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Abstract: Landslides are a critical geological phenomenon with devastating and catastrophic conse-
quences. With the recent advancements in the geoinformation domain, landslide documentation and
inventorization can be achieved with automated workflows using aerial platforms such as unmanned
aerial vehicles (UAVs). As a result, ultra-high-resolution datasets are available for analysis at low
operational costs. In this study, different segmentation and classification approaches were utilized
for object-based landslide mapping. An integrated object-based image analysis (OBIA) workflow is
presented incorporating orthophotomosaics and digital surface models (DSMs) with expert-based
and machine learning (ML) algorithms. For segmentation, trial and error tests and the Estimation of
Scale Parameter 2 (ESP 2) tool were implemented for the evaluation of different scale parameters. For
classification, machine learning algorithms (K- Nearest Neighbor, Decision Tree, and Random Forest)
were assessed with the inclusion of spectral, spatial, and contextual characteristics. For the ML
classification of landslide zones, 60% of the reference segments have been used for training and 40%
for validation of the models. The quality metrics of Precision, Recall, and F1 were implemented to
evaluate the models’ performance under the different segmentation configurations. Results highlight
higher performances for landslide mapping when DSM information was integrated. Hence, the
configuration of spectral and DSM layers with the RF classifier resulted in the highest classification
agreement with an F1 value of 0.85.

Keywords: object-based image analysis; landslide; UAV; machine learning; segmentation; classification

1. Introduction

Landslide phenomena are considered an important factor for landscape dynamics,
and they pose a significant hazard in many regions around the world, causing incremental
losses and damages in terms of finance and livelihood. Precise detection and documen-
tation of landslide events over specific areas are important for accurate and objective
landslide hazard and risk assessment [1]. Special attention should be given in post-disaster
situations where there is a need for timely and cost-effective landslide documentation
for supporting Disaster Risk Reduction (DRR) and decision-making. Developing land-
slide analysis capacity in a cost-effective manner constitutes a challenge, especially in
the construction domain and mining operations where geological failures are a common
problem [2]. In conventional site investigation approaches, a landslide inventory is often de-
veloped by conducting expensive and dangerous field surveys using the Global Positioning
System (GPS) [3]. Remote sensing techniques demonstrate major advantages for landslide
assessment compared to conventional approaches, which are costly, time-consuming, and
often impossible due to poor site accessibility [4]. A large number of studies exploited the
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use of Earth observation (EO) data for landslide investigation and monitoring purposes [5].
However, the relatively low spatial resolution of earlier satellite missions (such as Landsat)
do not allow the detection of different landslide types; consequently, studies mostly fo-
cused on extracting the landslide extent. With the advances of remote sensing technology
satellite missions such as QuickBird, IKONOS, and WorldView-2 provided enriched spatial
information at high-end costs. Terrestrial or aerial Light Detection and Ranging (LiDAR)
data also provide useful insights into landslide geometry and assists in the identification of
geomorphological zones via high-resolution digital elevation models (DEMs); however,
their operational cost is relatively high [6]. Other sensors such as satellite-based Synthetic
Aperture Radar (SAR) have proven effective in measuring centimeter surface displacement
over large areas [7]. However, studies indicate that freely available datasets do not provide
sufficient resolution to detect specific landslide sub-zones and separate landslide features
such as scarp and runout zone or small fissures, which can provide significant information
on the landslide mechanism [8].

Over the last decade, great advancements have been made in using Unmanned Aerial
Vehicles (UAVs) or drones in a wide range of scenarios. They have been initially introduced
in the defence domain while other applications are in Building Information Modeling
(BIM) [9], civil engineering [10], geology [11], architecture [12], archaeology [13], mining
operations [14], river morphology [15], precision agricultural [16], environmental manage-
ment [17], wildfire mapping [18], glacier monitoring [19], and many more indicating the
high potential of integrating UAV data collection in different disciplines. Colomina and
Molina [20] provided a review of UAV systems and recently Giordan et al. [21] provided
an extended review on UAV and engineering geological applications. Many studies have
discussed the advantages of UAV in landslide and rockfall investigations mainly focusing
on manual mapping, visualization purposes, and semi-automated procedures [22–24].
UAVs have emerged as indispensable tools for landslide management and analysis, as they
offer ultra-high-resolution datasets with high repeatability and precision. Such platforms
are particularly effective for 3D documentation of geomorphological changes after extreme
events. Manifold landslide information can be extracted at the centimeter-scale from UAV
platforms equipped with a variety of active or/and passive sensors. Consequently, a range
of undiscovered landslide patterns and related information become distinguishable and
can be further incorporated as advanced semantic knowledge in the characterisation phase.
However, only a few studies have been published on detecting specific landslide types
and their distinct attributes by using UAV imagery and DSM derivatives. While manual
mapping is fraught with experts’ subjectivity [25], in semi-automated and automated image
classification approaches, the most widely used approach is pixel-based classification.

