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Abstract: Within the vast category of unconventional resources, heavy oils play an essential role
as related resources are abundant throughout the world and the amount of oil produced using
thermal methods is significant. Simulators for thermo–hydro–dynamic modeling, as a mandatory
tool in oilfield development, are continuously improving. However, the present paper shows that
software capabilities for the integration of data on the rock thermal properties necessary for modeling
are limited, outdated in some aspects, and require revision. In this paper, it is demonstrated that
a characteristic lack of reliable data on rock thermal properties also leads to significant errors in
the parameters characterizing oil recovery efficiency. A set of advanced methods and equipment
for obtaining reliable data on thermal properties is presented, and a new, vast set of experimental
data on formation thermal properties obtained from the Karabikulovskoye heavy oil field (Russia)
is described. The time-dependent results of modeling oil recovery at the field segment using the
steam-assisted gravity drainage method with both published and new data are discussed. It is shown
that the lack of experimental data leads to significant errors in the evaluation of the cumulative oil
production (up to 20%) and the cumulative steam/oil ratio (up to 52%).

Keywords: heavy oil; thermal petrophysics; thermal properties; thermal EOR modeling; recovery
efficiency

1. Introduction

Modern thermal petrophysics comprises a complete set of methods that provide
significant support for the prospecting, exploration and production of hydrocarbons,
related to the need for improvements in studying the heterogeneity and anisotropy of
rocks in well sections, studying the processes of heat and mass transfer in reservoirs,
studying geochemical characteristics, and obtaining reliable data on the thermal regime of
the studied formations [1–4]. The application of thermal petrophysics methods in modeling
thermal methods for enhanced oil recovery (EOR) is highly relevant. First, the oil viscosity
and the relative phase permeability of water and oil (see, e.g., [5,6]) are strongly dependent
on temperature. The effective use of heat injected or generated in the reservoir determines
the economic feasibility of selecting the production technology and the number, optimal
location, and the operating mode of wells. The distribution of heat in the reservoir and its
resulting temperature are, in turn, determined by its thermal properties—namely, thermal
conductivity and volumetric heat capacity—which are among the fundamental physical
properties of rocks. Second, the number of oil production projects and the amount of oil
produced using thermal methods are significant. By 2010, thermal production accounted

Geosciences 2021, 11, 203. https://doi.org/10.3390/geosciences11050203 https://www.mdpi.com/journal/geosciences

https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0003-4332-4462
https://doi.org/10.3390/geosciences11050203
https://doi.org/10.3390/geosciences11050203
https://doi.org/10.3390/geosciences11050203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/geosciences11050203
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences11050203?type=check_update&version=1


Geosciences 2021, 11, 203 2 of 28

for approximately 67% of daily oil production using all EOR methods [7]; by 2014, it
accounted for approximately 59% [8]. The number of projects was approximately equal to
30% of the total number of EOR projects and changed slightly over time between 2006 and
2017 inclusive, according to McGlade et al. [9].

However, until recently, obtaining reliable data on sedimentary rock thermal proper-
ties was a fairly serious problem for several reasons, which are described in [1,10]. Typically,
the final errors when experimentally determining thermal conductivity reach 50–110%, and
the volume heat capacity reaches 40–75% [1,11]. It is not surprising that previous data on
the thermal properties of sedimentary rock obtained by traditional methods often require
serious revision, and existing reference books and databases are not reliable enough [1,4,11].
The lack of strict quality control of the experimental data on thermal petrophysics led to an
erroneous understanding of the ranges of spatio–temporal variations in thermal properties,
which apparently affected the methods for setting the thermal properties in modern thermo–
hydrodynamic (THD) simulators. Our analysis of the capabilities of the corresponding
commercial software (STARS of Computer Modeling Group, Eclipse of Schlumberger,
PumaFlow of Beicip-Franlab, TempestMORE of ROXAR Software Solutions, tNavigator of
Rock Flow Dynamics, VIP/Nexus of Halliburton Landmark, etc.) shows that no significant
improvements have been made in the correct assignment and use of experimental data on
thermal properties for many years, and the software significantly lags behind the current
level of thermal petrophysics development.

Signals of the significant effects of uncertainty in thermal properties data upon simula-
tion results rarely appear in the literature [1,12–15] and are typically not without drawbacks,
in addition to most not available to a wide range of specialists. However, even for these
individual works, it is clear that errors in the initial data on thermal properties lead to
errors in estimating heating costs by tens of percent, assessing the risks with overburden
integrity violations, and predicting temperature. As a result, there are serious errors in the
evaluation of oil viscosity, in the evaluation of oil mobility, and, as a result, errors of tens of
percent with calculated production volumes and recovery factors (see details in [1,12–15]
and in Section 2.2).

This paper aims to summarize the long-term (1983–2020) history of (1) investigations
of the thermal properties of reservoir rocks, surrounding rocks, and reservoir fluids un-
der atmospheric and reservoir conditions; (2) thermal property data interpretation; (3)
the integration of experimental data into hydrodynamic models; and (4) assessment of
the impacts permitted by the uncertainties in thermal properties on the results of THD
modeling. In practice, in the vast majority of cases, there is an underestimation of the
existing uncertainty in data on the thermal properties used (including the uncertainty
caused by simulator features) and an underestimation of the impact of this uncertainty
upon key development parameters (see, e.g., [1]). To reduce this uncertainty when work-
ing with a specific development object, it is necessary to conduct a set of measurements
with samples of this object and to adapt the data obtained to the specific requirements of
the existing simulator. In this regard, the objectives of this paper are two-fold. First, it
seeks to inform specialists on the current level of developments in thermal petrophysics,
providing the results of applying the appropriate hardware and methodological base to
a specific object—the Karabikulovskoye high-viscosity oil field—and demonstrating the
consequences of such an application. Secondly, it seeks to consider the problems when
applying experimental data on thermal properties in the model, with a demonstration of
the need to improve the corresponding options of THD simulators.

2. Consequences of the Growing Gap between Advances in Thermal Petrophysics and
THD Modeling

The active development and application of new hardware and methodological sets [2,3]
have provided a radical improvement in the quality and volume of experimental studies
on sedimentary rock thermal properties and the elimination of shortcomings characteristic
of previously used traditional measuring means. However, the analysis of possibilities in
the widely applied THD simulations shows that their ability to correctly assign and use
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experimental data on the thermal properties of rocks and pore fluids is limited and has not
been practically improved for many years, as described below.

