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Abstract: Modelling of shallow porous aquifers in scenarios where boundary conditions change over
time can be a difficult task. In particular, this is true when data modelling is pursued, i.e., models
are directly constructed by measured data. In fact, data contain not only the information related
to the physical phenomenon under investigation, but also the effects of time-varying boundary
conditions, which work as a disturbance. This undesired component conditions the training of
data-driven models, as they are fitted by models, which can produce predictions diverging from
measured data. Here, a very shallow porous aquifer is modelled in terms of its response to water
table to precipitation. The aquifer is characterized by the presence of a low permeability silty top layer
covering the lower sandy strata, where the aquifer normally flows. Therefore, when the piezometric
level increases up to the low permeability layer, the aquifer changes its behavior from phreatic to
confined. This determines the changing boundary condition, which makes the response of the aquifer
to rain precipitations complex, as it is related to a two-fold condition: confined or phreatic. The
aquifer here is investigated by two machine learning approaches, the earlier based on an evolutionary
modeling, and the latter based on artificial neural networks. Evolutionary modeling returned explicit
equations with a fitness efficiency up to 0.8 for 1 month for predictions and 0.48 for simulations,
while neural networks arrived at 0.85 and 0.28, respectively. The aim of this study is to get an explicit
model of the response of the piezometric heights of the aquifer to the precipitations, which is useful
for planning the use of groundwater resources.

Keywords: shallow aquifer; uncertain boundary conditions; data-modelling; evolutionary modelling;
Recurrent Artificial Neural Networks; Metaponto aquifer

1. Introduction

The evaluation of groundwater table oscillations due to rain precipitations is a compli-
cated problem in porous aquifers, as a result of non-linear responses of groundwater levels
to rainfall [1,2]. This difficulty can be amplified by complex boundary conditions, which
occur where the recharge of the aquifer is not only determined by direct precipitation [3,4].
Even if monitoring the piezometric levels of the aquifer can provide good knowledge of
its evolution, boundary conditions can also be highly important; however, they are often
poorly described and known. In particular, boundary conditions are referred to as vertical
variations of the hydraulic conductivity of the soil [5], anisotropy, particular conditions
of groundwater supply, natural or artificial water injection, irrigation, pumping activities,
floods, etc.

The knowledge and modelling of groundwater levels is of paramount importance as it
can interfere with shallow underground infrastructures and is important for agriculture and
for crop farming planning, both in terms of irrigation and in terms of potential disturbance
to roots. This implies potential high economical costs when shallow groundwater levels
are uncontrolled or when irrigation is improperly used.

Machine learning and, in particular, data-driven models constitute a cheap and effec-
tive strategy for modelling complex hydrogeological scenarios. These can be particularly
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effective at modelling complex systems like aquifers, particularly when these are domi-
nated by non-linear processes and partially unknown external inputs. In fact, they allow for
fitting models to measured data, without assumptions on the equations governing water
flow and on the parameters of these equations [6–10]. Modelling groundwater levels is
therefore challenging because of the number of variables, which affect water flow through
a non-homogeneous medium [2]. In particular, some data-driven paradigms are able to
return closed-form equations, provided with a relatively simple structure [1,11,12]. These
explicit equations can be properly used for obtaining new scientific knowledge about the
phenomenon under investigation.

There are also other machine learning approaches that emphasize their prediction
or simulation abilities, which are powerful interpolators. In these cases, no equations are
returned, but the results are given as predicted or simulated data. Among these approaches,
artificial neural networks represent powerful deep learners, able to fit training measured
data, returning suboptimal predictions [13–18].

Here, the case of a very shallow porous aquifer, located in a rural area of south Italy,
i.e., Metaponto plain, is presented [5]. This is a complex scenario, where the average
monthly piezometric levels are available for the following two time windows: the earlier
covers about 24 years (1951–1975), while the latter about 17 years (2001–2018). During the
earlier time window, in its last 10 years, it is possible to observe a relatively steep increase
of levels. Indeed, in the area where the monitoring well is located, a water distribution
system was built and started working, providing near-to-free water from non-local sources.
This implied a decrease of pumping from the shallow aquifer and a general increase of the
piezometric levels up to the shallowest layer of the soil, which is mainly constituted by
poorly permeable silty-clay deposits.