Lately, object-based approaches have been increasingly implemented due to their ef-
fectiveness in handling and analyzing multivariate high-resolution data [26]. Object-Based
Image Analysis (OBIA) or Geographic Object-Based Image Analysis (GEOBIA) refers to a
modeling approach that conceptualizes the real world by using intellectual knowledge in a
way that is machine-understandable [27]. In object-based approaches, objects are generated
from image segmentation algorithms based on user-defined parameters which are further
classified with rule-based or Machine Learning (ML) algorithms [28]. Attributes such as spa-
tial, spectral, textural, geomorphologic, and even spatial relations with neighboring objects
and/or classes can be integrated for classification. In contrast to pixel-based approaches,
object-based approaches emulate the way humans interpret the sensed environment. Con-
sequently, OBIA is advantageous for modeling the natural environment and especially
when working with diverse datasets (spectral, topological, point clouds) simultaneously.
Several studies [29–32] have implemented object-based methods for landslide detection,
but also landslide susceptibility mapping [33], showcasing superior accuracies compared
to pixel-based methods. Classification approaches can be either knowledge-based relying
on expert’s knowledge or based on supervised classification algorithms. Several studies
have applied rule-based classification approaches based on expert knowledge [25,34], but
also supervised landslide classification approaches using ML algorithms can be found in
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literature, such as Random Forest (RF) [35], Decision Tree (DT) and Support Vector Ma-
chines (SVM) [36,37], and Artificial Neural Networks (ANN) [38]. ML offers the potential
for effective and efficient classification of high-resolution heterogeneous datasets.

The aim of this study is to exploit different classification scenarios in an object-based
environment for automated recognition and characterization of landslides. Three ML clas-
sification approaches are evaluated for classifying ultra-high-resolution datasets derived
from UAV photogrammetry. The study analyzes the differences in the thematic agreement
of landslide zone mapping with different methods and based on various features. In this
way, we aim to determine which classification process is the most efficient for landslide
mapping on site-specific scales. The main objectives are a) to investigate the effectiveness of
UAV data for distinguishing and mapping landslide zones using OBIA, and b) to evaluate
frequently used ML algorithms against a knowledge-based ruleset for specific landslide
zone classification.

2. Study Site

A characteristic site with two rotational landslides (slumps) in an old lignite open
pit site in Florina prefecture, northwestern Greece, was used in this study. UAV datasets
were collected for training and validation during fieldwork. The area under investigation
is located next to Vegora village (40◦41′ N, 21◦43′ E) on the southwest bank of Vegoritida
lake (Figure 1). The vegetation cover is mainly grass with occasional isolated small bushes;
in addition, olive trees are growing in the vicinity. From a geological point of view, the
open pit mine is situated at the elongated Florina-Ptolemais-Kozani tectonic graben which
is known for its wealth in lignite deposits which are found within the marly formations.
According to the geotectonic units of Greece, the test area belongs to the Pelagonian nappe
and in the upper and the lower part of the elongated intermontane Florina-Ptolemais-
Kozani tectonic graben. The landslide phenomena have occurred in locations where the
excavated slopes have been left without any support after the open pit closure.

Figure 1. Location of the area under investigation in north-western Greece. The red box indicates the study site in the area
of Amyntaio. 2D perspective with the created reference data overlaid (dark brown: scarp, light brown: depletion) and 3D
view of the slope failure.

The geology of the wider area consists mainly of Paleozoic metamorphic rocks, Meso-
zoic carbonate cover with ophiolites, Neogene clays, marls in numerous forms in alterna-
tions with lignite ores, Quaternary terrestrial and fluvioterrestrial conglomerates, lateral
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fans, and alluvium deposits [39]. The slope geometry (height and angle) in combination
with the geotechnical characteristics of the marl formation, i.e., cohesion and friction angle,
play a major role in the slope instability which manifests as retrogressive rotational slides.
In addition, the significant time since the closure of the open pit mine in relation to weath-
ering processes (freeze-thaw) contributes to the progressive failure by creating large open
cracks (Figure 2) on the surface, ranging from a few centimeters to multiple meters, which
increase pore pressure and deteriorate the rock mass properties.

Figure 2. (a) Photo taken during the field investigations from the upper part of the scarp; (b) photo showcasing the large
transversal cracks that occurred due to the retrogressive failure mechanism.