2.1. Features of Integration of Data on Thermal Properties into THD Simulators

When modeling production, the effective (bulk) thermal properties of each design
element of the model may change over time due to changes in the temperature, porosity,
pore fluid, and pressure. To account for the changes, all simulators have built-in so-
called “mixing rules”—theoretical models (one or more variants) for calculating effective
thermal properties based on the values of the thermal properties of components and their
volumetric ratios [16]. At the same time, simplified, insufficiently correct models of effective
thermal conductivity are used without clear criteria for selecting one particular model.
The discrepancy between the evaluations in thermal conductivity for different models can
be up to hundreds of percent (see, e.g., the results of this study or [17]). Moreover, this
approach requires specifying the thermal properties of the rock mineral matrix, which, until
recently, were even more difficult to obtain correctly than measurements with the rocks
themselves [1]. As a result, there is additional uncertainty in the effective values of thermal
properties used in the calculation, which must be taken into account while simulating.
Currently, it is possible to minimize such errors only on the basis of the experimental data
obtained by their special treatment and adjustment in view of the features in a specific
model built in the software, which is what we have conducted in this paper.

The analysis of modern simulator capabilities also showed that the option to add
the dependence of rock thermal properties on thermobaric conditions in some simulators
is absent or is limited (e.g., not available for thermal conductivity or cannot take into
account dependence on pressure). When this option is available, there is often a restriction
on the form of dependency. For example, the linear dependence of the bulk rock heat
capacity on temperature, which is typical for the vast majority of simulators, contradicts the
experiment and theory (see, e.g., [18]). The fixed rule—linear or nonlinear—implemented
in some simulators to account for the temperature dependence of rock thermal conductivity
very often does not allow specialists to assign an experimentally determined dependence
into the model (in contrast to a simulator, where thermal conductivity variation with
temperature can be assigned in table format).

The option to account for heat loss out of the reservoir based on an analytical so-
lution [19] is often used to speed up the calculations. The bulk thermal properties (and
without using temperature dependence) for surrounding rocks should be used in this
case, while specialists preferably use rock matrix thermal properties instead of the bulk
properties for the reservoir. The vast majority of simulators do not allow for the anisotropy
of thermal conductivity, which is particularly critical for thermal production methods in
shale formations. The heterogeneity of the development object is taken into account either
by setting individual thermal properties for each calculated cell (effective properties or
matrix properties) or by setting individual properties and “mixing rules” for selected rock
types/classes, i.e., for individual groups of cells that make up the model. It should be
noted that our aim was not to compare different simulators but rather to emphasize the
characteristic shortcomings in the currently existing capabilities for integrating thermal
properties into a model.

2.2. Consequences of Uncertainty in Rock Thermal Properties for Simulation

The number of papers, that are accessible to a wide range of readers, which assess
the degree of influence of the uncertainty of rock thermal properties on the efficiency of
heavy oil production through various thermal EORs is relatively small, and there is no
generalization of the results. In this section, we try to eliminate this gap.

Kiasari et al. [12] showed a significant effect of uncertainty in the assigned effective
values of reservoir thermal conductivity and volumetric heat capacity on oil production (up
to approximately 25% after seven years of production) and the cumulative steam/oil ratio
(CSOR) using a small synthetic model of production by steam-assisted gravity drainage.
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Temizel et al. [13] illustrated that the bulk heat capacity of the rock matrix is the most
important factor (among the other 16 considered) affecting cumulative oil production (COP)
when steam is injected into a vertical well. However, the authors used a simple synthetic
model and did not consider the effect of rock thermal conductivity on the modeling results.
Durkin and Menshikova [14] showed a significant influence of uncertainty in rock thermal
properties on the oil recovery factor (up to 38% and 28% caused by uncertainty in the
reservoir rock heat capacity and thermal conductivity, respectively) and steam/oil ratio
(up to 185% and 44% caused by uncertainty in reservoir rock heat capacity and thermal
conductivity, respectively) when modeling steam injection. The authors used a range
of variations in the thermal properties from published data (sometimes with some non-
physical values) in a simple synthetic model without its description and did not disclose the
method used to calculate the effective thermal conductivity. Morozyuk et al. [15] showed
that accounting for the thermal properties of non-reservoir rocks, found in the section
of a productive reservoir, affects the COP (up to 21%) and SOR (up to 19%) by SAGD
with a simplified sector model of the Yaregskoye heavy oil field. However, the authors
provided neither exact values of the thermal properties nor details on the used mixing rule
for thermal conductivity.

Uncertainty in thermal properties significantly affects the production of shale gas [20]
or oil [21] using the thermal method in a fractured reservoir. The oil recovery factor in-
creases with the increasing thermal conductivity of shale [22], and gas production increases
with the increasing thermal conductivity of gas and rocks and decreases with the increasing
specific heat capacity of the rock [20]. The authors used a model of a homogeneous reservoir
and assumed that thermal properties do not depend on temperature. Similar shortcomings
were found in the paper of Erofeev et al. [22], where the rock thermal conductivity of
the Bazhenov formation turned out to be a key parameter, the uncertainty in which had
the greatest impact on the production of generated oil when pumping supercritical water
into the reservoir. At the basis of the theoretical model, Klemin [23] evaluated the effect
of variation in reservoir thermal properties on the efficiency of oil production by SAGD.
Irani and Cokar [24] modified Butler’s [25] analytical approach by taking into account
the dependence of reservoir effective thermal conductivity on temperature and evaluated
the effects of such modifications on oil production and steam/oil ratio. However, the
authors resolved and simplified the problem by assuming that there is no heat loss in
the surroundings and that the SOR does not depend on thermal conductivity. All of the
aforementioned researchers noted a significant (tens of percent) influence of uncertainty in
rock thermal properties on the estimates of key development parameters. The degree of
this influence changes over time and can be determined by a specific digital model of the
production process, since it depends on the chosen technology and process parameters, on
the analyzed parameters of production, on the reservoir parameters and reservoir fluid,
and on the characteristics and the selected thermal physical options of the simulator.