The Metaponto shallow aquifer is modelled in terms of its response of water table
to precipitations, according to two different approaches: using the data modelling tech-
nique known as multi objective evolutionary polynomial regression (EPRMOGA) [19]
and using recurrent artificial neural networks (ANN). In particular, EPRMOGA was suc-
cessfully used for modelling groundwater responses to rainfall both for porous and karst
aquifers [1,11,12,20]. These applications of EPRMOGA [1,11,12,20] and ANN [19] differ
from the application presented here, as those focused on aquifers where boundary con-
ditions were well determined and relatively invariable over time. For this reason, both
EPRMOGA and ANN were able to learn the responses of the aquifer to precipitations
well, thus simulating the oscillations of piezometric levels as function of past precipitations
and past measured piezometric levels with a good accuracy. In this case, the modelling
this aquifer proves to be challenging because of the difficulties related to the variation of
boundary conditions, due to the peculiar stratigraphic sequence and to the unmonitored
interaction between the shallow canalized waters and groundwater. Both the EPRMOGA
and ANN models are then tested on a second window of data of the same aquifer, not
chronologically continuous to that on which the models were trained. In fact, a gap of
26 years exists between the latest piezometric height of the training data and the earliest
piezometric height of the testing data.

The aim of this work is to show how the EPRMOGA-based approach is able to return
explicit equations representing the groundwater piezometric height as function of past mea-
sured heights and past precipitations, however with sub-optimal prediction/simulation
abilities. These explicit models can be used for strategically planning the use of the
groundwater resources by assuming different precipitation scenarios, which may occur as
consequence of climatic changes. Together with EPRMOGA, here, recurrent ANNs, which
are more powerful learners, are tested. These do not return any explicit equation, but they
may be able to better perform in term of prediction/simulation than EPRMOGA, thanks to
their deep leaning abilities. The difference between EPRMOGA and recurrent ANNs is
possibly due to the non-linear response of water table fluctuations to precipitation. The
outcome of this comparison will show that recurrent ANNs do not sharply outperform
EPRMOGA, returning similar performances, in particular for short-term predictions. This
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is related to the complex geological structure of the aquifer, as well as to the variable
and heterogeneous conditions of the soil and of the boundary conditions. In fact, these
stress the learning process of the approaches, because of their time-varying scenarios, like
the pressurization of the aquifer [5], pumping, and draining, randomly occurring in the
timeseries of data.

2. The Investigated Region

The shallow porous aquifer located on the coast of the Metaponto plain, in south Italy,
is investigated here. This is a relatively extended aquifer, about 400 km2, 40 km along the
coast and averagely 10 km back towards the inland. It is located in the flat area between
the valleys of the river Bradano, north-east, and river Sinni, south-west (see Figure 1).
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Figure 1. The catchment of the Metaponto aquifer: simplified geological map, contour lines of piezometric levels, and
profile of the aquifer.

Its recharge comes from the backward terraced marine deposits, while locally there is
a contribution coming from the presence of reclamation channels [5,21,22]. The network of
reclamation channels is organized as a matrix of channels, spaced about 100 m from each
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other. These are shallow artificial channels originally design to drain shallow backwater of
the large coastal swamp. However, because of the increasing presence of structures and
infrastructures, channels became drains for runoff coming from roads and roofs. As these
channels are unlined, when they drain runoff, they can release part of the water into the
shallow aquifer. Rivers do not contribute to the aquifer, as their beds are at an elevation
that is lower than the bottom of the aquifer [21,23].

Close to the coast, the aquifer is hosted by the Holocenic alluvial sediments, consti-
tuted by fine grey sandy and silty layers with a small thickness (level C), with overlying
ochraceous and grey sands and coarse sands (level B). The upper layer is made of ochra-
ceous silty clayey (level A) and finally there is a thin, 30 cm at most, top soil layer (see
Figure 2). The aquifer develops upstream through the Pleistocenic terraced marine deposits,
mostly constituted by sands and calcarenites [5,21] (see Figure 1).
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Figure 2. (a) Grain size distributions of silty and sandy components. (b) General stratigraphy of the Metaponto aquifer, the
dash-dot blue line represents the piezometric level of the aquifer.

In the coastal area, groundwater flows through the level B, which is the aquifer level,
characterized by the average value of hydraulic conductivity equal to 2 × 10−6 m/s,
with lower values in the order of 10−6 m/s and upper values of 10−3 m/s. Locally, the
hydraulic conductivity can be even lower, with values ranging between 10−7 to 10−5 m/s;
in particular, these values are measured close to the river valleys and approaching to the
coast line [21]. The shallow ochraceous silty sandy clay level A works as an aquiclude, as
well as the blue clays at the bottom of the alluvial deposits (see the profile in Figure 1).

The distribution of the hydraulic permeability is likely related to the irregular distri-
bution of the silty clayey strata hosting the aquifer. Moreover, the presence of clayey levels
forces the groundwater to flow at different levels, even if these levels are interconnected.
It is noteworthy that the presence of level A, overlying the layer where the groundwater
normally flows, works as an almost impermeable layer. Therefore, when the level of the
groundwater exceeds the interface between level A and B, it starts flowing in pressurized
conditions, thus changing the response of the piezometric height to the recharge.