3. Methodology

This research aims to analyze different segmentation configurations and provide a
semi-automated workflow that can optimize the individual mapping of landslide zones
(scarp vs. depletion) and non-affected regions via ML methods. The applied methodologi-
cal framework includes the UAV data collection, creation of the input datasets, segmenta-
tion, and classification phases, and finally the model evaluation.

3.1. Data Preparation

The workflow is structured in four distinct stages (Figure 3): (a) on-site data collection,
(b) data preprocessing, (c) OBIA (segmentation and classification), and (d) evaluation.
Data acquisition has been conducted with a commercial mini-UAV quadrotor platform
(Phantom 4 Pro V2.0, DJI, Technology Co., Ltd., Shenzhen, China) equipped with a sta-
bilized built-in camera (1” CMOS-20 megapixel). This platform has been chosen due
to its relatively low cost and easy on-site operation in combination with the equipped
miniaturized GPS/GLONASS system. Determining an efficient flight mission includes
the selection of flight extent, overlapping among the photos and flying height. The flight
path was composed of cross-stripes following surface morphology to completely cover the
area under investigation. In addition, 180 photos have been acquired and imported for
Structure from Motion (SfM) workflow and model development in the photogrammetric
software Pix4D S.A. [40]. In terms of accuracy, the survey resulted in a root mean square
error (RMSE) of 0.02 m in xy-axes and 0.03 m in the z-axis. The produced dense point
cloud was constructed from 68 million points (2500 points/m2), and the area extent of the
scene was approximately 38 ha. From the DSM, different derivatives have been calculated
and exploited. Hillshade layers using eight different sun angles have been created and
combined into one for better representation of the ultra-high-resolution DSM. Slope and
aspect layers were calculated in degrees (◦). Moreover, a curvature layer was created, but
this layer was only used for classification and not for segmentation. The final datasets had
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a uniform spatial resolution of 0.05 m. Additionally, a reference map was manually created
(Figure 1) based on UAV data, Google Earth imagery, previous research in the area [41],
and multiple in situ field investigations.

Figure 3. Flowchart of the applied methodology. Object-based landslide detection.

After data collection and data preprocessing, OBIA aims to create homogeneous
non-overlapping objects [42] and performs classification using various semi-automated
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approaches [43]. The baseline for analysis in OBIA is an image object, which gets enriched
information. This is similar to expert perception, which intuitively identifies a landslide
failure from an image and/or DSM based on distinct features rather than individual pixel
values. The inclusion of contextual and shape information becomes important for recog-
nizing morphological patterns [44]. This allows the accurate identification and extraction
of natural features from UAV data on multiple scales and integration of their properties
and spatial links to understand their interrelationships. In the proposed study, the object-
based workflow includes four distinct phases: (a) segmentation, (b) training samples’
creation, (c) feature selection and tuning, and (d) classification, using Cognition Network
programming language (CNL) within the eCognition Developer 10 software [45] (Trimble
eCognition, 2020).

Two different input structures for segmentation have been explored. The red, green,
and blue (R, G, B) bands of the orthophoto were used to formalize the “RGB” structure
based solely on spectral values while the three spectral bands in combination with the DSM
and three derivatives (hillshade, slope, aspect) formalize the “RGB + DSM” structure (the
curvature layer was not included here since it was solely used during classification and not
during segmentation). The two created dataset structures were processed distinctly follow-
ing the same workflow for segmentation and classification during object-based analysis.
Two major challenges exist during the OBIA process: first, the determination of optimal
parameters for image segmentation and, second, the selection of suitable features and
thresholds for the classification. Consequently, the selection of appropriate segmentation
parameters is a challenging task, and they are often estimated subjectively by using trial
and error. Several studies proposed automated approaches for objectively estimating the
scale parameter (SP) value for multi-resolution segmentation (MRS) [46]. In [47], authors
proposed using normalization heterogeneity indices amongst neighboring objects to de-
termine object merging criteria, while Ref. [48] proposed integrating the local variation
of two indices to determine the SP. In addition, Euclidean Distance was proposed by [49]
and fuzzy active contour models by [50], whereby both studies entail user interaction for
developing the reference objects. We investigated different methods for selecting the SP
for the MRS algorithm in order to test its influence on landslide object characterization.
Firstly, the Estimation of Scale Parameter 2 (ESP 2) [51] was employed to identify statis-
tically relevant object levels for a set of input layers by evaluating the relative changes
in local variance for a predefined scale spectrum. Second, trial and error tests based on
expert’s prior site knowledge have been explored on both input structures (“RGB” and
“RGB+DSM”). Each segmentation-derived setup resulted from the various SPs was initially
overlaid with the reference landslide dataset, i.e., scarp, depletion, and non-affected area,
in order to create the training and test labeled samples. However, in various overlay cases,
reference polygons and created segments produced different topological relationships
among them. Therefore, if more than one class was contained in the segment, the thematic
value with the spatial majority was assigned to preserve object “pureness”.

