to facilitate fine-tuning, on average, pretrain-
ing CNN models on datasets that are visually more similar to petrographic thin-section
images did not show significant improvements than training CNN models with randomly
initialized weights. Larger petrographic datasets should be helpful for the creation of more
robust CNN models.
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Appendix A

This appendix provides extra details about the pretraining step. Table A1 shows the
hyperparameter tuning for the different datasets used to pretrain the models. Table A2
shows the accuracies for each one of the sets and for each one of the models presented in
Table A1. Table A2 also shows the approximate execution time (training and evaluation),
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with identification of the hardware for each one of the experiments. As described in
the main text, the model stops training after five epochs without improvements on the
validation set. ImageNet training parameters are not shown, as the pretrained models are
downloaded directly from [33].

Table A1. Hyperparameters tested for pretraining models.

Model Name Dataset # of Layers Batch Size Optimizer Learning Rate

ResNet18-M-128-A3 MSI vs. MSS 18 128 Adam 1 × 10−3

ResNet18-M-512-A3 MSI vs. MSS 18 512 Adam 1 × 10−3

ResNet18-M-1024-A3 MSI vs. MSS 18 1024 Adam 1 × 10−3

ResNet50-M-512-A3 MSI vs. MSS 50 512 Adam 1 × 10−3

ResNet50-M-1024-A3 MSI vs. MSS 50 1024 Adam 1 × 10−3

ResNet18-R-A2
ResNet18-R-A3
ResNet18-R-A4

RawFooT
RawFooT
RawFooT

18
18
18

128
128
128

Adam
Adam
Adam

1 × 10−2

1 × 10−3

1 × 10−4

ResNet50-R-A2
ResNet50-R-A3
ResNet50-R-A4

RawFooT
RawFooT
RawFooT

50
50
50

128
128
128

Adam
Adam
Adam

1 × 10−2

1 × 10−3

1 × 10−4

ResNet18-H-64-A3 HAM10000 18 64 Adam 1 × 10−3

ResNet18–H-128-A3 HAM10000 18 128 Adam 1 × 10−3

ResNet18–H-128-R3 HAM10000 18 128 RMSprop 1 × 10−3

ResNet18–H-256-A3 HAM10000 18 256 Adam 1 × 10−3

ResNet50-H-64-A3 HAM10000 50 64 Adam 1 × 10−3

ResNet50–H-128-A3 HAM10000 50 128 Adam 1 × 10−3

ResNet50–H-128-A4 HAM10000 50 128 Adam 5 × 10−4

ResNet50–H-256-A3 HAM10000 50 256 Adam 1 × 10−3

Table A2. Accuracy obtained for the primary task and other training information. The bold indicates best performing
in group.

Model Name Training Validation Test GPU Elapsed Time 1 Epochs

ResNet18-M-128-A3 0.95 0.92 0.70 GTX 1050 11.5 h 34
ResNet18-M-512-A3 0.94 0.91 0.71 GTX 1050 11.5 h 33
ResNet18-M-1024-A3 0.93 0.91 0.70 GTX 1050 9.5 h 28
ResNet50-M-512-A3 0.92 0.91 0.68 GTX 1050 24 h 32
ResNet50-M-1024-A3 0.91 0.90 0.71 GTX 1050 20 h 27

ResNet18-R-A2
ResNet18-R-A3
ResNet18-R-A4

0.97
0.98
0.97

0.92
0.96
0.92

0.88
0.88
0.88

Quadro K1200
Quadro K1200
Quadro K1200

12 h
8 h

11.5 h

38
25
38

ResNet50-R-A2
ResNet50-R-A3
ResNet50-R-A4

0.85
0.89
0.90

0.79
0.87
0.83

–
0.73

–

Quadro K1200
Quadro K1200
Quadro K1200

6 h
7 h
9 h

9
10
14

ResNet18-H-64-A3 0.78 0.75 0.73 GTX 1050 1 h 16
ResNet18–H-128-A3 0.79 0.77 0.76 GTX 1050 1.5 h 21
ResNet18–H-128-R3 0.80 0.76 0.75 GTX 1050 2 h 30
ResNet18–H-256-A3 0.77 0.73 0.75 GTX 1050 1 h 15
ResNet50-H-64-A3 0.78 0.75 0.73 GTX 1050 2 h 29

ResNet50–H-128-A3 0.78 0.74 0.74 GTX 1050 2 h 28
ResNet50–H-128-A4 0.77 0.76 0.74 GTX 1050 1.5 h 16
ResNet50–H-256-A3 0.80 0.76 0.75 GTX 1050 2.5 h 32

1 The elapsed time includes all training and testing, but performance might vary according to secondary tasks running concomitantly.

