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Abstract: The development of forecasting models for the evaluation of potential slope instability after
rainfall events represents an important issue for the scientific community. This topic has received
considerable impetus due to the climate change effect on territories, as several studies demonstrate
that an increase in global warming can significantly influence the landslide activity and stability
conditions of natural and artificial slopes. A consolidated approach in evaluating rainfall-induced
landslide hazard is based on the integration of rainfall forecasts and physically based (PB) predictive
models through deterministic laws. However, considering the complex nature of the processes and
the high variability of the random quantities involved, probabilistic approaches are recommended
in order to obtain reliable predictions. A crucial aspect of the stochastic approach is represented by
the definition of appropriate probability density functions (pdfs) to model the uncertainty of the
input variables as this may have an important effect on the evaluation of the probability of failure
(PoF). The role of the pdf definition on reliability analysis is discussed through a comparison of PoF
maps generated using Monte Carlo (MC) simulations performed over a study area located in the
Umbria region of central Italy. The study revealed that the use of uniform pdfs for the random input
variables, often considered when a detailed geotechnical characterization for the soil is not available,
could be inappropriate.

Keywords: landslides; probabilistic approaches; reliability analysis

1. Introduction

In many areas of the world, rainfall-induced landslides represent a relevant threat to
the population, infrastructure, buildings, and cultural heritage. In recent years, extreme
rainfall events have induced an increasing frequency of slope movements [1–5]; there-
fore, the prediction of rainfall-induced landslides represents a major challenge for the
scientific community.

The most damaging landslides are triggered by intense or prolonged rainfall [6–9],
and the most common phenomena are shallow landslides [10].

Considering the negative impact of landslides on society [11,12], different approaches
have been developed to protect and safeguard the territory; for example, geomorpholog-
ical mapping, analysis of landslide inventories, heuristic terrain, and statistically based
classification methods [13,14] have often been used to evaluate the landslide susceptibility
of an area.

Landslide susceptibility (S) is the likelihood of a landslide occurring in an area on the
basis of local terrain conditions [15]. It represents an estimate of “where” landslides are
likely to occur.
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Susceptibility (S), hazard (H) (representing the probability that a landslide of a given
magnitude will occur in a given period and in a given area), and vulnerability (V) (consid-
ering people and infrastructures involved) define landslide risk, which is therefore based
on what has happened in the past.

Current extreme regimes are not comparable with past rainfall events; therefore, the
zoning of risk (function of S, H, and V) is not always sufficient to guarantee the protection
of the territory and people.

A robust and sustainable response to planning policies is represented by landslide
forecasting models that are able to simulate slope stability as a function of expected
meteorological conditions and physical characteristics of the territory.

Spatial and temporal forecasting of shallow landslides triggered by rainfall can be
performed according to different approaches: empirical methods, which analyze records of
landslide events and attempts to determine spatial and temporal variations in the occurrence
and frequency of landslides [16]; and physically based (PB) approaches [17–20] accounting for
the local physical and mechanical properties that control the failure processes [21–28]. The
latter approaches are preferred to forecast the spatial and temporal occurrence of shallow
landslides triggered by individual rainfall events, and they are commonly used by the
scientific community due to their capability to describe the natural physical processes
through appropriate analytical equations (some examples are presented in [29–32]).

If a detailed description of the study area is available in terms of slope topography
and physical, mechanical, and hydraulic soil properties, PB approaches can provide a high
level of reliability (see [33]). Generally, the detailed reconstruction of slope topography
does not represent a relevant problem; on the contrary, adequate characterization of the
physical, mechanical, and hydraulic properties of soil cover is subjected to economic
and practical limitations. Soils and rocks are described by parameters characterized by
high variability in space both in horizontal and vertical dimensions [34]. For instance,
mechanical properties show their uncertainty not only from site to site and within a given
stratigraphy but also within homogeneous covers as a consequence of natural deposition
processes [35]. In addition to soil property variability (random uncertainty), soil parameters
are characterized by two different forms of uncertainty. The first, epistemic uncertainty,
is linked to the impossibility of directly measuring a soil characteristic [36]; the second,
model uncertainty, is related to the approaches used to describe a specific phenomenon [37].
Model uncertainty includes: (1) measurement uncertainty, related to systematic errors (bias)
and random errors (precision); (2) statistical uncertainty, linked to limited information and
influenced by the technique used; and (3) uncertainty due to the idealizations present in the
physics formulation of the problem. While epistemic uncertainty can be reduced, random
uncertainty cannot be eliminated [38].

Nevertheless, PB models are often used considering the quantities involved in land-
slide processes deprived of uncertainty, quantified by a single fixed value [39,40]; conse-
quently, the derived predictions are expressed by a single value of the factor of safety, Fs,
or the critical rainfall intensity, Ic.