The second phase in OBIA involves object classification. Due to the fact that the
processing units in OBIA are image objects, a diverse object’s features have been calculated
for classification and characterization. In the rule-based classification approach, rulesets
are developed based on human knowledge to extract meaningful classes from the data
used. Since the rule-based classification is adaptive and flexible, the developed model
can be applied to similar datasets. In supervised classification, different algorithms can
be incorporated such as K-Nearest Neighbor (KNN), RF, SVM, etc. One of the main
advantages is the capacity to handle high dimensionality data. On the other hand, ML
classifiers require training data, and some classifiers are sensitive to the sample size of the
training data. In this study, two different approaches have been utilized regarding the
landslide classification. First, a knowledge-based fuzzy ruleset has been developed based
on spectral, spatial, and contextual features. Second, three ML classifiers, i.e., KNN, DT,
and RF, have been tested for landslide mapping and zoning (Figure 4) using training data
from the created reference segments.
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Figure 4. Geomorphological landslide zones used for classification labelling.

The number of segments mainly depends on the SP values. Small SP values result in a
larger number of segments and vice-versa. We applied a cross-validation approach where
the created (labeled) reference segments were split into two distinct partitions, (a) the
training (60%) and (b) the validation (40%) data based on stratified random sampling
proportionally to each entailed class [52], using scikit-learn in Python (http://scikit-learn.
org/stable/ (accessed in December 2020)). In the final phase, the model with the highest
performance among the ML classifiers was tested in a neighboring area to exploit the
method’s transferability. Results were evaluated for their quality in terms of the spatial
and thematic agreement.

3.1.1. Segmentation Settings

Multi-scale segmentation was performed on the two ultra-high-resolution input struc-
tures, namely “RGB” and “RGB + DSM”. The MRS algorithm [53], which is a region-
growing segmentation based on pixel homogeneity criteria, was employed. Determining
proper segmentation parameters is highly subjective and largely based on the analyst’s
experience and interpretation. To overcome intuitive SP selection and to test its influence
on the final classification result, two different approaches have been developed. First,
multiple SP modifications have been tested on the two distinct input structures ranging
from fine level (SP: 25) to coarser level (SP: 200) in increments of 25. Second, for the
weight parameter between shape and color importance, three different configurations were
investigated ranging from 0.4 to 0.6 to test the influence on the landslide mapping result.
Finally, smoothness—compactness factor was kept to 0.5 in order not to favor compactness
or smoothness of segments. In parallel, the ESP 2 tool was used on the two input structures
as a customized algorithm integrated in eCognition. For the segmentation setup of the
ESP 2 tool, we implemented a non-hierarchical approach, starting from a value of 1, and
using increments of 1. During the segmentation procedures, the layers used were equally
weighted. In total, 54 different segmentation configuration settings were obtained and
tested based on the proposed workflow.

3.1.2. Expert-Based Classification

Object-based methods use homogeneous groups of pixels for classification, which
can emulate how experts understand landslide features as entities. In the rule-based
classification, specific object features were identified and integrated as descriptors in fuzzy
characterization. The selection of features and tuning of thresholds was determined based
on expert knowledge. For instance, a landslide scarp is characterized by its steep slope and
semi-circular shape [54], while the landslide body has its main direction with the elevation
flow, and it diffuses on the lower end. After segmentation, 60% of objects among landslide
classes (scarp—depletion) and non-landslide (non-affected) have been chosen as samples
for further analysis after polygon overlay with the reference dataset created in this study.
The initial characterization on the coarse segmentation level included the expert-based

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
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classification into landslide and non-affected objects, followed by the differentiation of
landslide objects into scarp and depletion zones on the fine level.