Appendix B

Hyperparameter search for fine-tuned models discussed in Section 3.
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Table A3. Hyperparameter search for fine-tuned models.

Model Pretrained Batch
Size

Batch Size
(Accumulated) Optimizer Learning

Rate Patience Last
Epoch

Train
Accuracy

Validation
Accuracy

Test
Accuracy

ResNet18 RawFooT 4 8 Adam 1.00 × 10−3 10 25 0.73 0.64 0.65
ResNet18 RawFooT 4 16 Adam 1.00 × 10−3 10 49 0.82 0.72 0.85
ResNet18 RawFooT 4 32 Adam 1.00 × 10−4 10 26 0.84 0.79 0.81
ResNet18 RawFooT 4 32 Adam 1.00 × 10−3 10 32 0.77 0.78 0.80
ResNet18 RawFooT 4 64 Adam 1.00 × 10−4 10 35 0.87 0.69 0.80
ResNet18 RawFooT 4 64 RMSprop 1.00 × 10−3 10 48 0.73 0.61 0.79
ResNet18 RawFooT 4 64 Adam 1.00 × 10−3 10 72 0.95 0.85 0.93
ResNet18 RawFooT 4 128 Adam 1.00 × 10−3 10 37 0.85 0.79 0.82
ResNet18 MSI vs. MSS 16 32 Adam 1.00 × 10−4 5 26 0.91 0.78 0.84
ResNet18 MSI vs. MSS 16 64 Adam 1.00 × 10−3 5 25 0.91 0.79 0.77
ResNet18 MSI vs. MSS 16 64 Adam 5.00 × 10−5 5 21 0.87 0.74 0.85
ResNet18 MSI vs. MSS 16 64 RMSprop 1.00 × 10−4 5 21 0.82 0.56 0.73
ResNet18 MSI vs. MSS 16 64 Adam 1.00 × 10−4 5 25 0.92 0.78 0.91
ResNet18 MSI vs. MSS 16 128 Adam 1.00 × 10−4 5 23 0.88 0.75 0.85
ResNet18 ImageNet 16 32 Adam 1.00 × 10−4 5 14 1.00 0.89 0.94
ResNet18 ImageNet 16 64 RMSprop 5.00 × 10−5 5 20 1.00 0.92 0.94
ResNet18 ImageNet 16 64 RMSprop 1.00 × 10−4 5 19 0.99 0.82 0.95
ResNet18 ImageNet 16 64 Adam 5.00 × 10−5 5 18 0.98 0.93 0.94
ResNet18 ImageNet 16 64 Adam 1.00 × 10−4 5 15 1.00 0.91 0.95
ResNet18 ImageNet 16 128 Adam 1.00 × 10−4 5 18 0.99 0.93 0.94
ResNet18 HAM10000 16 32 Adam 5.00 × 10−5 5 24 0.91 0.77 0.86
ResNet18 HAM10000 16 64 RMSprop 5.00 × 10−5 5 14 0.82 0.52 0.68
ResNet18 HAM10000 16 64 Adam 1.00 × 10−5 5 52 0.85 0.79 0.86
ResNet18 HAM10000 16 64 Adam 5.00 × 10−5 5 37 0.95 0.86 0.93
ResNet18 HAM10000 16 64 Adam 1.00 × 10−4 5 18 0.89 0.57 0.81
ResNet18 HAM10000 16 128 Adam 5.00 × 10−5 5 32 0.89 0.78 0.86
ResNet50 RawFooT 4 8 Adam 1.00 × 10−3 10 58 0.79 0.75 0.84
ResNet50 RawFooT 4 16 Adam 1.00 × 10−3 10 30 0.75 0.76 0.79
ResNet50 RawFooT 4 32 Adam 1.00 × 10−4 10 43 0.82 0.71 0.84
ResNet50 RawFooT 4 32 Adam 1.00 × 10−3 10 50 0.87 0.69 0.73
ResNet50 RawFooT 4 64 RMSprop 1.00 × 10−3 10 34 0.66 0.48 0.55
ResNet50 RawFooT 4 64 Adam 1.00 × 10−3 10 39 0.80 0.77 0.89
ResNet50 MSI vs. MSS 4 8 Adam 1.00 × 10−3 10 53 0.76 0.74 0.65
ResNet50 MSI vs. MSS 4 16 Adam 1.00 × 10−3 10 35 0.72 0.48 0.82
ResNet50 MSI vs. MSS 4 32 Adam 5.00 × 10−5 10 25 0.63 0.56 0.69
ResNet50 MSI vs. MSS 4 32 Adam 1.00 × 10−4 10 21 0.73 0.64 0.66
ResNet50 MSI vs. MSS 4 64 RMSprop 1.00 × 10−3 10 32 0.60 0.55 0.54
ResNet50 MSI vs. MSS 4 64 Adam 1.00 × 10−3 10 40 0.83 0.75 0.81
ResNet50 MSI vs. MSS 4 128 Adam 1.00 × 10−3 10 57 0.92 0.76 0.77
ResNet50 ImageNet 4 8 Adam 1.00 × 10−3 10 14 0.78 0.70 0.82
ResNet50 ImageNet 4 16 Adam 1.00 × 10−3 10 14 0.79 0.77 0.85
ResNet50 ImageNet 4 32 RMSprop 1.00 × 10−4 10 28 1.00 0.91 0.90
ResNet50 ImageNet 4 32 Adam 5.00 × 10−5 10 31 1.00 0.90 0.84
ResNet50 ImageNet 4 32 Adam 1.00 × 10−4 10 37 1.00 0.94 0.90
ResNet50 ImageNet 4 64 Adam 1.00 × 10−3 10 33 0.96 0.85 0.84
ResNet50 ImageNet 4 128 Adam 1.00 × 10−3 10 27 0.98 0.75 0.76
ResNet50 HAM10000 4 8 Adam 1.00 × 10−3 10 34 0.69 0.74 0.74
ResNet50 HAM10000 4 16 Adam 1.00 × 10−3 10 29 0.72 0.61 0.74
ResNet50 HAM10000 4 32 Adam 5.00 × 10−5 10 24 0.65 0.53 0.68
ResNet50 HAM10000 4 32 Adam 1.00 × 10−4 10 22 0.74 0.64 0.68
ResNet50 HAM10000 4 64 Adam 1.00 × 10−4 10 31 0.79 0.68 0.66
ResNet50 HAM10000 4 64 RMSprop 1.00 × 10−3 10 28 0.65 0.59 0.49
ResNet50 HAM10000 4 64 Adam 1.00 × 10−3 10 54 0.92 0.79 0.89
ResNet50 HAM10000 4 128 Adam 1.00 × 10−3 10 39 0.89 0.85 0.77