The analysis of the publications shows that, first, the ranges of spatio–temporal varia-
tions of rock thermal properties are often underestimated or non-physical values of rock
thermal properties are used. Second, synthetic models that are far from reality in terms
of geometry and assigned parameters are often considered. Third, information about the
features of integrating data on thermal properties into models is poorly covered, which
is often expressed in misunderstanding/not taking into account the difference between
effective and matrix values, as well as in a simplified version of assigning thermal proper-
ties in the model (both at atmospheric and reservoir conditions). In this regard, the most
complete study is the work of Popov et al. [1], which addresses the problem of the relia-
bility of the input data on rock thermal properties (generalized results of thermophysical
measurements with more than 1100 rock samples from several heavy oil fields) and the
problem of assigning reliable data in simulators. The impact of the effects of uncertainty
in thermal properties was evaluated using several models of heavy oil production with
different methods of thermal impact on the reservoir: steam-assisted gravity drainage (a
synthetic model with parameters close to Faja field, Venezuela), directed in situ reservoir
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combustion (a synthetic model), and steam injection thermal effect (a model of a segment
of Usinskoe heavy oil field). The authors have considered the influence of uncertainty
in reservoir thermal properties and surrounding rocks (individually and in combination)
on key development parameters depending on the duration of production—up to 75%
in CSOR and 70% in COP in cases of SAGD, up to 65% in COP in cases of toe-to-heel air
injection, and up to 23% in COP in the case of steam flooding.

3. New Methods and Equipment of Thermal Petrophysics

For full-range studies of rock thermal properties, a whole set of methods and instru-
ments is required for rock thermal property measurements under atmospheric (Section 3.1)
and formation (Section 3.2) thermobaric conditions (Table 1). A comprehensive study
requires the additional study of pore fluid thermal properties (Section 3.3) as well as
studies of the rock properties in different saturation conditions in order to analyze the
“thermal properties–porosity” relationship and determine the mineral matrix thermal
properties [1,26].

Table 1. Hardware used within the frame of this work to measure rock thermal properties and porous fluids in atmospheric
conditions and within the range of formation temperatures.

TCS
(Skoltech)

DTC-300
(TA Instruments)

DSC 214 Polyma
(NETZSCH)

DKT-40
(Special Design)

KD2 Pro e

(Decagon
Devices)

Measured
parameters a TC, TD, VHC TC SHC CLTE d TC

Sample Solid Solid Solid, liquid Solid Liquid

Measuring
conditions

Atmospheric
conditions 20–300 ◦C 30–600 ◦C 25–300 ◦C −50–150 ◦C

Measurement
quality

TC: 2.0% (A) *
1.5% (P) *

TD: 2.5% (A) *
2.0% (P) *

VHC: 3.0% (A) *
2.5% (P) *

1–2% b (precision)
3–8% b (accuracy)

2.5% (relative
error)

4% (P) *
1.8·× 10−7 K−1 (A) *

0.01 W/(m K)
in range

0.02–0.2 W/(m K)

Method of
measurement Original Modified c [27] Tool manufacturer Modified c [28] Tool manufacturer

Compliance ISRM
[10]

ASTM
E1530-11 [29]

ASTM
E1269-11 [30]

ASTM
E228-95 [31]

ASTM
D5334-14 [32]

Requirements for
measured
samples

Any with flat
or cylindrical

surface, length of
10–500 mm

Cylinder, 50 mm in
diameter and

height not
exceeding 20 mm

Disk, 4 mm in
diameter and

1 mm in width, or
powder with mass

of 20–40 mg

Standard
cylindrical

samples or cube
(30 × 30 mm)

Liquid sample e,
volume of not less

than 80 cm3

* (A) means accuracy and (P) means precision with 0.95 confidence probability. a Here, TC means thermal conductivity; TD means thermal
diffusivity; SHC and VHC mean specific and volumetric heat capacity, respectively; and CLTE means coefficient of linear thermal expansion.
b Depending on the thermal resistance of the sample (according to technical characteristics of the tool). c Modified method to treat the
samples for measurements and performing measurements based on the use of optical scanning process. d The differential value of CLTE
for every temperature interval of 20 ◦C within a temperature range of 20–300 ◦C can be measured. e With KS-1 needle probe to measure TC
of liquid media; the depth of the measuring cell must be greater than the length of the probe (6 cm), and the diameter—much larger than
the diameter of the probe (1.3 mm).

3.1. Measurements of Rock Thermal Properties under Atmospheric Conditions

The cornerstone of the new hardware and methodology base is the non-destructive,
non-contact, precision optical scanning method recommended by ISRM [10]. The method
allows identifying the main values of thermal conductivity λ along the main axes of thermal
conductivity, temperature (diffusivity) conductivity a, and coefficient of thermal anisotropy
K, defined as the ratio of thermal conductivity along the principal axes of thermal con-
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ductivity, volumetric heat capacity Cρ, and the coefficient of the thermal heterogeneity β

of rock samples directly on a full-sized, slabbed, or standard core sample with detailed
profiling of the thermal conductivity, temperature conductivity (diffusivity), and volumet-
ric heat capacity without the mechanical processing of the core samples and with the full
preservation of the core material. A detailed description of the method and metrological
and technical characteristics of installations is given in the published ISRM-suggested
methods [10]. Based on optical scanning devices, a method has been developed for the
continuous thermal profiling of the entire well core, which, by continuously scanning in
the direction perpendicular to the stratification plane for sedimentary rocks, allows for
registering different scale variations in the volumetric heat capacity and thermal conduc-
tivity components λ‖, parallel to the stratification plane or layers along the wells with a
spatial resolution of 0.001 m [3]. An example of thermal profiling results on two adjacent
rock samples from the Karabikulovskoye high-viscosity oil field is shown in Figure 1. It
can be seen that even within a single sample of oil sand, its thermal properties change
significantly (for this sample, it is up to 18% in thermal conductivity and up to 45% in
volumetric heat capacity).

3.2. Measurements of Rock Thermal Properties under Reservoir Conditions

The active introduction of the optical scanning method allowed us not only to in-
crease the validity of the core sample selection sites to form representative collections of
rock samples for subsequent laboratory studies [33], but also to significantly improve the
quality of thermal property measuring at elevated temperatures. In particular, we recently
improved the method for measuring thermal conductivity at elevated temperatures using
the DTC-300 (New Castle, DE, USA) device [27] (Table 1). This device, whose operating
principle is based on the “divided bar” method [10], is designed to determine the thermal
conductivity of industrial materials and in the standard version of its application, cannot
provide a satisfactory measurement quality for sedimentary rocks due to its inability to en-
sure the necessary quality of its surface polishing [27]. Thermal conductivity measurements
were performed on solid cylindrical samples of 50 mm in diameter and not exceeding
20 mm in height, in the temperature range from 20 to 300 ◦C. The measurements met the
requirements of ASTM E1530-11 [29].