The selected features used for rule-based classification are illustrated in Figure 5. In
brief, the three spectral bands from the orthophoto and the brightness value were used as
the spectral metrics. The length/width ratio, the asymmetry, and the object’s size were used
as the spatial metrics. Slope, aspect, and curvature were used as the morphological metrics.
Grey-Level Co-occurrence Matrix (GLCM) was used as the textural metric, calculated on
the DSM, in all directions, as it was proposed by Haralick et al. [55]. Seven textural features
including mean, entropy, homogeneity, variance, dissimilarity, contrast, and correlation
using two window sizes (9 × 9 and 18 × 18) were adopted. In addition, a measure
of convexity–concavity has been used for classifying specific landslide features such as
scarp regions. A positive curvature indicates that the surface is upwardly convex, and
a negative curvature indicates that the surface is upwardly concave. Terrain Roughness
Index (TRI) was calculated as the variation of slope within an object. TRI was derived
by taking the root-mean-square (RMS) of the elevation differences, and it indicates the
relief variations [56]. Scarp regions present lower roughness values than depletion due
to their geometrical sharpness. Additionally, contextual information, such as the spatial
relationships between objects and background, has been used for enhancing the object-
based landslide classification. Prior to the classification phase, all the variables have been
normalized for consistency while the same classification features have been used for the
rule-based and machine learning approach.

Figure 5. Information used for landslide zone classification.

3.2. Machine Learning (ML) Classifiers for Landslide Mapping

In this section, the supervised classifiers evaluated in the object-based environment
for depicting landslide entities are introduced. Since the focus is on how to implement
those classifiers for landslide mapping and zoning, rather than the theoretical aspects of
their design, only a conceptual description of them is provided. ML algorithms have been
extensively implemented in diverse scientific domains, especially in Earth Sciences [57], to
overcome complexities. ML is a subdivision of artificial intelligence (AI). Three supervised
classification algorithms, KNN, RF, and DT, were implemented and evaluated.

3.2.1. K-Nearest Neighbor (KNN) Algorithm

KNN is an instance-based learning method for classifying objects based on the closest
training examples in the feature space. The KNN classifier has been initially proposed



Geosciences 2021, 11, 305 9 of 19

by [58], and it is the most widely used amongst the ML algorithms. A candidate object is
classified by a vote majority of its neighbors, with the object being assigned to the class
most common amongst its K nearest neighbors. For instance, if K is 1, then the object
is simply assigned to the class of its nearest neighbor. This means K is the number of
samples to be considered in the neighborhood of an unclassified object. The best choice of
K depends mainly on the data, larger values reduce the effect of classification noise, but the
class boundaries are becoming less distinct. In our study, a K value of 20 has been found to
be most suitable for the different SP configurations.

3.2.2. Decision Tree (DT) Algorithm

DT classification algorithm or Classification and Regression Trees (CART) [59] is a
method commonly used in data mining where a series of decisions are made to segment
the datasets under investigation into homogeneous partitions. The model is quite popular
due to its intelligibility and simplicity. The goal is to create a model that predicts the value
of a target variable based on several input variables. One tree can be trained by splitting the
source set into subsets based on an attribute value. Each root node represents a single input
variable and a split point on that variable. Subsequently, data are categorized depending
on whether the value in a certain layer is exceeding a threshold. The leaf nodes of the tree
contain an output variable that is used to predict the outcome class in a recursive manner.
The recursion is completed when the partition at a node has the same value as the target
variable, or when splitting no longer adds value to the predictions. For the maximum
allowed depth of the tree, we selected a value of 20 and a value of 30 as the minimum
number of samples per node.

3.2.3. Random Forest (RF) Algorithm

RF constitutes an ensemble machine learning approach [60], and it has been widely
used for landslide classification. It constructs multiple decision trees during the training
process, using bootstrapping for the classification to overcome the weaknesses of a single
tree [61]. RF has several advantages such as being a non-parametric method, capable
of determining the importance of the variables used. Compared to DT, it uses multiple
decision trees to provide accurate predictions. While, on most occasions, it provides
superior predictive results compared to other ML classifiers [62], it behaves like a black
box. The algorithm requires defining the number of trees and the number of variables
assigned on each node. The maximum number of trees was set to 40 and the tree depth to
20. Based on multiple tests performed with a different number of trees, we found that the
latter does not have a significant influence on the classifier performance. The prediction
performance tends to plateau with a large enough number of trees. As the parameters also
influence the classification results, we applied the same number of trees and tree depth to
all SP configurations.

3.3. Validation and Transferability

For validation of the results, landslide zoning was assessed by comparing the OBIA
results against the reference dataset. In addition, the overall workflow has been tested on a
neighboring landslide area to evaluate methodological performance and transferability. As
a consequence, the same workflow was applied to the “Prosilio” case site (open pit mine).
For validation, instead of “accuracy”, we used the term “agreement” [63,64] since it better
reflects the comparison outcome between the research results and the actual map entities in
reality. Different object evaluation approaches exist in literature ranging from per pixel to
per polygon, both with recognizable advantages and disadvantages [65,66]. In this study,
a per polygon evaluation method has been used. Objects (scarp, depletion, non-affected)
that were correctly identified represented true positives (TPs), objects that were incorrectly
classified represented false positives (FPs), and false negatives (FNs) represented referenced
areas that were not detected. A multi-class confusion matrix [67] has been calculated to
evaluate the agreement of the final classification using (a) the Recall rate (1), which is
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defined as the proportion of correctly classified objects to the reference samples of a class,
(b) the Precision rate (2), which is defined as the proportion of correctly classified objects
within the total number of samples classified, and (c) the F1 index (3) which was used to
balance the Precision and Recall metrics among the classes:

Recall = ∑n
i=1 TPi

∑n
i=1(TPi + FPi)

(1)

Precision =
∑n

i=1 TPi

∑n
i=1(TPi + FNi)

(2)

F1 score = 2× Precision× Recall
Precision + Recall

(3)

4. Results
4.1. Segmentation

The segmentation is an essential phase for the accurate production of landslide maps
through OBIA. For this reason, the MRS algorithm as implemented in eCognition was
applied on the two input data structures as described earlier. In detail, the input structures
were segmented by using seven distinct SPs. The ESP 2 tool produces a table output where
the local variance (LV) values are recorded in relation to the segmentation level. Based on
the result, we selected the first peak of the LV graph and called it “fine” SP of ESP 2, while
the second significant peak in the graph has been chosen to form the “coarse” SP level. The
different configurations and settings are presented in Tables 1 and 2. An example of three
incremental SPs is illustrated in Figure 6. It should be noted that low SP values resulted in
a large number of objects and consequently in a larger number for the training samples and
vice-versa. The number of objects resulting from segmentation setups and used for training
(60%) and validation (40%) ranged from 2500 objects to more than 1,200,000 objects.

Table 1. Number of resulting segments based on the different segmentation configurations.

Shape/Compactness
0.4/0.5 0.5/0.5 0.6/0.5

RGB RGB + DSM RGB RGB + DSM RGB RGB + DSM

SP

25 272,523 984,765 201,666 808,678 154,650 686,897
50 141,813 145,547 95,402 133,338 71,087 120,326
75 60,754 72,720 57,594 67,030 48,119 60,797

100 31,532 45,208 27,523 41,751 22,697 37,796
125 17,686 36,718 14,885 24,594 12,751 17,587
150 17,145 23,947 14,211 21,772 11,930 18,917
200 9843 14,462 8972 12,331 6713 11,235

Table 2. Number of resulting segments using the ESP 2 tool.

SP
(Fine/Coarse)

Shape/
Compactness No. of Objects (Fine/Coarse)

RGB
12/281 0.4/0.5 841,973/3989
79/251 0.5/0.5 52,121/4485
41/311 0.6/0.5 87,546/2669

RGB + DSM
12/481 0.4/0.5 1,267,698/4026
17/221 0.5/0.5 982,687/16,960
14/431 0.6/0.5 909,678/3689



Geosciences 2021, 11, 305 11 of 19

Figure 6. Selected subset of the area under investigation showing the segmentation results for different scale parame-
ters (SPs).

4.2. Classification

Initially, a knowledge-based ruleset has been developed using cognitive knowledge
of landslide features and fuzzy membership functions to map the three predefined classes.
The membership functions were constructed based on expert knowledge and the specific
parameters selected after the feature analysis and comparison with the reference dataset.
The classification results are illustrated in Figure 7 for the rule-based workflow, while, in
Figure 8, examples of the results from the ML classifiers (shape: 0.6) based on the RGB+DSM
structure are presented. It should be noted that the KNN algorithm has been proven
inefficient for classifying heterogeneous datasets in terms of agreement performances. On
the other hand, DTs and RFs were found superior for landslide mapping purposes. The
workflow has been implemented on the Microsoft Windows 10 interface, with an Intel Core
i9-9900K CPU, Z390 Gaming Pro Carbon motherboard and 32 GB RAM (Intel, Thessaloniki,
Greece). Computational costs are illustrated in Table 3, which represent the specific time
needed for the implementations of the algorithms within eCognition software.

Figure 7. (a) Orthophoto overlaid by the reference data; (b) segmentation result; and (c) the final classification after
refinement of the rule-based method for the RGB+DSM structure (green: non-affected, light brown: depletion, dark
brown: scarp).
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Figure 8. Example of classification results based on the RGB+DSM structure for different algorithms and SPs (Shape: 0.6)
(green: non-affected, dark brown: scarp, light brown: depletion). The red polygon indicates the best classification result
among the different setups.

Table 3. Computational costs (in time) of different classifiers in relation to the SP.