Appendix C

This appendix provides extra performance metrics for the test set for the best perform-
ing fine-tuned ResNet18 models when pretrained on the ImageNet, HAM10000, and MSI
vs. MSS datasets, as well as the Baseline ResNet18, as described in Section 3, specifically in
relation to the results shown in Figure 10.
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Table A4. Classification report for ResNet18—baseline. The overall accuracy is 0.89.

Class Precision Recall F1-Score Support

AMdst 0.77 1.00 0.87 20
BMdst 0.93 0.70 0.80 20
MCSt 0.95 0.95 0.95 20
MCcSt 0.95 0.90 0.92 20

macro average 0.90 0.89 0.89 80
weighted average 0.90 0.89 0.89 80

Table A5. Classification report for ResNet18 pretrained on ImageNet. The overall accuracy is 0.95.

Class Precision Recall F1-Score Support

AMdst 0.95 0.90 0.92 20
BMdst 0.90 0.90 0.90 20
MCSt 1.00 1.00 1.00 20
MCcSt 0.95 1.00 0.98 20

macro average 0.95 0.95 0.95 80
weighted average 0.95 0.95 0.95 80

Table A6. Classification report for ResNet18 pretrained on HAM10000. The overall accuracy is 0.93.

Class Precision Recall F1-Score Support

AMdst 0.90 0.95 0.93 20
BMdst 1.00 0.85 0.92 20
MCSt 0.90 0.95 0.93 20
MCcSt 0.90 0.95 0.93 20

macro average 0.93 0.93 0.92 80
weighted average 0.93 0.93 0.92 80

Table A7. Classification report for ResNet18 pretrained on RawFooT. The overall accuracy is 0.93.

Class Precision Recall F1-Score Support

AMdst 1.00 0.85 0.92 20
BMdst 0.90 0.95 0.93 20
MCSt 0.95 0.90 0.92 20
MCcSt 0.87 1.00 0.93 20

macro average 0.93 0.92 0.92 80
weighted average 0.93 0.93 0.92 80

Table A8. Classification report for ResNet18 pretrained on MSI vs. MSS. The overall accuracy is 0.91.

Class Precision Recall F1-Score Support

AMdst 0.80 1.00 0.89 20
BMdst 1.00 0.70 0.82 20
MCSt 1.00 0.95 0.97 20
MCcSt 0.91 1.00 0.95 20

macro average 0.93 0.91 0.91 80
weighted average 0.93 0.91 0.91 80
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