Another variable is the presence of reclamation channels, which interact with the
shallow aquifer, in general locally draining runoff and also fostering infiltration processes
into the shallow aquifer.

Nearby the sampling wells, the water table is about 2 m deep in the ground. Rainfall
directly recharges the backward heteropic terraced sand gravel aquifer, which is highly
permeable and supplies the aquifer of the plain [5,21]. This implies that rainfall indirectly
recharges the aquifer through quite quick flow paths.
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3. Modelled Data: The Shallow Aquifer of Metaponto

In order to model the aquifer of Metaponto, here, the total monthly rainfall heights
and the monthly average piezometric heads of the aquifer are considered. In particular, the
monitoring periods of the aquifer correspond to the following two time windows: January
1951 to December 1975 and October 2001 to October 2018. After December 1975, the old
network of sampling wells was discontinued and a new network was implemented in 2001;
no data are available during the time gap. The sampling well used during the earlier time
period is different from that used in the latter period, this one being located 2.5 km SW far
from the previous well (see Figure 1). These two wells are obviously drilled in the same
aquifer and the water table is at approximately the same piezometric height in both wells,
and the stratigraphic sequence is also the same; therefore, they are supposed to be closely
correlated.

The Piezometric levels are available as single manual measures of the levels every
three days in the time window of 1951 to 1975 and as automatic logged data with a
sampling frequency of 1 level every 20 min in the time window 2001 to 2018. However,
for both of the wells, given the structure of the aquifer and its non-local recharge, it was
preferred to use the average monthly levels estimated on the available measures. This
assumption is supposed to filter accidental errors of single measures as well as very short-
term oscillations of piezometric levels not related to the recharge of the aquifer [1,20].
Similarly, for rainfall, two timeseries of total daily precipitations are available for both
the monitoring periods of the aquifer. Rainfall data are collected by the same rain gauge
for both of the sampling periods of the water table. The rain gauge is located in Ginosa
Marina, a town located 15 km NE, along the coast. This particular station is representative
of the climate and of the rains occurring on the recharge zone of the aquifer, as well as
possessing a long uninterrupted timeseries of daily data since 1927. This rain gauge station
is part of the monitoring network managed by Regione Puglia; data are available at
http://93.57.89.4:8081/temporeale/meteo/stazioni, accessed on 6 July 2021.

In this case, the total monthly value of rainfall was considered and was used as the
input, i.e., forcing variable, representative of the recharge of the aquifer. In this way, two
timeseries, i.e., average monthly piezometric levels and total monthly precipitations, were
generated, each made of 300 values.

The sampling well, named “casello 49”, used in the period 1951–1975, is located at
the low elevation area of the aquifer, 3.1 km from the coastline, on the side of a railway
line in a rural area. Its timeseries is constituted by 25 years of measures of the piezometric
level, measured every three days. Data are available as a scanned PDF of the original
paper documents, through the website of the Higher Institute for Environmental Protection,
Istituto Superiore per la Protezione dell’Ambiente e la Ricerca Ambientale, ISPRA, at
http://www.acq.isprambiente.it/annalipdf/, accessed on 6 July 2021.

The sampling well was exclusively used for sampling purposes—no pumps are
installed and there are no pumping wells in the neighborhood of the well.

The sampling well, named “Terra Montonata”, is located 2.5 km SW far from “Casello
49”, in a rural area. It is 2.5 km from the coastline and, differently from the “Casello 49”, it
has an automatic data logger, which is part of a real time monitoring network managed
by Regione Basilicata and is available at http://www.centrofunzionalebasilicata.it/it/,
accessed on 6 July 2021. It has a timeseries of 18 years of data, available as piezometric
levels sampled every 20 min. No pumping activities are known close to the well.

Table 1 provides some details and statistics about the rain gauge and sampling wells.
These are referred to as monthly data, which are used for the following modelling stage.

Figure 3a,b shows the time plot of the timeseries of the rainfall and piezometric levels,
while Figure 3c,d represents the average monthly values for the sampling windows of each
well. Looking at the piezometric data, it is possible to observe that water table peak values
follow rainfall peaks. In particular, piezometric peaks lagged by about 1–2 months with
respect to precipitation, which is consistent with the structure of the aquifer and with the
assumed recharge.

http://93.57.89.4:8081/temporeale/meteo/stazioni
http://93.57.89.4:8081/temporeale/meteo/stazioni
http://www.acq.isprambiente.it/annalipdf/
http://www.acq.isprambiente.it/annalipdf/
http://www.centrofunzionalebasilicata.it/it/
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Figure 3. (a) Time plot of the average monthly piezometric levels and total monthly rainfall of Casello 49; (b) time plot of average monthly piezometric levels and total monthly rainfall of
Terra Montonata; (c) average monthly piezometric levels and precipitations of Casello 49; (d) average monthly piezometric levels and precipitations of Terra Montonata.
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Table 1. Data details and main statistics on monthly data, statistics of pluviometric data referred to
the sampling periods of 1951–1975 and 2001–2018.