Classification KNN DT RF Knowledge-Based
SP 25 200 25 200 25 200 100

Segmentation (sec) 382.71 144.83 382.71 144.83 382.71 144.83 36.8
Training (sec) 2738.0 25.48 22.41 10.67 18.59 11.68 -

Implementation (sec) 1281.4 23.58 13.59 7.64 11.83 6.21 18.31

To evaluate the performance of the classifiers, the quality metrics of precision, recall,
and harmonized F1 score were examined. The first two indexes are often interrelated which
means improving precision consistently reduces recall. The exported classified objects
were transferred in an error matrix to correlate the classification results from different
classifiers against the reference data. In general, the combination of spectral (orthophoto)
and topological (DSM and derivatives) data outperformed the structure including only
the spectral information. From all configurations tested, 54 classifications were extracted,
with 13 of them resulting in an agreement of higher than 75% and four of them resulting
in an agreement of higher than 80%, with the highest performance being with the RF
classifier. Results show that the largest source of error is indicated at the scarp zones
being classified as depletion due to the diffusing zone boundaries (Figure 8). The latter
has resulted from the vegetation growth and the weathering effect which diminished the
borders of the landslide sub-zones. The best classification configuration for the Amyntaio
(pilot) landslide site, in terms of the overall agreement, was obtained using the RF classifier
with the RGB+DSM structure with a value of 100 for the SP and a shape/color weight of 0.6.
The recall and precision obtained were 0.83 and 0.86, respectively, and the overall model
classification agreement (F1) was 0.85. As a result, 85% of the total scene was correctly
identified as being either a scarp, depletion, or non-affected zone.

Despite KNN’s overall low performance, as the shape/color weight was increased,
KNNs performed almost identically to DT. In general, the best results could be achieved
when using SPs of 75 and 100 and a shape/color weight factor of 0.5 and 0.6, with the
latter configuration resulting in better overall performance. The remarkably better perfor-
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mance of the RF classifier compared to others is due to its explicit adaptability to training
data. Results are highlighting KNN’s weakness in dealing with heterogeneous natural
environments and complex scenes such as landslide sub-zone mapping. Classification
performances regarding the F1 index for RGB and RGB+DSM structures are also visualized
with radar diagrams in Figure 9, highlighting the superiority of RF against the other two
approaches especially regarding the RGB+DSM setup. The recall’s low values for SPs
greater than 100 indicate that little relevant information was retrieved, and that under-
prediction has occurred. Similar patterns have been observed for small SPs. It should be
noted that the KNN and DT models presented decreased agreements compared to the
RF model, especially for the scarp zones. The latter can be explained due to the smaller
number of samples for the scarp zone which resulted in poor detection performances. This
indicates that, in order to improve our model, we should collect more samples from the
least-represented classes, particularly from scarp zones.

Figure 9. Radar plots are illustrating models’ agreement performances (no agreement: cen-
ter; full agreement: perimeter) in relation to the investigated SP values for (a) RGB and
(b) RGB+DSM structures.

In Figure 10, a representative example for three incremental SPs is highlighted. RGB
structure (spectral information solely) has resulted in mixed classification results, and
it was found inefficient at classifying the different landslide sub-zones. Specifically, the
discrimination between scarp and depletion zones was found to be the most challenging
due to the existing geomorphological similarities when compared with the non-affected
zone and the natural processes of weathering. However, with the integration of the
elevation dataset and its derivatives, the mapping efficiency could be significantly increased.
It should be noted that a scarp zone that was not found in the reference has been identified
and validated from the visual inspection of the results, indicating the applicability of
OBIA methods.
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Figure 10. Classification close-up for three different SPs using the RGB and RGB+DSM input structures (green: non-affected,
dark brown: scarp, light brown: depletion). The reference dataset is illustrated in the middle.

4.3. OBIA Workflow Transferability

In order to test the transferability of the developed methodology, the most efficient
classification configuration determined from the previous tests (input data structure:
RGB+DSM, SP: 100 and shape/color weight: 0.6) was applied to the “Prosilio” land-
slide, which constitutes a similar failure in the wider region of the prefecture under the
same landslide characteristics as the Amyntaio case (geological, lithological, failure type).
Transferability constitutes a critical issue in image classification. As the ultimate goal
is to provide a ready-to-use landslide mapping tool, a transferability study of the final
classification workflow was conducted. The same object features and processes for segmen-
tation and classification have been followed to keep a uniform implementation approach.
Considering the extracted F1 metrics (Table 4), the RF model for the RGB+DSM structure
illustrated the best classification agreement. A comparison of KNN, DT, and RF results is
shown in Figure 11.

Table 4. ML classification performances for the “Prosilio” landslide site. Applied configuration:
structure: RGB+DSM, SP: 100, shape/color: 0.6.