On the contrary, when PB models are used with a probabilistic approach, the variability
of the input quantities is modeled and the dependent variables are described as random
as well.

For landslide forecasting through PB approaches, a deterministic approach, which
assumes the input data without uncertainty [25,26,41–44] is less suitable than a probabilistic
approach, which considers input data as random variables [45] defined through their
probability density functions (pdfs) [46]. In the probabilistic approach, the safety level of
the slope is given by the probability of failure (PoF), i.e., the probability associated with a
value of factor of safety equal or less than 1 [47,48].

A key point in PB probabilistic modeling is represented by the definition of the
theoretical pdf for the random quantities involved in the simulated physical processes. For
a specific variable, the theoretical pdf must be able to reproduce its variability starting
from the available measures. Typically, large variability in the physical and mechanical
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properties of the soil makes it quite difficult to identify a priori the theoretical pdf. In
addition, when applying PB probabilistic models over large areas, the objective difficulties
of having a significant number of measures to correctly assess the pdf for each variable
leads to the adoption of simplified hypotheses. When the probability density functions of
strength parameters cannot be determined from in situ or laboratory tests, the pdfs are
estimated based on judgment, experience, or indications supported by other authors [49].

In this paper, the impact of the selection of the pdf on the PoF estimation is discussed
through the application of a PB probabilistic model to a pilot study area characterized by a
detailed geotechnical characterization. Available collected measures in this area are used
to define the pdfs for soil shear strength properties: effective cohesion (c’) and friction
angle (φ’). In this work, a comparison is carried out between the PoF evaluated, (i) starting
from uniform pdfs for all random variables, called PoFu, when the internal structure of
the uncertainty is unknown and only the minimum and maximum values of the variable
is known [50]; (ii) assuming the pdf able to consider the spatial variability of random
quantities, called PoFr. Analyses were carried out to develop a modification of the transient
rainfall infiltration and grid-based regional slope stability analysis (TRIGRS) code [26] in
its probabilistic version [51]. Reliability analysis was carried out using the Monte Carlo
method [47].

This paper is organized as follows. In Section 2, an overview of the theoretical
aspects of the approach and the equations that govern the physically based probabilistic
model implemented is described; a detailed description of the study area is presented in
Section 2.2, where geotechnical and hydrological assumptions considered for the reliability
analysis are illustrated. Experimental settings and the results, obtained in terms of the PoF,
are discussed in Section 3. Conclusions and future research developments represent the
final section of the paper (Section 4).

2. Materials and Methods
2.1. Physically Based Landslide Forecasting Model

The probabilistic model, implemented in order to assess the impact of pdf definition
on the PoF evaluation, represents a new extension of the probabilistic version [51] of
the original TRIGRS code [26]. The PB approach, implemented in the MATLAB/Octave
environment, is able to work through discretization of the study area on a regular grid,
coupling a hydraulic model for the evolution of the pore water pressure during time and a
mechanical model for the assessment of the temporal slope stability conditions.

In the deterministic analysis, the slope stability is expressed by the factor of safety, Fs,
equal to:

Fs(Z, t) =
tanΦ′
tanα

+
c′ − γwψ(Z, t)tanΦ′

γZsinαcosα
(1)

where a is the inclination grade of slope, c’ represents the effective cohesion of the soil, ϕ’ is
the effective friction angle, ψ is the pressure head, and γ is the unit weight of the soil.

In transient flow conditions, the factor of safety varies with Z and t due to the evolution
with time and space of the pressure head ψ generated by the rainfall infiltration process.

The evaluation of ψ evolution is based on the solution of the mass conservation
equation for solid and liquid phases. In the particular case of fully saturated soil covers,
and under 1d conditions, the equation reduces to the simple diffusion equation:

∂ψ

∂t
= Dα

∂2ψ

∂Z2 (2)

where Dα is the soil coefficient of 1D consolidation, corrected for the slope inclination a.
The resolution of Equation (2) requires the definition of the initial and boundary

conditions. The initial condition is defined by the position, at time t = 0, of the pressure
head profile ψ(Z, 0), while the flow boundary conditions are defined at the layer base
Z = db and at the ground surface (Z = 0). The latter are determined starting from the time
evolution of the rainfall intensity i(t). The closed-form solution for Equation (2) is described
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in the works by Baum et al. (2002) for the saturated case [25] and in Baum et al. (2008) for
the unsaturated case [26].

In conclusion, the stability analysis is controlled by the balance of mass for the pore
water, which requires the definition of: (i) saturated (θs) and residual (θr) volumetric water
content, (ii) the soil stiffness (Eed), (iii) the initial prestorm water table depth dw and the
prestorm infiltration rate parameters aα and ILT, (iv) the thickness of the soil cover h, and
(v) the hydraulic conductivity ks.