Pluviometric Data Phreatimetric Data
1951–1975

Phreatimetric Data
2001–2018

Station Ginosa Marina Casello 49 Terra Montonata
Latitude 40◦25′35.77′′ N 40◦19′32′′ N 40◦18′17′′ N

Longitude 16◦53′3.98′′ E 16◦49′48.4′′ E 16◦45′10′′ E
Gauge height 5.00 m a.s.l. 6.80 m a.s.l. 7.93 m a.s.l.

Max 404 mm 5.60 m a.s.l. 6.56 m a.s.l.
Min 0 mm 3.80 m a.s.l. 4.22 m a.s.l.

Mean 46.26 mm 4.48 m a.s.l. 4.76 m a.s.l.
Standard deviation 46.31 mm 0.36 m a.s.l. 0.36 m a.s.l.

Looking at the piezometric data, the highest values for the depth of groundwater are
very low for both wells. In addition, the oscillation band of piezometric data is of 2 m for
both the wells, with a similar average value for both wells. Given the geological nature of
the top-soil, mainly constituted by silty-clay deposits, this can imply occasional pressurized
flow through the aquifer, at high groundwater levels, which can affect the hydraulics of the
aquifer and the headlosses related to the flow of water. In fact, when groundwater flows
under pressure, it can create a quick increase in the piezometric level, without a severe
increase in the amount of water in the aquifer. Finally, looking at the data of Casello 49,
starting since 1967, groundwater levels show a moderate increasing trend up to the end
of the observed data, likely related to the presence of an unknown extra-input, which is
possibly related to uncontrolled irrigation.

4. The Modelling Approaches

The response of the average monthly groundwater levels to the total monthly pre-
cipitations are modelled here according to two methods: multi-objective evolutionary
polynomial regression (EPRMOGA) and recursive artificial neural networks (NNARX). For
both the approaches, the groundwater levels were scaled on the range 0 to 1, in order to
have the same range of variability for both of the sampling wells.

4.1. EPRMOGA

EPRMOGA is a data-driven machine learning paradigm that automatically identifies
and optimizes models [19], returning explicit closed-form equations. It works according
to a two-stage approach: the structures of the equations are identified using a genetic
algorithm [24,25], and then, an estimation of the constant values is made based on a least-
square approach. EPRMOGA optimizes the polynomial structures and their coefficients in
order to fit data, as well as keeping the structural complexity of the equations relatively
simple. The evolution is based on the contemporary minimization of three conflicting
objective functions. These are the sum of squared residual errors (SSE), the dimension of
the polynomials, and the selected input variables among the pool of candidates assumed by
the user. The outcome of this multi-objective optimization is a set of solutions, representing
a Pareto set [26], which can be used for comparing the equations, and making a robust
choice of the model. The main benefit of EPRMOGA is that the models are explicit
polynomial equations, which allow for some speculations on the relationship between the
main variables of the investigated phenomena.

The terms of the equation can represent either the measured values of rainfall or
measured values of the past piezometric head. Past measured piezometric heads constitute
the stochastic component, related to extra input or to non-Gaussian errors [27], representing
the state of the aquifer, containing all of those inputs not directly related to rainfall.

In order to let EPRMOGA identify the models of the response of water levels to rainfall,
the timeseries sampled from Casello 49 is used as the training set, while the timeseries
from Terra Montonata is used as the testing set. Here, the testing set in meant as a set of
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data that are not used during the learning phase. This subdivision is supposed to test the
generalization capabilities of the returned models.

The following candidate variables are used: Ht−1 and Ht−2, representing the monthly
piezometric heads, one and two months before the output, respectively. and Pt, Pt−1, Pt−2,
Pt−3, Pt−4, Pt−5, and Pt−6, corresponding to the total monthly rainfall height of the last 6
months preceding the output. The choice of these candidate variables allows for accounting
for both rapid (e.g., Pt) and slow (e.g., Pt-6) infiltration processes, which can recharge the
superficial aquifer of Metaponto.

The set of exponents of the variables of the polynomials are assumed, limited to
0, 0.5, 1, and 2, while the maximum length of the polynomial structures is set to four
terms. This should limit the complexity of the search space, enhancing the efficiency of
the genetic optimization. Moreover, the limitation of the complexity boosts EPRMOGA
to find equations, which can be physically sound. The choice of exponents depends on
some simple practical reasons: the exponent 0 allows for unselecting a variable during the
search, while the other exponents are related to an attenuation effect (square root), a linear
dependence (1), and an amplification effect on the variable (square).