A differential scanning calorimeter DSC 214 Polyma (NETZSCH, Selb, Germany) was
used to determine the rock-specific heat capacity in the temperature range of 30–600 ◦C. The
image and technical characteristics of this calorimeter are shown in Table 1. Measurements
and calculation of specific heat capacity were performed in accordance with ASTM E1269-
11 [30] requirements, with samples in the form of a disk ~4 mm in diameter with ~1 mm
thickness or with powder weighing 20–40 mg. High-purity nitrogen (99.999%) was used as
a purge and protective gas (with a volumetric flow rate of 40 and 60 mL/min, respectively).
The calorimeter was calibrated for heat flow prior to each series of measurement. The time
of isothermal sections was at least 5 min. The heating speed was 10 ◦C/min. The samples
were kept in the calorimeter oven for 15 min at 120 ◦C (the change in mass of samples
after measurements as related to mass after drying was less than 0.1%) prior to making
measurements.

The dependence of rock volumetric heat capacity on temperature was determined
as the product of specific heat capacity with density, and the change in rock density with
temperature was previously determined by measuring the coefficient of linear thermal
expansion (CLTE).

CLTE was measured over a wide temperature range using a dilatometer with a quartz
pusher DKT-40 (Chelyabinsk, Russia), specifically designed for studies of 30 × 30-mm
cylindrical core samples (Table 1). Different CLTE tensor components were determined
when a different orientation of the core samples in the dilatometer was used. The use of
highly sensitive strain sensors made it possible to achieve a high resolution (~0.01 microns)
when measuring the elongation of a sample during its heating. The signal variation did not
exceed ±0.05 microns over 10 h, and this meets the requirements of the ASTM E228-95 [31]
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standard. This allowed us to measure a differential value of CLTE for every temperature
interval of 20 ◦C within a temperature range of 20–300 ◦C. The metrological and technical
characteristics of the DKT-40 unit as well as the improved measurement technique were
described in detail by Gabova et al. [28].
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3.3. Measurement of Oil Thermal Properties in Reservoir Conditions

The thermal conductivity of oil was measured using a KD2 Pro device (Pullman, WA
USA) with a KS-1 remote probe designed to measure the fluid thermal conductivity. The
operating principle of the device (based on the line source method) and the measurement
procedure are described in detail in [34]. Oil is poured into a measuring cell with a
cylindrical probe and is thermostated until the thermal conductivity is stabilized for each of
the set temperature values (in the measurement range of up to 150 ◦C). The measurement
process complies with ASTM D5334-14 [32]. To determine the oil volumetric heat capacity
within a given temperature range, they performed specific heat capacity (using DSC
214 Polyma) and density measurements (using “Anton Paar” DMA 4200 density meter),
followed by multiplication of the measurement results.

4. Case Study: Efficiency in Applying Advanced Thermal Petrophysics Methods at
Heavy Oil Field
4.1. Object and Tasks of the Study

The effectiveness of applying new methods of thermal petrophysics is shown by the
example of the Karabikulovskoye high-viscosity oil field located in the NE part of Samara
Region, Russia (Figure 2), the South Tatar oil and gas region of the Volga–Ural oil and gas
province [35].
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schematic geological–lithological cross-section of productive formation along the line I*–I.

The main distinctive features of the field are presented by the terrigenous reservoir
with good filtration properties, shallow reservoir depth (50–200 m), high oil viscosity in
reservoir conditions, low formation pressure, and extremely low gas content (Table 2). The
object of this research was the rocks of the productive formation (U2) of the Ufa stage of
the upper Permian, mainly represented by weakly cemented bituminous sand, and the
surrounding rocks of the Kazan and Ufa stages, represented by gray, dark gray, and brown
clays and often silty, fractured, and dense siltstones and sandstones with clay–carbonate
cement.
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Table 2. General information about the Karabikulovskoye heavy oil field (U2 layer).

Parameter Unit Value

Average depth of formation top m 151
Type of formation - Massive
Type of reservoir - Terrigenous

Average total thickness m 17.6
Porosity factor unit fraction 0.29
Permeability m·km2 0.736
Sand factor unit fraction 0.78

Initial formation temperature ◦C 8
Initial formation pressure MPa 0.72

Reservoir oil viscosity mPa s 27,350
Surface oil viscosity g/cm3 0.96

Formation water viscosity mPa·s 1.41
Surface water density g/cm3 1.00

The development of the field is only possible by thermal methods, such as SAGD.
Development is significantly complicated by the presence of clay bridges and weak consol-
idation due to the extremely shallow depth of the formation. The main binding agent for
oil sand is its high-viscosity oil by itself, which complicates the process of lab core studies.

To provide the THD modeling of the development using the necessary data on the
thermal and thermo–mechanical properties of the Karabikulovskoye field core and fluids,
the following tasks had to be resolved:

• Continuous profiling of the thermal conductivity and volumetric heat capacity of
rocks on the recovered full-sized core (total length of core samples was about 100 m)
with the definition of coefficients for thermal anisotropy and heterogeneity;

• Establishment of relationships between thermal properties and other petrophysical
properties;

• Measurement of the thermal conductivity and volumetric heat capacity of rock and
oil samples in the reservoir temperature range;

• Measurement of the CLTE of rock matrix in the reservoir temperature range;
• Analysis and interpretation of the experimental thermal physical data obtained and

preparation of data for input into the model;
• Evaluation of the application effects of modern thermal petrophysics methods on the

results of THD modeling.

4.2. Collection of Samples

Continuous thermal physical rock profiling was performed on a collection of 183 core
samples of well A and 159 core samples of well B. Immediately prior to profiling, the
full-size core, packed in sealed fiberglass sampling pipes, was sawn jointly with the pipes
along the axis. Profiling was performed on the flat surface of slabbed cores without drying
or any other treatment.

The studied sediments of the Kazan stage are represented by gray and dark gray
clays, often silty and fractured and sometimes calcareous; poorly cemented oil sands of the
Ufa stage are medium–fine-grained and composed of micro-quartzite rocks fragments—
30–35%, effusive rocks; 25–30%, quartz; 15–20%, feldspar; up to 5%. The rock shows
the development of analcime along the edges of effusive rocks in the form of crystals
0.01–0.05 mm in size in amounts of about 10%. Oftentimes, analcime is present in the
intergranular space as fragments (Figure 3).



Geosciences 2021, 11, 203 10 of 28

Geosciences 2021, 11, x FOR PEER REVIEW 10 of 29 
 

 

shows the development of analcime along the edges of effusive rocks in the form of crys-
tals 0.01–0.05 mm in size in amounts of about 10%. Oftentimes, analcime is present in the 
intergranular space as fragments (Figure 3). 

 
Figure 3. Photo of oil sand thin section with quartz rock fragments (1), analcime (2), and effusive rock fragments (3), 
without an analyzer (left) and with an analyzer (right). 