The Fs results depend on 12 parameters, represented in a synthetic form in Equation (3):

Fs = f (α, h, dw, γs, c′, ϕ′, Eed, ks, θs, θr,aα,, ILT
)

(3)

In the stochastic analysis, the stability conditions are expressed by the PoF. In principle,
all the 12 parameters in Equation (3) can be considered a random variable; however, the
number of random variables can be reduced without affecting the forecast reliability under
appropriate hypotheses. In the considered case study, the following assumptions can
be made:

(1) On the safe side of the prediction, and without detailed characterization for the
unsaturated parameters, the soil cover can be considered in fully saturated conditions;
thus, the balance of mass for the pore water (dψ/dt = Dα d2ψ/dZ2, in which ψ is
the pressure head linked to infiltration process, and Dα is the soil 1D consolidation
coefficient) reduces to the simple diffusion;

(2) Because γs is typically affected by low uncertainty, it can be considered constant and
evaluated from the literature data;

(3) If a high-resolution DTM is used, the slope steepness can be assumed accurate enough
to be characterized by no uncertainty;

(4) The water table depth should be monitored at different points of the study area.

Therefore, the PB probabilistic model used in this paper considers the randomness of
the following quantities:

• Soil mechanical properties (c’, ϕ’);
• Soil saturated hydraulic conductivity ks and soil stiffness Eed, both considered in the

infiltration problem through the coefficient of consolidation, Dα = (ksEed)
γw

;
• Thickness of the soil cover layer, h.

The model is organized into two blocks: the first assesses the pdfs, and the second
performs the Monte Carlo simulations for the reliability analysis.

The comparison is carried out in terms of PoF estimations, by considering two different
pdfs: (1) the assessed pdfr, evaluated by considering the actual variability of the random
quantities; and (2) the uniform pdfu, which ignores the internal structure of the uncertainty
considering only the possible or probable range of parameters variation. In the first case,
the PoFr is obtained; in the second case, the PoFu is estimated.

To evaluate the influence of the pdf’s theoretical distribution, the Monte Carlo simu-
lation was used for the reliability analysis. This approach requires knowledge of the pdf
distributions of the random input variables in order to generate pseudorandom numbers
for each random quantity.

The exact method consists of N deterministic analyses able to define the value assumed
by a random dependent variable (the PoF in this case) connected to independent random
input quantities. The PoF estimation, in addition to being connected to the accuracy of
the estimation of the independent variables, is strictly linked to the number of simulations
performed (N) and to the number of variables considered (m). N can be expressed as:

N =

(
hα/2

2ε

)2·m
(4)
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where ε is given by the confidence level 1− α, and hα/2 is the number of standard deviation
units between the mean value and that defining the assigned confidence level. High
confidence levels are required to ensure a good accuracy of the results.

For unrelated variables, and for the problem analyzed, the Monte Carlo method
involves the generation of 5 sequences of random numbers. The N realizations provide
a sample of possible values for the safety factor, Fs. In particular, the PoFu and PoFr
were evaluated considering the number of Monte Carlo realizations for all cases equal to
N = 10,000, corresponding to a possible estimate error of about 25%.

2.2. Study Area

The study area selected for the investigation is known as Nuvole di Morra (Figure 1a),
a district located in the Città di Castello municipality (northern sector of the Umbria
region, central Italy). The slopes are computed directly from a rather accurate digital
elevation model, TINITALY/01, which is obtained starting from separate DEMs of single
administrative regions of Italy available with a 10 m cell size grid. The slopes have a
steepness varying between a maximum of 30◦ and a minimum of 5◦, with the highest
values in the west and southeast parts of the area.

The area, characterized by a high susceptibility to landslides, was affected by a
damaging landslide in 2005 triggered by prolonged and heavy rainfall on 10 December
2005. The movement involved an area of about 45 Ha with a soil volume of 500,000 m3. The
landslide appeared to be chiefly a reactivation of pre-existing landslides; however, areas
not previously affected by old landslides were also affected by the new slope movement.

Figure 1. (a) Study area location, landslide area (yellow polygon), and position of geotechnical tests: S1–S8; (b,c) photos
taken after the landslide event of 10 December 2005.
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The landslide (Figure 1a) can be divided into three zones: the source area (red in
Figure 1a), located in the northwest sector of the area; the entrainment area (blue in
Figure 1a), located in the southwest sector; and the indirect movement area (green in
Figure 1a), located in the east part.

Relevant damages were caused to structures and infrastructures, and several families
were transferred to other safe places (Figure 1b,c). After the event, geotechnical surveys
were planned to support the structural remedial work design and implementation.