Not all of the variables will be necessarily represented in the models, as each model
is the result of a structural optimization, which is aimed at keeping the structure of the
model parsimonious, as well as at the maximization of the model fitting of the measured
training data. Equation (1) represents a very general expression of the structure of equations
optimized by EPRMOGA:

H = a0 +
m

∑
j=1

aj·(X1)
ES(j,1)· · · · ·(Xk)

ES(j,k) (1)

where Xk is the vectors of candidate inputs; H is the model-returned piezometric level
ES is the matrix of exponents; aj is the constant parameters; and m is the length of the
returned expressions, i.e., the number of terms of the polynomial structure returned
by EPRMOGA. The constant parameters, aj, are estimated by a least squares approach
integrated in EPRMOGA.

The fitting of predictions based on the EPRMOGA models is evaluated in terms of
Nash−Sutcliffe efficiency (NS) [28]:

NS = 1−
∑N

t=1
(

Ĥi − Hiexp
)2

∑N
t=1

(
Hiexp − avg

(
Hiexp

))2 (2)

where Ĥi is the value of the i-th water table level returned by EPRMOGA, Hi exp is the i-th
measured value of the water table height, N is the numerosity of the set of samples, and
avg(H) is the average value of the measured heights. In particular, NS is a performance
indicator in terms of the goodness of fit of the model-retuned data to the measured data.
This efficiency, i.e., the fitness, is maximum when NS is 1. It is also interesting to observe
that NS is a non-linear indicator; therefore, when it approaches 1, a very high improvement
of the fitness is necessary in order to have a slight increase of NS. Finally, low values of NS,
i.e., values lower of equal to 0, mean that the sum of the square errors exceed the variance
of the measured data.

A further performance indicator considered here is the value of the variance of residual
errors (VAR). It is a statistical indicator of the quality of fitness and of the distribution of
the residuals; the lower the variance, the better its fitness.

Finally, EPRMOGA performs uncertainty analyses on models and on the performance
indicator of data fitting. As described by Giustolisi and Savic [19], EPRMOGA makes an
estimation of the uncertainty of each term of models based on the asymptotic covariance
method [27].
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4.2. NNARX

Recursive neural networks are powerful non-linear learners based on highly connected
networks, which reproduce the neural system, well known by scientific literature and
broadly used for practical applications [13,14,29]. Based on the knowledge of the brain
and its associated neural systems, ANNs use highly simplified models composed of many
processing elements, neurons, connected by links of variable weights, parameters, to form
a black-box representation of systems [18]. These models have the ability to deal with a
large amount of information and to learn complex model functions from examples, i.e., by
training sets of input and output data. The greatest advantage of ANN over other modelling
techniques is their capability to model complex, non-linear processes without assuming
the form of the relationship between the input and output variables. Learning in ANN
involves tuning the parameters, i.e., weights, of interconnections in a highly parameterized
system. However, differently from EPRMOGA, an ANN requires that the structure of the
neural network is identified a priori, e.g., number of inputs, kernel type, transfer functions,
and number of hidden layers. ANNs have been successfully used on manifold case studies
related to the prediction of groundwater levels. For instance, Giustolisi and Simeone [16]
successfully attempted the use of optimized recurrent ANNs for the prediction of the
response of piezometric levels of groundwater to the precipitations, in a climatic scenario
and on a porous aquifer, where boundary conditions were relatively stable.

Similarly to EPRMOGA, here, ANNs are used according to a recurrent scheme,
NNARX, i.e., past measured values of the piezometric levels are used as the input for
the network. The complexity of the architecture of the NNARX is intentionally kept rela-
tively simple; in particular, the general architecture of the network is made using an input
layer, hidden layer, and output layer. It is assumed the use of three precipitation inputs,
corresponding to the precipitations of the same months of the output and of one and two
months before. In addition, one past measured value of the piezometric head is used as the
recursive input, while the hidden layer is made of five neurons. A number of networks
are trained, the choice of the sub-optimal network is made according to the criterion of
maximizing the fitting of the predicted values on the testing set of data, i.e., not used for
training the network. The training is based on the Levenberg−Marquardt backpropagation
algorithm [30]. Finally, the kernel function of the NNARX is assumed to be the hyperbolic
tangent, which seems to return better performances than the other kernel functions tried
on this specific case study, keeping the same architecture of the network.

The performances of NNARX are evaluated in terms of the VAR and NS coefficient,
similarly to EPRMOGA, in order to have a quick comparison between the EPRMOGA and
NNARX results.

5. Modeling Results

EPRMOGA returned a Pareto set of 11 equations, representing the models of the
piezometric level responses to precipitations. These equations show relatively simple
explicit structures, even if non-linear, able to predict piezometric levels. The list of equations
follows, ordered from the simplest one, which is the mean value of the scaled piezometric
value, to the most complex on the Pareto front.