To select cylindrical samples for the special rock studies, the method of drilling out 
samples from full-sized cores during freezing in liquid nitrogen was used. The selection 
of sites for core samples’ drilling-out was based on the results of continuous thermo–phys-
ical profiling using a special method, selecting the least heterogeneous sections with ther-
mal conductivity values covering the entire range of thermal conductivity changes ob-
served in a continuous profile [33]. 

Special thermal physical rock studies were conducted with the drilled-out samples: 
measurement of rock thermal conductivity in 13 cylindrical samples of 50 × 20 mm (eight 
oil sand and five siltstone samples), measurement of rock-specific and volumetric heat 
capacity in 31 samples (27 and 4 samples from the productive reservoir and surroundings, 
respectively), and the measurement of CLTE in 21 cylindrical specimens of 30 × 30 mm. 

The study of oil thermal properties was carried out on two samples obtained from 
portions of oil sand crushed by the centrifugation method. 

4.3. Results of Experimental Studies and Their Analysis 
4.3.1. Continuous Thermal Profiling 

Continuous thermal profiling was performed using the non-contact non-destructive 
optical scanning technique [10], which provided profiles of thermal properties with a spa-
tial resolution of 1 mm for every core sample studied. The average thermal anisotropy 
coefficient was determined for every core sample. The results of determining the set of 
thermal properties under atmospheric conditions are shown on the plates (Figure 4). Table 
3 shows the results of the respective statistical processing for various lithological differ-
ences. There are significant (for some rocks, more than three times) variations in the ther-
mal conductivity as well as significant variations in the volumetric heat capacity along the 
well. 
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To select cylindrical samples for the special rock studies, the method of drilling out
samples from full-sized cores during freezing in liquid nitrogen was used. The selection of
sites for core samples’ drilling-out was based on the results of continuous thermo–physical
profiling using a special method, selecting the least heterogeneous sections with thermal
conductivity values covering the entire range of thermal conductivity changes observed in
a continuous profile [33].

Special thermal physical rock studies were conducted with the drilled-out samples:
measurement of rock thermal conductivity in 13 cylindrical samples of 50 × 20 mm (eight
oil sand and five siltstone samples), measurement of rock-specific and volumetric heat
capacity in 31 samples (27 and 4 samples from the productive reservoir and surroundings,
respectively), and the measurement of CLTE in 21 cylindrical specimens of 30 × 30 mm.

The study of oil thermal properties was carried out on two samples obtained from
portions of oil sand crushed by the centrifugation method.

4.3. Results of Experimental Studies and Their Analysis
4.3.1. Continuous Thermal Profiling

Continuous thermal profiling was performed using the non-contact non-destructive
optical scanning technique [10], which provided profiles of thermal properties with a
spatial resolution of 1 mm for every core sample studied. The average thermal anisotropy
coefficient was determined for every core sample. The results of determining the set
of thermal properties under atmospheric conditions are shown on the plates (Figure 4).
Table 3 shows the results of the respective statistical processing for various lithological
differences. There are significant (for some rocks, more than three times) variations in the
thermal conductivity as well as significant variations in the volumetric heat capacity along
the well.
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Table 3. Statistical characteristics of rock thermal properties experimentally studied.

Lithology (Stage)
Thermal Conductivity

(W·m−1·K−1)
Thermal

Anisotropy
Coefficient K

Thermal Heterogeneity
Factor Cρ

(MJ·m−3·K−1) N
λ‖ λ⊥ β1 β2

Full-Sized (Slabbed) Core

Gray shale, dark gray,
silty, fractured (Kz)

1.82 (0.19) 1.59 (0.28) 1.19 (0.11) 0.42 (0.19) 0.24 (0.10) 2.95 (0.31) 85
1.42–2.31 1.29–2.16 1.02–1.43 0.15–0.96 0.08–0.53 1.99–3.48

Oil sands, poorly
cemented (Uf)

1.44 (0.27) 1.35 (0.19) 1.06 (0.08) 0.40 (0.32) 0.19 (0.13) 2.20 (0.30)
1591.00–2.58 1.01–1.91 1.00–1.32 0.07- 2.85 * 0.06–0.86 1.76–3.16

Siltstone and sandstone,
dense (Uf)

2.16 (0.36) 2.13 (0.41) 1.11 (0.06) 0.58 (0.42) 0.24 (0.18) 2.92 (0.28)
571.48–3.04 1.56–2.68 1.02–1.16 0.10–1.87 0.08–1.06 2.25–3.51

Shale, brown and dark
gray, silty, dense (Uf)

2.10 (0.46) 1.62 (0.28) 1.14 (0.13) 0.55 (0.42) 0.22 (0.14) 2.85 (0.29)
411.52- 3.82 * 1.25–2.06 1.00–1.32 0.10- 2.36 * 0.09–0.71 2.37–3.46

Cylindrical Sample of Size 30 × 30 mm and 50 × 20 mm

Gray shale, dark-gray,
silty, fractured (Kz)

1.34 (0.23) 1.12 (0.37) 1.38 (0.26) 0.36 (0.12) 0.34 (0.15) 2.04 (0.31) 27
0.85–1.96 0.71–1.94 1.00–1.77 0.16–0.65 0.15–0.78 1.61–2.84

Oil sands, poorly
cemented (Uf)

1.20 (0.12) 1.13 (0.11) 1.06 (0.05) 0.19 (0.10) 0.19 (0.08) 2.19 (0.27) 91
1.03–1.95 0.92–1.65 1.00–1.28 0.08–0.73 0.08–0.51 1.71–2.91

Siltstone and sandstone,
dense (Uf)

1.78 (0.37) 1.60 (0.32) 1.09 (0.06) 0.24 (0.14) 0.20 (0.09) 2.02 (0.19) 39
1.16–1.96 0.95–2.25 1.00–1.26 0.10–0.92 0.09–0.47 1.69–2.38

Shale, brown and dark
gray, silty, dense (Uf)

2.05 (0.69) 1.67 (0.35) 1.11 (0.11) 0.31 (0.29) 0.28 (0.31) 2.04 (0.31) 16
1.20–3.86 1.08–2.22 1.00–1.43 0.11–1.24 0.11–1.32 1.65–3.05

* Extremely high values are caused by spotty pyritization of individual samples. Notes: (1) Numerator is the average value with the
standard deviation in parentheses, while the denominator includes the minimum and maximum values; N is the number of studied samples
in the row. (2) Thermal properties in the order of arrangement in Table 3: thermal conductivity along (λ‖) and perpendicular (λ⊥) to the
layers, coefficient of thermal anisotropy (K = λ‖/λ⊥), coefficient of thermal heterogeneity when scanning in parallel (β1) and perpendicular
(β2) to the core axis, and volumetric heat capacity (Cρ). (3) Coefficient of thermal heterogeneity β characterizes the variations in the
thermal conductivity along the scanning line and is evaluated as β = (λmax − λmin) λavg

−1, where λmax, λmin, and λavg are, respectively, the
maximum, minimum, and average values of thermal conductivity for the profile along the scanning line.