In particular, in correspondence to 8 perforation tests (S1 to S8 in Figure 1a), 4 tests of
Class Q5 (undisturbed sample) and 10 tests of Class Q3 (disturbed samples of Class 3) were
analyzed. In addition to laboratory tests, 2 standard penetrometric tests (SPTs), 4 geometric
multichannel analysis of surface waves (MASWs) tests, 4 seismic refraction profiles, and
3 permeability tests were performed.

In this study, the available in situ measurements were integrated with the information
derived by the data set of Perugia Province [52,53] to obtain a detailed geotechnical charac-
terization that makes this area particularly suitable for the evaluation of the impact of the
pdf on the model performance.

2.3. Physical and Mechanical Properties

On the basis of the documentation related to the study area, the soil analyzed can be
considered homogeneous [54]. According to the geological map of the Umbria region, the
outcropping lithotype is “turbidites pelitic arenaceous” (also reported in the classification
described in [52,53]). The definition of the stochastic parameters (mean value and coefficient
of variation (COV)) for c’ and ϕ’ (Table 1) is derived from the integration between the
regional data set information [51] and in situ test measurements, as mentioned previously
in Section 3.

Table 1. Physical and mechanical soil characterization used in the reliability analysis.

Random Variable Symbol Unit pdf Mean COV

Effective friction angle ϕ′ (deg) Normal 30 0.20
Effective cohesion c (kPa) Log-normal 5 0.25

Saturated hydraulic
conductivity ks (m/s) Log-normal 5 × 10−7 1

Oedometric modulus Eed (kPa) Beta 1 × 10−4 0.18
Thickness of the soil cover h (m) Normal 14exp(−0.07∗α) 0.20

For the soil stiffness (Eed) and the hydraulic conductivity (ks), considering the few
available measurements, literature data were used. In particular, for ks, characterized by a
high variability, a log-normal distribution was considered, while for Eed, often delimited by
two fixed extreme values, the beta distribution, which combines low values of physical
quantity and a low probability of occurrence, was considered [34].

The thickness of the soil cover (h), for each cell of the grid, was evaluated using the
following empirical formula:

H = 14exp(−0.07∗α) (5)

where α is expressed in degrees [42], and h is a further random variable of the probabilistic
model, considered normally distributed (Table 1).

The unit weight of the soil, γs, was assumed equal to 19 kN/m3, and the soil cover
was considered homogeneous. Considering the significant rainfall events that affected
the autumn of 2005, the stability conditions were precautionarily evaluated assuming the
saturated conditions of the soil (Sr = 1).

In the absence of detailed information or recorded data, the initial prestorm water
table depth (dw) was set equal to 50% of h, and the steady prestorm infiltration rate (ILT)
was assumed to be negligible.
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2.4. Rainfall Data

The role of the pdfs on the PoF evaluation is discussed with reference to the rainfall
event that affected the Umbria region between September and December 2005. The large
amount of rainfall triggered many shallow landslides; among these, Nuvole di Morra is
the most relevant event.

Meteorological rainfall data for the study area were obtained through the rain gauges
of the Umbria region’s monitoring network, which provides semihourly data, recorded
continuously throughout the year 2005. The rainfall data recorded by the rain gauges of
Città di Castello and Trestina (located near Città di Castello) were considered (Figure 2).
In particular, the Morra landslide was triggered by rainfall observed between 25 and 28
November. The rainfall event considered an input in the probabilistic physically based
landslide forecasting model was characterized by a total duration (t) of 32 h and cumulative
rainfall of about 90 mm.

Figure 2. Semihourly rainfall intensity recorded by rain gauges of Trestina (blue line) and Città di Castello (orange line).

3. Results and Discussion

Figure 3 shows the spatial distribution of the safety factor FS evaluated by means of
the TRIGRS code (deterministic analyses), considering the average deterministic values of
the physical and mechanical soil properties reported in Table 1.

As shown in Figure 3, in the absence of rainfalls, the area is stable, with values
of Fs always greater than unity. As can be expected, the areas characterized by high
susceptibility to landslides correspond to the sectors characterized by the highest slope
(west and southeast areas of the polygon in Figure 3).

Figure 3. Spatial distribution of Fs evaluated considering the mean deterministic values defined
in Table 1 for the physical and mechanical properties of the soil. The green polygon denotes the
landslide area.

The modified PG_TRIGRS code was applied to the study area to obtain predictions
on its stability with different rainfall conditions. Using the rainfall event described in
Section 2.4, the code provides the predictions shown in Figure 4. As expected, the stability
conditions of the study area change during time, with the evolution of the rainfall event.
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To observe the effect of the rainfall on the model of spatially distributed predictions, the
PoF is evaluated at four different time instants, td (td = 8 h, td = 16 h, td = 24 h, and
(iv) td = t = 32 h), considering the uniform pdf for the random quantities (Figure 4).