Model Precision Recall F1

KNN 0.72 0.68 0.69
DT 0.78 0.77 0.77
RF 0.84 0.81 0.82
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Figure 11. (a) Orthophoto with the reference zones overlaid; (b) KNN classification result; (c) DT clas-
sification result; and (d) RF classification result for the “Prosilio” landslide site (green: non-affected,
brown: depletion, red: scarp). Applied configuration: dataset: RGB+DSM, SP: 100, shape/color: 0.6.

5. Discussion

In this study, the impact of the SP on three selected ML algorithms for detailed land-
slide zone mapping with UAV datasets using object-based methods has been evaluated. It
is important to underline some limitations such as the precise detection and characteriza-
tion of landslide geomorphic characteristics will always remain a challenge in the field of
landslide mapping due to the dynamic nature of the phenomena. However, compared to
airborne platforms and expensive very high-resolution (VHR) satellite data, classification
results based on UAV data indicate a high potential for site-specific landslide zoning using
an object-based ML classification workflow. The DSM and its derivatives proved critical
for accurate and precise mapping in site-specific zoning of the landslide’s extent due to
their characteristic morphometric patterns and signatures. On the contrary, spectral infor-
mation solely from the RGB setup was not adequate to classify the segmented scene with
supervised procedures in an effective manner. Furthermore, the tuning of segmentation
parameters had a significant impact on the classification results. Large SPs resulted in
undersegmented regions and vice-versa, leading to objects that did not well represent
landslide objects. Defining the optimal SP while keeping the balance between over- and
under-segmentation is a pre-condition and is a known challenge in OBIA. Similar studies
such as Mohan Vamsee et al. [68] have outlined that SP selection is the most crucial step
for an optimal classification result. Results indicate that RF is a powerful method for the
classification of landslides with UAV-derived datasets, and, in general, it showed better
performances compared to KNN and DT. Further research should focus on the optimization
of the ML parameters, and more individually on the RF classifier, for enhancing the final
classification agreement.

Concisely, from the implemented methods, RF and DT offer reasonable performances
in relation to their computational costs, with the RF outperforming the DT. A challenge that
remains is the optimal and objective selection of segmentation settings in a semi-automated
approach considering class heterogeneity. Landslide phenomena represent natural scenes of
complex and heterogeneous character. Such natural processes can be better understood by
analyzing them with OBIA since this approach mimics the way humans recognize patterns.
The proposed methodology can be adapted for different landslide types and processes.
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This study demonstrated that UAV platforms can provide valuable information for the
discrimination of specific landslide zones. The selection of an appropriate method, i.e., an
expert-based or ML approach, depends on the availability of training data and the scope of
the study. Expert-based methods are more flexible and adaptive for site-specific landslide
mapping compared to ML which needs a large number of training data. This suggests
that the knowledge-based approach is applicable for similar failure mechanisms. By using
OBIA for site-specific landslide assessment, sub-zones of the rotational landslides could be
effectively identified with high precision. A limitation is the need for prior knowledge of
the site under investigation in order to optimally adapt the ruleset. Moreover, the proposed
object-based analysis workflow can be considered as site-adaptive for rotational landslide
events. Automated landslide characterization approaches on a local scale can support
the creation of informative landslide inventories with advanced semantic knowledge to
be accompanied (relation among predefined slope zones), as presented also by Amatya
et al. [69]. In addition, the sub-zones could be further used as inputs for site-specific
landslide hazard and risk assessment by public authorities such as the Civil Protection.
Future research directions should focus on improving automated sub-zone classification
for different landslide types. In addition, the integration of deep learning and OBIA for
landslide susceptibility mapping using UAV datasets is proposed as a future consideration.

6. Conclusions

UAVs have demonstrated their potential for landslide mapping investigation in terms
of time, cost, and spatial resolution for efficient data collection after landslide events.
ML algorithms and especially RF implemented in an integrated OBIA workflow proved
to be adaptable for sub-zone landslide mapping purposes on a local scale. Due to the
escalation in the frequency of extreme meteorological events driven by climate change, it is
conceivable that more hazardous events will take place around the world in the near future.
The integration of UAV datasets and SfM in combination with the advancements in OBIA
and AI can serve as a response by enabling precise and accurate analysis of landslide and
rockfall failures. Our results show that rotational landslides and their thematic sub-zones
were recognized and mapped sufficiently from the ML procedure. The automatic sub-zones
identification could be a key element for improving the quality of landslide susceptibility
assessments through realistic 3D physical-based models. Further research should focus
on further increasing the automation of the proposed OBIA workflow for mapping and
characterizing different landslide types and processes.
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