The high average values of the thermal heterogeneity coefficient (up to 0.58) show
significant rock heterogeneity at the level of each core sample (see the example in Figure 1),
which indicates the need to evaluate the thermal conductivity taking into account the core
heterogeneity, which is only possible when using the optical scanning method [10].

Relatively high average values of thermal conductivity were observed in Ufa-stage
dense clays and siltstone, which is associated with relatively low values of rock porosity.
The reduced average values of thermal conductivity and the increased values of thermal
anisotropy coefficient of Kazan-stage clays are mainly due to oriented rock fracturing. The
increased values of λ‖—up to 3.82 W·m−1·K−1 for individual samples—are due to the
spotty pyritization of rocks. In general, the following can be said regarding the range of
variations in the thermal conductivity of oil sands under normal conditions:

• It agrees well with the experimental data obtained on several samples of Athabasca
oil sands (Canada) by Cervenan et al. [36] (1.3–2.0 W·m−1·K−1);

• It is lower (due to differences in mineral composition and cementation degree) than the
results obtained with oil-wet samples of polymictic sandstone from the high-viscosity
oil fields of Oman (characterized by an increased quartz content and lower portion of
fragments; see [26]) and quartz sandstones from the Yarega oil field [11];

• It is significantly higher than the range (0.55–1.05 W·m−1·K−1) established by Li-
paev [37] for bituminous sandstones of the Mordovo-Karmalsky bituminous field.

Then, we discuss the difference in the measuring results on a full-size core and drilled-
out cylindrical samples. The average values of the volume thermal capacity of clays,
siltstones, and dense sandstones significantly decreased from 2.85–2.95 MJ·m−3·K−1 to
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2.02–2.04 MJ·m−3·K−1. This was primarily due to changes in the fluid saturation of the
rocks. A decrease in the thermal conductivity of Kazan-stage clays by approximately 40%
(in contrast to the more compacted Ufa stage clays) indicates the development of fracturing
in the samples of these rocks during drilling. The degree of oil sand saturation during
drilling also changes, and this reflects the drop in the thermal conductivity of these samples
by ~20%. All of these changes in properties, the registration of which became possible due
to the use of the optical scanning method, must be taken into account when forming a
database of initial data on the thermal properties necessary for THD modeling.

4.3.2. Correlations with Other Petrophysical Properties

To perform a joint analysis of thermal core profiling and logging data, the core column
depths were linked to the logging depths, and different scale data were brought to the same
spatial resolution (more detailed than the logging data, the results of thermal properties
measurements were averaged in a moving window; see [3] for details). The core–log depth
adjustment was carried out by comparing the results of hydrogen content (IH) determined
by radioactive logging with the results of the measurement of the parallel component of
thermal conductivity (λ hereafter, we will omit the lower index “‖” for simplicity) in the
core. Thermal conductivity data were first processed with a 40-cm moving window to
obtain a vertical spatial resolution similar to the resolution of radioactive logging (about
40 cm). The error in determining IH was ±4–10% (the range was determined by the
hardware used and the porosity variations in this section); therefore, despite the significant
correlation “λ−IH”, there were cases of inconsistency in variations (Figure 5a). The core–log
depth adjustment was subsequently confirmed by the results of gamma ray spectrometry
on the core samples when compared with the gamma logging data in well B.
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The regression equations for each lithological difference were established iteratively:
unknown coefficients of the equation were calculated, the confidence interval (95%) was
determined, points falling out of this interval were excluded, and the procedure was
repeated until all of the points were included in the confidence interval. As a result, it was
found that for rocks of the productive layer, IH = 53.44 − 10.55 λ (R = 0.81; RMSE = 2.6);
and for clays, IH = 67.35 − 17.22 λ (R = 0.79; RMSE = 3.2). Here, R is the correlation
coefficient and RMSE is the root mean square error. Figure 6b shows the cross-plot of the
thermal conductivity along the strata (after reducing to sonic logging spatial resolution)
and the longitudinal wave velocity for well A. Three data groups corresponding to different
lithological differences are clearly differentiated. Of particular interest are the data excluded
from the analysis according to the approach described above. These data correspond to
either pyritization intervals (in this case, a local increase in λ is observed; see, e.g., the
interval of 193.8–194.1 m in well A), fractured intervals during drilling (in this case, λ
is underestimated; see, e.g., the interval of 157.2–158 m in well A), or intervals with
insufficiently conditioned logging data (wall erosion, thin layering, tightening, etc.). We do
not provide all the possibilities for the joint analysis of the results with the thermal profiling
of well survey data, especially since most of the possibilities are described in detail in the
paper by Popov et al. [3].

The correlation between thermal conductivity and porosity allows us to determine
the matrix value of thermal conductivity (λs, where index s means solid) required for THD
modeling (see Sections 2.1 and 5). The NMR method was used to determine the porosity
of samples, since the extraction and drying of poorly consolidated samples led to their
partial destruction. For rocks of the Karabikulovskoye field, the regression equation has
the following form:

λ = 1.78 exp (−1.39φ) W·m−1·K−1 (R2 = 0.64; RMSE = 0.08) (1)

where φ is the porosity, and the pre-exponential factor 1.78 W·m−1·K−1 is λs (it is in the
range of 1.68–1.87 W·m−1·K−1 with a probability of 0.95). Here, R2 is the coefficient of
determination. The relationship between conductivity and porosity for the Karabakhskoye
field differs significantly from the relationship for the Mordovo-Karmalsky (λ = 2.64 −
0.055φ, W·m−1·K−1, [37]) and Yaregskoye (λ = 6.00 exp (−2.82φ), W·m−1·K−1, [11]) oil
fields. The reduced value of λs in comparison with our previously established results
(2.7–2.9 W·m−1·K−1 for cemented polymictic sandstones) is probably due to two factors:
firstly, the high content (from 10% to 35% according to additional X-ray studies and
the analysis of transparent sections; see Figure 3) of low heat-conducting analcime with
a thermal conductivity of 1.27 W·m−1·K−1 according to Horai [38]; and secondly, the
difference in intergranular contacts and grain sizes leading to the case where the λs of rocks
with the same mineral composition may differ significantly. Even in monomictic quartz
sandstones, λs has a significant range (5.25–6.10 W·m−1·K−1) due to differences in the
granulometric composition and intergranular contacts (point, long, convex–concave, etc.).
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4.3.3. Oil Thermal Conductivity and Heat Capacity at Formation Temperature

The results of measuring the oil thermal conductivity λoil within the range from 30 to
70 ◦C with subsequent extrapolation to the temperature range from 8 to 180 ◦C are shown
in Figure 6a. The experimental results are in good correlation with the calculation results
based on the linear dependence obtained from processing data on 41 oil samples from
various fields by Grigoriev et al. [39]. Notably, according to [39], the thermal conductivity
of oil at 20 ◦C, λ20, can be calculated using the oil pour point, whereas we used the
experimental values of λ20.