Figure 4. Maps of the probability of failure computed considering the uniform pdf (PoFu) for the random variables in input
in the PB model. (a) td = 8 h; (b) td = 16 h; (c) td = 24 h; (d) td = 32 h.

Considering a subdivision of the PoF variability range into four classes (0 ≤ PoF < 0.15;
0.15 ≤ PoF < 0.35; 0.35 ≤ PoF < 0.5; PoF ≥ 0.5), as expected, at an early time (Figure 4a),
there are no areas associated with a very high PoFu (PoF > 50%). As time increases
(Figure 4b), the PoFu starts to increase, and there is a transition from low (white cells) to
high PoFu levels (orange and red pixels). Starting from time t = 24 h (Figure 4c), cells with
a PoFu variable between 15% and 50% start to concentrate in the southeast and west sector
of the landscape.

At the end of the storm (Figure 4d), the stability conditions are similar to those shown
for t = 24 h. In the last 8 h, the rain intensity of the event is low, and it corresponds to a
cumulative rainfall of 8 mm.

In the second simulation, the pdf based on the actual measures of the study area was
used. Similar results are obtained for PoFr; in particular, at the beginning of the event
(Figure 5a), areas in the western sector depicted by PoFr > 50% are observed. The first 8 h
of rain are characterized by a cumulative rain intensity of about 20 mm.

As time increases, the pixels that fall in the very high PoFr class do not increase
(Figure 5b), but a transition from a low PoFr (white cells) to medium PoFr values (beige
and orange cells) in the southeast sector is visible (Figure 5c,d).

In this case, the stability conditions reached at t = 24 h are similar to those obtained at
the end of the event.
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Figure 5. Maps of the probability of failure (PoFr) computed considering the pdf defined in Table 1 for the random variables
in input in the PB model. (a) td = 8 h; (b) td = 16 h; (c) td = 24 h; (d) td = 32 h.

A similar spatial PoF distribution can be observed in Figures 4 and 5. The portions
characterized by a higher probability of failure are distributed in the same sectors of the
area; however, the pixels that as time progresses pass into higher PoF classes are different
(Figures 6 and 7).

It is possible to notice, as expected, that with increasing rainfall time, the areas charac-
terized by a lower PoF decrease (in both cases of PoFr and PoFu), as long as the areas with
bigger PoF values increase. It can also be noticed that there is an increase in the rainfall
time of areas characterized by PoFr > 50 (red classes), while the red classes of PoFu retain
small and almost constant values.

In particular, from the histograms drawn in Figures 6 and 7, it can be noted that:

- A decreasing trend with time of rainfall can be observed for gray classes: after 8 h of
rainfall, the areas involved by PoFr < 15% are about 85%, and those by PoFu < 15%
are about 70%, while after 32 h, gray PoFr classes reach 70%, and gray PoFu classes
about 50%;

- An increasing trend with time of rainfall can be observed for both beige (15% < PoF < 35%)
and orange (35% < PoF < 50%) classes;

- In the case of the more dangerous classes (red classes), it can be noticed that the red
PoFr portions pass from about 5% (td = 8 h) to 8% (td = 32 h), while the red PoFu areas
are negligible during all the duration of the rainfall (they reach about 1% at the end of
the rainfall).
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Figure 6. Number of cells in each PoFr class for different time instants td of the rainfall event.

Figure 7. Number of cells in each PoFu class for different time instants td of the rainfall event.

To promote a quantitative comparison between two approaches, the quantity:

∆E = PoFu − PoFr (6)

was evaluated. For the sake of brevity, only the comparison in relation to the end of the
event is shown (Figure 8).
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Figure 8. Map showing the spatial distribution of ∆E evaluated at the end of the rainfall event.

The areas where the quantity ∆E is negative, thus PoFr > PoFu, correspond to the areas
characterized by the highest PoF (red class in Figures 4 and 5); the portions characterized
by a positive or null value of ∆E correspond to areas with a lower probability of failure
(white and beige pixels in Figures 4 and 5).

Considering the topographic features measure after the Morra landslide, the sector in
which ∆E is negative corresponds to the triggering area of the landslide, and the portion in
which ∆E is positive corresponds to the secondary area of the sliding phenomenon.

In conclusion, the PB probabilistic model with a realistic pdf provides a higher PoFr
in the trigger zones; the PB model with a uniform pdf provides a higher PoFu in the less
susceptible sectors. The use of a uniform pdf then produces: (i) a nonprecautionary estimate
of the failure conditions in the most vulnerable areas and (ii) false alarms in the stable
slopes (through a PoF overestimation in areas characterized by small instability conditions).

Therefore, the link between the reliability of the results and the pdfs definition for
the input random variables represents a crucial aspect in stochastic PB models, even if the
attention of the scientific community has been mainly paid to the comparison between the
results of the statistical and deterministic analysis [11,12,55,56].