H = 0.37612 (3)

H = 0.89664Ht−1 + 0.039089 (4)

H = 0.668H0.5
t−1 (5)

H = 0.0009445Pt−1 + 0.87803Ht−1 + 0.0015936 (6)

H = 0.00078771Pt + 0.90572Ht−1 (7)

H = 3.4259·10−6P2
t−1 + 0.00067178Pt + 0.87994Ht−1 (8)

H = 0.0014239P0.5
t P0.5

t−1 + 0.86268Ht−1 (9)
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H = 0.00027166Pt−2 + 3.3877·10−6P2
t−1 + 0.00064042Pt + 0.85245Ht−1 (10)

H = 0.00064357Pt + 0.0012902H0.5
t−1Pt−1 + 0.82796Ht−1 (11)

H = 5.4745·10−6Pt−1Pt−3 + 2.5493·10−6P2
t−1 + 0.00066122Pt + 0.85969Ht−1 (12)

H = +1.0031·10−6P0.5
t−1Pt−2P0.5

t−3P0.5
t−4 + 3.1314·10−6P2

t−1 + 0.00069437Pt + 0.8446Ht−1 (13)

The returned models are the outcome of the optimization of three conflicting objective
functions; therefore, none on them can be considered as absolutely the best. Figure 4 shows
the one month-ahead predictions and the time plot of simulations, both compared with the
measured data, for the training set, i.e., data from Casello 49.

Similarly, Figure 5 represents one month ahead predictions and simulations for the
test set, i.e., data from Terra Montonata.

Both for the training set and for the test set, the one month ahead prediction is
quite consistent with measured data, except for the simplest model (3). The hard test is
constituted by the simulations, which do not show good results, in particular for peaks
and minima. Tables 2 and 3 show the performance indicators of training and test sets,
respectively, for the one month ahead predictions and simulations, in terms of VAR and
NS values.

Table 2. VAR and NS values estimated for the training set of data, for the one month ahead prediction
and simulation.

1 Month Ahead Simulation
VAR NS VAR NS

Model 1 0.0403 0.0003 0.0403 −0.0004

Model 2 0.0078 0.8064 0.0406 −0.0085

Model 3 0.0139 0.6558 0.0451 −0.1201

Model 4 0.0058 0.8565 0.0250 0.3799

Model 5 0.0063 0.8440 0.0270 0.3292

Model 6 0.0047 0.8845 0.0210 0.4788

Model 7 0.0053 0.8672 0.0284 0.2944

Model 8 0.0045 0.8887 0.0211 0.4764

Model 9 0.0046 0.8852 0.0239 0.4076

Model 10 0.0043 0.8922 0.0216 0.4635

Model 11 0.0042 0.8950 0.0214 0.4680

Table 3. VAR and NS values estimated for the testing set of data, for the one month ahead prediction
and simulation.

1 Month Ahead Simulation
VAR NS VAR NS

Model 1 0.0432 −0.8502 0.0432 −0.8534

Model 2 0.0067 0.7128 0.0406 −0.7412

Model 3 0.0127 0.4567 0.0666 −1.8548

Model 4 0.0062 0.7322 0.0313 −0.3430

Model 5 0.0052 0.7781 0.0347 −0.4868

Model 6 0.0048 0.7956 0.0301 −0.2920

Model 7 0.0053 0.7724 0.0412 −0.7683

Model 8 0.0050 0.7853 0.0317 −0.3583

Model 9 0.0051 0.7828 0.0361 −0.5486
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Table 3. Cont.

1 Month Ahead Simulation
VAR NS VAR NS

Model 10 0.0053 0.7724 0.0308 −0.3187

Model 11 0.0050 0.7860 0.0304 −0.3052Geosciences 2021, 11, x FOR PEER REVIEW 11 of 22 
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Figure 4. One month ahead prediction and simulations of EPRMOGA returned models for the
training set, i.e., Casello 49, piezometric levels on the vertical axis are in m a.s.l.
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Figure 5. One month ahead prediction and simulations of EPRMOGA returned models for the training set, i.e., Terra
Montonata, piezometric levels on the vertical axis are in m a.s.l.
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Figure 6 represents the box plot of the absolute values of the errors for the training set
of data, for each model, with the one month ahead prediction on the left and simulation on
the right.
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Figure 6. Box plot of the absolute values of errors of the training set for the one month ahead
and simulation.
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Similarly, Figure 7 represents the box plot of the absolute values of the errors for
the test set of data, for each model, for the one month ahead prediction on the left and
simulation on the right.
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Figure 7. Box plot of the absolute values of errors of the test set for one month ahead and simulation.
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It is possible to observe the dispersion of the errors for simulations, both for training
and test set; errors for the one month ahead are relatively less dispersed, due to the better
fitting of model returned data to measured ones. Moreover, simulations are characterized
by higher uncertainty, since it is conditioned by the fails in reproducing peaks and minima,
while the mid-range oscillations are relatively well simulated.