The discrepancy between the results of the experiment in the Karabikulovskoye field
oil samples and those of Smith [40] and Shulman [41] is less than 2%. Cragoe’s results [42],
derived from experimental data with 18 different types of oil and often used in practice
(see, e.g., [5]), demonstrate a similar decrease in thermal conductivity with temperature
when the λoil values are systematically underestimated by 13%. Note that Figure 6a shows
the formula from Cragoe’s work after converting the values to the SI system. The degree
of decrease in λoil with temperature, which is consistent with the results of [39,40,42], is
approximately 1.8 times lower than the value obtained by Wiktorski et al. [43]. When
calculating λoil using the known formulas, we used, where necessary, the experimentally
obtained temperature dependence of oil density ρoil ((T) =−6.85× 10−4 T + 0.971, R = 0.99)
and the relative oil density ρT * (ρ20;4 * means the ratio of oil density at 20 ◦C and the
density of formation water at 4 ◦C; ρ15 * means the ratio of oil density at 15 ◦C and density
of formation water at 15 ◦C).

The averaged results of two measurements (Figure 6b) of oil-specific heat capacity Coil
in the range from 60 to 145 ◦C are in very good agreement (less than 1.5% discrepancy) with
the results of the calculations using the equation obtained from the analysis of 13 different
heavy oils and bitumen ([5] with reference to Cassis et al. [44]); with the experimental results
of Smith-Magowan et al. [45], obtained with four samples of bitumen from Athabasca
sands; and with Cragoe’s formula [42], obtained from the analysis of experimental data on
30 oil samples with a relative density in the range of 0.75–0.96.

The temperature dependence of the volumetric heat capacity Cρoil(T) of the Kara-
bikulovskoye oil field (Figure 6c) was determined by the product of experimentally deter-
mined Coil(T) and ρoil(T). Comparison with the results obtained on the basis of published
data on Coil(T) showed that the smallest discrepancy (less than 1.5%) was observed with
the calculations based on Butler’s formula [5].

According to the conducted studies, the thermal conductivity of oil decreases in the
temperature range from 8 to 180 ◦C by 15%, and the volumetric heat capacity increases by
18%, which is generally consistent with the reference data on the dependence of oil thermal
properties on temperature (see Figure 6, where the temperature in all equations is given
in ◦C).

4.3.4. Thermal Conductivity of Rock at Formation Temperature

The results of determining the thermal conductivity of the Karabikulovskoye field
rock in an “as-is” state (without pore fluid extraction) in the temperature range from 8
to 180 ◦C are shown in Figure 7. The results vary widely for both oil sands (from 1.06
to 1.46 W·m−1·K−1 with the exception of the values for sample 8, which are 30% higher
than the values of the other samples due to pyritization; Figure 7a) and for siltstones
(1.3–1.98 W·m−1·K−1; Figure 7b). Similar variations in the experimental data were also
noted by Cervenan et al. [36] and Karim and Hanafi [46] and can be explained by many
factors: differences in the porosity of samples and granulometric composition, saturation
with bitumen and water, and differences in the degree of cementation.
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Comparisons of the established range of absolute thermal conductivity values and
published data have shown the following regarding the results for the oil sands of the
Karabikulovskoye field:

• They are in good agreement with experimental results from Athabasca oil sands [36,46,47];
• They are approximately 1.5 times lower than the λ of medium-rich (12% bitumen

content) medium-grade Athabasca oil sand [48], 1.6 times lower than the λ of Boise
sandstone with a porosity of 29% saturated by silicon oil [49], and 2.5 times lower than
the λ obtained by Alishaev et al. [50] with oil-saturated, moderately grained, “weakly
cemented sandstone” (Solonchak, Dagestan Republic, Russia) with a porosity of 13%;

• They are approximately 2–3 times higher than the values (0.395–0.580 W·m−1·K−1)
obtained by Lipaev and Bezrukov [51] with samples of highly porous, finely grained
bituminous sands of the Ufa stage from the fields of Tatarstan (underestimated λ

values of rocks with similar porosity, burial time, and depth are probably associated
with methodological shortcomings of the investigation method used in [51]).

Comparison with the data in the paper of Ramazanova and Emirov [52] is not shown
in Figure 7, because dried samples of fine-grained sandstone characterized by a much lower
porosity (by five times; in our case, the average porosity of samples studied at elevated
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temperature was 29%) were studied in [52]. The same applies for comparison with the
paper of Abdulagatova et al. [53], which was devoted to the effect of temperature and
pressure on the thermal conductivity of dry sandstone having a porosity of 13%.

According to the conducted research, when the temperature increases from 8 to 180 ◦C,
the thermal conductivity of the Karabikulovskoye field oil sands decreases by 11% (red
line in Figure 7a). A similar decrease of 8% in thermal conductivity with an increase in
temperature from room temperature to 150 ◦C shows the following:

• Consistency with the experimental results [50] obtained with oil-saturated, moderately
grained, poorly cemented sandstone;

• Results that are 1.5 times lower than the experimental results [48] obtained with a
single sample of Athabasca bituminous sandstone (green asterisks in Figure 7a);

• Results that are 3.5 times lower than the experimental results [26] obtained with
oil-saturated samples from heavy oil fields in Oman;

• Results that are four times lower than the experimental results [46] obtained with a
sample of Athabasca sandstone with 18% bitumen content (black curve in Figure 7a).

The observed decrease in thermal conductivity is radically different from the exper-
imental data [51], which show an increase in thermal conductivity with an increase in
temperature in the range from 25 to 225 ◦C.