4. Conclusions

The physical process that leads to slope failure is characterized by multiple uncertain-
ties, which should never be considered null. The uncertainty of the quantities involved is
considered in probabilistic approaches where the safety level of the slope is expressed as a
random variable, quantified by the probability of the failure PoF.

The PoF evaluation is strictly related to the theoretical pdfs considered for the input
quantities of the forecast models. In this work, it was shown that the definition of pdfs
for the physical and mechanical properties of the soil influences the reliability analysis;
this effect has been quantified with the exact method of Monte Carlo. The probability of
failure was computed in relation to a particular case study where a detailed geotechnical
characterization is available. This feature supports the possibility to define a pdf that is
other than uniform. In addition, the small extension of the study area ensures a good
compromise between the reliability of the results and the calculation times, which can
prohibit results for too large a scale. In relation to the Morra area, the results show
that differences between PoFu and PoFr are not negligible. In the portion of the area
characterized by high susceptibility to landslides, the use of the pdfu seems to lead to
nonprecautionary PoF estimates (PoFu < PoFr). On the contrary, in areas characterized by
lower susceptibility, the PoFu appears to overestimate the conditions of potential instability
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(PoFu > PoFr). This trend occurs in relation to all the time instants considered to be
independent of the rainfall intensities observed.

In order to generalize the results, the comparison in terms of the PoF on other study ar-
eas is necessary and large areas, characterized by different morphologies, will be considered
in future research.

Properly defining pdfs for random parameters not only improves the reliability of the
results but promotes a more informed use of physics-based probabilistic approaches.
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of Shallow Landslides and Erosion of a Susceptible Urban Environment. Remote Sens. 2021, 13, 385. [CrossRef]

12. Zhang, L.; Wang, X.; Xia, T.; Yang, B.; Yu, B. Deformation Characteristics of Tianjiaba Landslide Induced by Surcharge. ISPRS Int.
J. Geo-Inf. 2021, 10, 221. [CrossRef]

13. Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Int. Assoc. Eng. Geol. 1999,
58, 21–44. [CrossRef]

14. Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their
application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [CrossRef]

15. Brabb, E. Innovative Approaches for Landslide Hazard Evaluation. IV Int. Symp. Landslides 1984, 1, 307–323.
16. Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [CrossRef]
17. Srivastava, R.; Yeh, T.-C.J. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous

and layered soils. Water Resour. Res. 1991, 27, 753–762. [CrossRef]
18. Conte, E.; Troncone, A. A method for the analysis of soil slips triggered by rainfall. Géotechnique 2012, 62, 187–192. [CrossRef]
19. Zhang, J.; Zhu, D.; Zhang, S. Shallow slope stability evolution during rainwater infiltration considering soil cracking state.

Comput. Geotech. 2020, 117, 103285. [CrossRef]
20. Xu, J.; Zhao, X.; Li, P.; Zhang, M. Stability of a 3D unsaturated vertical cut slope subjected to variable rainfall infiltration. Comput.

Geotech. 2021, 134, 104110. [CrossRef]
21. Montgomery, D.R.; Dietrich, W.E. A physically based model for the topographic control on shallow landsliding. Water Resour. Res.

1994, 30, 1153–1171. [CrossRef]

http://doi.org/10.1680/jgeen.18.00216
http://doi.org/10.1016/j.scitotenv.2018.02.315
http://doi.org/10.1016/j.jhydrol.2016.02.007
http://doi.org/10.1016/j.scitotenv.2019.03.415
http://doi.org/10.1007/s11069-019-03830-x
http://doi.org/10.1007/BF02400865
http://doi.org/10.5194/nhess-4-213-2004
http://doi.org/10.1007/s10346-010-0213-0
http://doi.org/10.1016/j.geomorph.2017.03.031
http://doi.org/10.1007/978-94-007-4336-6_22
http://doi.org/10.3390/rs13030385
http://doi.org/10.3390/ijgi10040221
http://doi.org/10.1007/s100640050066
http://doi.org/10.1016/S0169-555X(99)00078-1
http://doi.org/10.1016/j.earscirev.2016.08.011
http://doi.org/10.1029/90WR02772
http://doi.org/10.1680/geot.8.P.075
http://doi.org/10.1016/j.compgeo.2019.103285
http://doi.org/10.1016/j.compgeo.2021.104110
http://doi.org/10.1029/93WR02979


Geosciences 2021, 11, 322 13 of 14

22. Wu, W.; Sidle, R.C. A Distributed Slope Stability Model for Steep Forested Basins. Water Resour. Res. 1995, 31, 2097–2110.
[CrossRef]

23. Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. 2000, 36, 1897–1910. [CrossRef]
24. Jibson, R.W.; Harp, E.L.; A Michael, J. A method for producing digital probabilistic seismic landslide hazard maps. Eng. Geol.