NNARX based model shows slightly better results, in particular for simulation. How-
ever, even in this case, peaks and minima are not simulated. The next Figures 8 and 9
represent the one month ahead prediction and simulation in the order for the training and
testing set. Table 4 reports VAR and NS for the one month ahead prediction and simulation
for the training and testing set.
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Figure 8. One month ahead prediction and simulations of NNARX returned models for the training
set, i.e., Casello 49, piezometric levels on the vertical axis are in m a.s.l.
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Figure 9. One month ahead prediction and simulations of NNARX returned models for the test set, i.e., Terra Montonata,
piezometric levels on the vertical axis are in m a.s.l.
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Table 4. VAR and NS values estimated for the training and testing set of data, for the one month
ahead prediction and *-+simulation.

1 Month Ahead Simulation
VAR NS VAR NS

Training set 0.0059 0.85 0.0215 0.28

Test set 0.0062 0.73 0.0170 0.26

Finally, it is interesting to emphasize that both EPRMOGA and NNARX contain
the recursive term of the piezometric level measured the month before the prediction.
This term, representing the stochastic component, contains the information not related to
the rainfall. Therefore, the effects of the reclamation channels are modeled by this term,
together with all of the other extra input and non-Gaussian errors.

6. Discussion on Results

The presented models are directly learned from the measured data, from which they
learned the responses of the groundwater piezometric levels to precipitations. However, for
both EPRMOGA and NNARX, it is possible to observe that these two different paradigms
were able to learn the responses of the groundwater levels to he precipitations in the
mid-range of groundwater levels. In general, the oscillations of the groundwater levels are
somehow fitted by the simulations returned by EPRMOGA and NNARX.

The peaks and minima are not predicted, in particular for simulations, when models
are completely recursive, i.e., except for the initial conditions, the component of the past
measured groundwater levels are recursively generated by the models. Therefore, simu-
lations test the ability of the models to reproduce groundwater levels without using the
stochastic component given by the past measured levels. This component is supposed to
contain the information not related to the rainfall precipitations, but to other unknown
variables or to non-gaussian errors. In this particular case, the unknown variable is the
variation of the boundary conditions. Indeed, the investigated aquifer normally flows in
a layer made of grey sands and coarse sands; this layer is comprised between two low
permeability silty layers on the bed and on the top. The upper silty-clayey level works
as a confining layer; therefore, when the groundwater level exceeds the elevation of the
interface between sands and silty-clayey sands, the aquifer flows under pressure [5]. This
pressurization generates a sudden increase in the piezometric level, which constitutes an
anomaly that rarely occurs; therefore, both EPRMOGA and NNARX are not able to learn
these anomalies. This is the reason both methods fail at simulating the peaks. The minima
are also not simulated, in this case the motivation can be related to the vertical anisotropy
of the coarse sandy level. In fact, the lower levels of sands are interlayered by coarse loose
sands and gravel, which have a higher storage coefficient. Therefore, when the groundwa-
ter level decreases and encounters these coarse loose sand, it suddenly decreases, causing
the measured minimum values. Therefore, the minima of the groundwater levels are again
anomalous, as the lowering of the levels is sudden and is not correlated with the flow of
the aquifer through the sandy layer. This peculiar behavior of the aquifer was proven
using a physically-based model by Pastore et al. [5], and the machine learning approaches
presented here are consistent with those results, even if independently obtained. Figure 10
shows the shallow low permeability layer and the coarse sand layer for a borehole survey
made close to Terra Montonata well. Unfortunately, the borehole was drilled for purposes
not related to this research, and thus no other information is available.
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Figure 10. Samples from a borehole survey made close to the Terra Montonata well. The upper part of the figure represents
the samples from 0 to 5 m below the ground, and the lower part represent the samples from 5 to 10 m below the ground.

These exceptional occurrences imply that both the paradigms do not learn these
unpredictable variations of levels, as they are poorly correlated with the variations of the
levels observed in the sandy layer. Therefore, the combination of the low-permeable layer
at the top and of the presence of interlayers of coarse loose sand generate the characteristic
scenario with anomalous peaks and minima of groundwater levels. It is noteworthy that
in the mid-range of levels, both EPRMOGA and NNARX are able to accurately predict
and simulate the oscillations of the groundwater piezometric levels as a response to
precipitations. In fact, the mid-range of the levels represent the oscillations of the aquifer in
the coarse sandy level, and thus a sort of ordinary scenario.