2000, 58, 271–289. [CrossRef]
25. Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS—A FORTRAN program for transient rainfall infiltration and grid-based regional

slope stability analysis. US Geol. Surv. Open File Rep. 2002, 424, 38.
26. Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS—A FORTRAN Program for Transient Rainfall Infiltration and Grid-Based

Regional Slope-Stability Analysis, Version 2.0 U.S. Geological Survey Open-File Report 2008-1159. Available online: https:
//pubs.usgs.gov/of/2008/1159 (accessed on 21 July 2008).

27. Frattini, P.; Crosta, G.B.; Fusi, N.; Negro, P.D. Shallow landslides in pyroclastic soils: A distributed modelling approach for hazard
assessment. Eng. Geol. 2004, 73, 277–295. [CrossRef]

28. Salciarini, D.; Volpe, E.; Kelley, S.A.; Brocca, L.; Camici, S.; Fanelli, G.; Tamagnini, C. Modeling the Effects Induced by the Expected
Climatic Trends on Landslide Activity at Large Scale. Procedia Eng. 2016, 158, 541–545. [CrossRef]

29. Salciarini, D.; Tamagnini, C.; Conversini, P.; Rapinesi, S. Spatially distributed rainfall thresholds for the initiation of shallow
landslides. Nat. Hazards 2011, 61, 229–245. [CrossRef]

30. Salciarini, D.; Tamagnini, C.; Ponziani, F.; Berni, N. Defining Physically-Based Rainfall Thresholds for Early Warning Systems.
Landslide Sci. Pract. 2013, 1, 651–657.

31. Schilirò, L.; Cepeda, J.; Devoli, G.; Piciullo, L. Regional Analyses of Rainfall-Induced Landslide Initiation in Upper Gudbrands-
dalen (South-Eastern Norway) Using TRIGRS Model. Geoscience 2021, 11, 35. [CrossRef]

32. Lind, N. Modelling of uncertainty in discrete dynamical systems. Appl. Math. Model. 1983, 7, 146–152. [CrossRef]
33. Godt, J.; Baum, R.; Savage, W.; Salciarini, D.; Schulz, W.; Harp, E. Transient deterministic shallow landslide modeling: Require-

ments for susceptibility and hazard assessments in a GIS framework. Eng. Geol. 2008, 102, 214–226. [CrossRef]
34. Fenton, G.A.; Griffiths, D.V. Risk Assessment in Geotechnical Engineering; Wiley: New York, NY, USA, 2008.
35. Lacasse, S.; Nadim, F. Uncertainties in Characterizing Soil Properties. In Proc. ASCE Special Technical Publication 58: Uncertainty in the

Geologic Environment—From Theory to Practice; Pacific Earthquake Engineering Research Center (PEER): Richmond, CA, USA, 1996.
36. Calvello, M. Dispense del Corso di Frane e Stabilità dei pendii. Personal communication, 2012.
37. Caira, M.; Carcassi, M.; Carpignano, A.; Castiglia, F.; Zio, E. Le Incertezze Nelle Analisi di Rischio. Rapp. Tecn. Available online.

IHMC Cmap-Tools 2006-01, Florida Institute for Human e Machine Cognition. 2006. Available online: http://conference.ing.
unipi.it/vgr2006/archivio/Articoli/285.pdf (accessed on 30 July 2021).

38. Baecher, G.B.; Christian, J.T. Reliability and Statistics in Geotechnical Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2005.
39. Montrasio, L.; Valentino, R. A model for triggering mechanisms of shallow landslides. Nat. Hazards Earth Syst. Sci. 2008,

8, 1149–1159. [CrossRef]
40. Cascini, L.; Cuomo, S.; Pastor, M.; Sorbino, G. Modeling of Rainfall-Induced Shallow Landslides of the Flow-Type. J. Geotech.

Geoenviron. Eng. 2010, 136, 85–98. [CrossRef]
41. Crosta, G.B.; Frattini, P. Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Syst. Sci.

2003, 3, 81–93. [CrossRef]
42. Salciarini, D.; Godt, J.W.; Savage, W.Z.; Conversini, P.; Baum, R.L.; Michael, J.A. Modeling regional infiltration of rainfall induced

shallow landslides in the eastern Umbria region of central Italy. Landslides 2006, 3, 181–194. [CrossRef]
43. Salciarini, D.; Godt, J.; Savage, W.Z.; Baum, R.; Conversini, P. Modeling landslide recurrence in Seattle, Washington, USA. Eng.

Geol. 2008, 102, 227–237. [CrossRef]
44. Cascini, L.; Calvello, M.; Grimaldi, G.M. Groundwater Modeling for the Analysis of Active Slow-Moving Landslides. J. Geotech.

Geoenviron. Eng. 2010, 136, 1220–1230. [CrossRef]
45. Salciarini, D.; Volpe, E.; Cattoni, E. Probabilistic vs. Deterministic Approach in Landslide Triggering Prediction at Large–scale.

In Geotechnical Research for Land Protection and Development; Part of the Lecture Notes in Civil Engineering Book Series (LNCE,
Volume 40); Springer International Publishing: Cham, Switzerland, 2020; pp. 62–70.

46. Nadim, F. Tools and Strategies for Dealing with Uncertainty in Geotechnics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 491,
pp. 71–95.

47. Harr, M.E. Reliability-Based Design in Civil Engineering; Dover Publications, Department of Civil Engineering, School of Engineering,
North Carolina State University: Raleigh, NC, USA, 1984.

48. Papaioannou, I.; Straub, D. Reliability updating in geotechnical engineering including spatial variability of soil. Comput. Geotech.
2012, 42, 44–51. [CrossRef]

49. Park, H.J.; Lee, J.H.; Woo, I. Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic
approach. Eng. Geol. 2013, 161, 1–15. [CrossRef]

50. Raia, S.; Alvioli, M.; Rossi, M.; Baum, R.L.; Godt, J.W.; Guzzetti, F. Improving predictive power of physically based rainfall-induced
shallow landslide models: A probabilistic approach. Geosci. Model. Dev. 2014, 7, 495–514. [CrossRef]

51. Salciarini, D.; Fanelli, G.; Tamagnini, C. A probabilistic model for rainfall—Induced shallow landslide prediction at the regional
scale. Landslides 2017, 14, 1731–1746. [CrossRef]

http://doi.org/10.1029/95WR01136
http://doi.org/10.1029/2000WR900090
http://doi.org/10.1016/S0013-7952(00)00039-9
https://pubs.usgs.gov/of/2008/1159
https://pubs.usgs.gov/of/2008/1159
http://doi.org/10.1016/j.enggeo.2004.01.009
http://doi.org/10.1016/j.proeng.2016.08.486
http://doi.org/10.1007/s11069-011-9739-2
http://doi.org/10.3390/geosciences11010035
http://doi.org/10.1016/0307-904X(83)90001-X
http://doi.org/10.1016/j.enggeo.2008.03.019
http://conference.ing.unipi.it/vgr2006/archivio/Articoli/285.pdf
http://conference.ing.unipi.it/vgr2006/archivio/Articoli/285.pdf
http://doi.org/10.5194/nhess-8-1149-2008
http://doi.org/10.1061/(ASCE)GT.1943-5606.0000182
http://doi.org/10.5194/nhess-3-81-2003
http://doi.org/10.1007/s10346-006-0037-0
http://doi.org/10.1016/j.enggeo.2008.03.013
http://doi.org/10.1061/(ASCE)GT.1943-5606.0000323
http://doi.org/10.1016/j.compgeo.2011.12.004
http://doi.org/10.1016/j.enggeo.2013.04.011
http://doi.org/10.5194/gmd-7-495-2014
http://doi.org/10.1007/s10346-017-0812-0


Geosciences 2021, 11, 322 14 of 14

52. Fanelli, G.; Salciarini, D.; Tamagnini, C. Reliable soil property maps over large areas: A case study in central Italy. Environ. Eng.
Geosci. 2016, 22, 37–52. [CrossRef]

53. Salciarini, D.; Tamagnini, C.; Ronchi, F.; Volpe, E.; Fanelli, G. An approach for large-scale soil characterization for the application
of non-structural landslide risk mitigation. Riv. Ital. Ing. Geotec. 2017, 51, 7–21.

54. Regione Umbria. Italian Report: Analisi del Dissesto in Umbria ed Eventi di Frana del Novembre, Umbria Region Report n.1.
2005. Available online: https://www.isprambiente.gov.it/it (accessed on 30 July 2021).

55. Borrelli, L.; Ciurleo, M.; Gullà, G. Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods:
The contribution of the weathering grade map. Landslides 2018, 15, 1127–1142. [CrossRef]

56. Ciurleo, M.; Cascini, L.; Calvello, M. A comparison of statistical and deterministic methods for shallow landslide susceptibility
zoning in clayey soils. Eng. Geol. 2017, 223, 71–81. [CrossRef]

http://doi.org/10.2113/gseegeosci.22.1.37
https://www.isprambiente.gov.it/it
http://doi.org/10.1007/s10346-018-0947-7
http://doi.org/10.1016/j.enggeo.2017.04.023

	Introduction 
	Materials and Methods 
	Physically Based Landslide Forecasting Model 
	Study Area 
	Physical and Mechanical Properties 
	Rainfall Data 

	Results and Discussion 
	Conclusions 
	References