It is also of interest to observe the structures of the models returned by EPRMOGA.
Most of the identified models contain rainfall terms of the same month of the level to be
predicted or of the month before at most. This means that the response of the aquifer to
precipitations is relatively quick; however, this seems to contradict the presence of the
poorly permeable layer on the top of the coarse sand. However, this relative quick recharge
may be correlated to two reasons, namely: the presence of a number of artificial channels
in the remediation system and the non-local recharge. Artificial channels are designed to
drain backwater, avoiding the generation of swamps and ponded areas. However, because
of the urbanization of the area, they drain runoff from waterproof surfaces. Therefore,
they may directly interact with the shallow aquifer, and in particular with the coarse
sandy layer, favoring the recharge of the aquifer, creating a relatively quick component of
rainfall infiltration, also assumed by Pastore et al. [5]. This hypothesis is not supported
by numerical measures, which are not available, but it is plausible given the presence of a
network of channels, structured as a matrix, with interrexes of 100 m.

The non-local recharge boosts the response of the aquifer to precipitation. Precipita-
tion infiltrates through the regressive terraced marine deposits, constituted by sand and
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calcarenites outcropping backward from the area where the sampling wells are located and
then it flows directly through the sand, without the hindrance of the silty-clayey top level.
Therefore, even if EPRMOGA generally shows a slightly poorer fitness of predicted and
simulated data than NNARX, it is useful as it returns explicit equations, which allow for
some speculations about the component of the rainfall actually influencing the oscillations
of the groundwater levels. Moreover, the explicit models returned by EPRMOGA allow for
simulating possible scenarios of precipitations and then planning the use in terms of the
pumping of groundwater.

NNARX is also useful, as it is a powerful method, but in this casem it failed at simu-
lating peaks and levels, thus implying that those values were somehow poorly correlated
with the larger part of the measured data. Therefore, the poor performances of NNARX
in simulating the peaks and minima is consistent with the combined effect of the poorly
permeable layer at the top and of the interlayers of coarse loose sands at the bottom of the
sandy layer hosting the aquifer. These affect the oscillations of the levels when they go out
of the mid-range band of levels.

7. Conclusions

The responses of monthly groundwater levels to the total monthly precipitations are
investigated here by two machine learning approaches. The peculiar feature of the investi-
gated aquifer is that it normally flows unconfined through a sandy layer interlayered by
coarse loose sand, comprised between two low permeability silty-clayey layers. Moreover,
the aquifer is recharged by the upstream area of its catchment, where coarse sands outcrop.
The combination of these peculiarities, together with the presence of a network of reclama-
tion channels, makes the boundary conditions of the aquifer complicated to model. In fact,
when the aquifer exceed the upper bound between the sands and clayey sands, it starts
working as a pressurized aquifer, with a sudden increase of piezometric levels. On the
other hand, when the level of the aquifer is particularly low, it meets the coarse loose sand
interlayers, characterized by higher storage coefficients. This implies a sudden decrease
in groundwater levels. In addition, the recharge of the aquifer is affected by the presence
of the network of remediation channels, which drain shallow water as well as facilitating
the exchange of water between the sandy aquifer and the channels themselves. All of
these factors make the modeling of the oscillations of the piezometric levels of the aquifer
very complicated, as there are clearly different behaviors related to the ordinary levels,
i.e., those corresponding to the unconfined flow of the aquifer with mid-range levels, and
extraordinary conditions, related to the peaks and minima of levels. Here, two data-driven
paradigms are used in order to let them learn the responses of piezometric levels of precipi-
tation. The earlier is EPRMOGA, an optimized evolutionary modeling approach, able to
return explicit equations, representative of the investigated phenomenon. These explicit
equations can be used for predicting and simulating the responses of the piezometric level
of the aquifer to precipitation. This permits for planning the use of groundwater, given
precipitation scenarios of short- or long-term, by using relatively simple equations.

The latter is a recursive neural network, NNARX, which is a deep learner, able to
return models with a high fitness to the measured data. This was here tested, in order
to understand the real benefit over EPRMOGA for using a powerful black-box learner in
terms of prediction and simulation.

For both the approaches, it was not possible to simulate the peaks and the minima, i.e.,
the extraordinary boundary conditions. On the one hand, NNARX slightly outperformed
ERPMOGA in simulation; on the other hand, EPRMOGA, returning explicit equations,
confirmed the role of the short-term precipitation for the recharge of the aquifer.

Therefore, even if data-driven paradigms seems to fail at simulating the oscillation of
groundwater levels, they were actually useful for emphasizing the unpredictable oscilla-
tions when boundary conditions change. Particularly, EPRMOGA allowed for identifying
which rainfall component is mostly influencial on the recharge of the aquifer. Finally,
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NNARX and EPRMOGA returned a model able to decently simulate the mid-range values
of the piezometric heights, which corresponded to the phreatic behavior of the aquifer [19].
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