The established temperature dependence of the thermal conductivity of oil sands
was also compared with the calculations in some published reports based on the exper-
imentally determined average value of thermal conductivity under normal conditions
(1.29 W·m−1·K−1). The formula of Vosteen and Schellschmidt [54] for sedimentary rocks,
which is often referred to in various studies, shows a slower (by approximately 1.6 times)
rate of decrease in thermal conductivity with temperature in the case of oil sands. How-
ever, it is worth noting that the work [54] is based on experimental results obtained with
dry rocks. A fundamental difference from the experimental data obtained for oil sands
is observed when using the formulas of Anand et al. [49], Kutas and Gordienko [55],
and Sekiguchi [56]. In contrast to the experimentally demonstrated decrease, the λ (T)
calculated using these formulas increases with increasing temperature if λ20 is lower
than 1.84 W·m−1·K−1 for the formula of Sekiguchi [56] or lower than 1.38 W·m−1·K−1

for the other formulas [48,53]. Comparison with the formula of Tikhomirov [57], which
is often used in practice, is unacceptable in our case, since the formula is derived for
water-saturated rocks. The application of the simplified Tikhomirov formula given by
Somerton [58] demonstrates an increase in the value of rock thermal conductivity with
increasing temperature.

When the temperature increases from 8 to 180 ◦C, the thermal conductivity of Kara-
bikulovskoye field siltstone decreases by 19% (the brown line in Figure 7b). The cal-
culation results for siltstone thermal conductivity using the formula of Vosteen and
Schellschmidt [54], using the experimentally determined average value of λ20 of five
samples (1.804 W·m−1·K−1), differ slightly from the experimental dependence established
by us (the discrepancy in the range of 8–180 ◦C does not exceed 1.5%). The formula of
Kutas and Gordienko [55] shows a slower (approximately by 1.6 times) rate of decrease
in thermal conductivity with increasing temperature. The use of Sekiguchi’s formula [56]
leads to a slight increase in λ (T) with increasing temperature, which does not agree with
our experimental results.

For convenience in analyzing data on the temperature dependence of thermal conduc-
tivity in the studied rock samples and their subsequent use, Figure 8a shows the generalized
measurement results normalized to λ20.
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4.3.5. Heat Capacity of Rocks at Formation Temperature

The results of determining the specific and volumetric heat capacity in the temperature
range from 8 to 180 ◦C are shown in Figure 8b,c.

The range in specific heat capacity Cbulk variations (red and blue curves and cor-
responding markers in Figure 8b) is in good agreement with the experimental data of
Cervenan et al. [36] (0.9–1.02 J·g−1·K−1 in the range of 23–74 ◦C), as well as with the
experimental results of Scott and Seto [48], obtained with one sample, and the results of
Smith-Magowan et al. [45], obtained with 18 samples of Athabasca oil sands (Figure 8b).
The obtained values exceed the values of the published temperature dependence for the
specific heat capacity of the Cs(T) matrix of sandstones (dotted curves and solid black curve
in Figure 8b) due to the presence of bituminous oil in pores, the specific heat of which is
approximately 2.5 times higher than the specific heat of rocks’ solid part (see the results
in Figures 6b and 8b). For comparison, Figure 8b shows the temperature dependences of
Cs(T):

• The dependence of Smith-Magowan et al. [45], obtained on seven finely grained
samples of Athabasca oil sands (Canada) in the range of 50–300 ◦C;

• The dependence of Somerton [58], obtained on two sandstone samples (the lower
temperature limit is limited to 40 ◦C due to the lower reliability of results in this
range);

• The dependence for sandstones given by Butler [5] with reference to Cassis et al. [44].

The comparison of our results with results on highly porous, finely grained, bitumi-
nous sands of the Ufa stage at Tatarstan fields [51] showed that the Cbulk of oil sands of the
Karabikulovskoye field is much higher (by 10–30% depending on the temperature), and
the rate of growth in Cbulk with increasing temperature is approximately 1.5 times lower.

The experimental formulas of volumetric heat capacity Cρbulk obtained by the product
of the specific heat capacity (Cbulk) and density (ρbulk) are shown in Figure 8c as solid lines.
The average density of the samples studied was 2.40 g/cm3 for clays and 1.99 g/cm3 for
sandstones. When the temperature increases from 8 to 180 ◦C, the volumetric heat capacity
of oil sands increases by 27%. The observed range of variations is in good agreement
with the experimental data of Cervenan et al. [36] (1.7–2.27 MJ·m−3·K−1 in the range of
23–74 ◦C) and the data of Scott and Seto [48] obtained with several samples of Athabasca
bituminous sands (green asterisks in Figure 8c). The established degree of change in
Cρbulk with increasing temperature is 1.35 times higher than the corresponding value for
oil-saturated sandstone samples from heavy oil fields in Oman [26].

The temperature dependence Cρbulk(T) for oil sands is in excellent agreement with
the results of calculations (dashed lines in Figure 8c; the average discrepancy between the
experimental and calculated data is less than 1%) performed on the basis of the obtained
experimental data and the temperature dependences Cs(T) given by Somerton [58] and
Smith-Magowan et al. [45]:

Cρbulk= Cs(T)ρs(T)(1−φ)+Cρo(T)φ (2)

where φ is the average value of porosity of the samples studied in this experiment (27.8%),
Cρo(T) is the experimentally obtained dependence of volumetric heat capacity on oil
temperature (Section 4.3.3, Figure 6c), and ρs(T) is the sandstone matrix density [58]:

ρs(T) =
ρs(20)

1 + 0.5·10−4(T− 20)
(3)

Here, instead of the value ρs (20) = 2.65 g/cm3 proposed by Somerton [58], we used
the value of 2.39 g/cm3 obtained from the analysis of our experimental data. Note that the
specified temperature dependence of the density could be ignored due to a negligible (less
than 1%) change in density within the considered temperature range.
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4.3.6. CLTE of Rocks at Formation Temperature

The results of determining the CLTE of rocks from the Karabikulovskoye field in
the temperature range from 8 to 180 ◦C are shown in Figure 9. Experimental data were
obtained on 15 samples in an “as-is” state (without pore fluid extraction). The CLTE for
three of these 15 samples was measured for the second time (indicated in Figure 9 as the
2nd heating cycle) without removing the samples from the unit. For another six samples,
the CLTE was measured in a dried state of the samples after pore fluid extraction.
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At the initial stage (up to 50 ◦C) of the first heating, the CLTE values of non-extracted
samples decreased. This behavior is consistent with the results of published studies [59–62]
and is associated with the presence of pore fluid, which is a binding component for poorly
consolidated sand. When heated, the properties of pore fluid change; part of the fluid flows
out and/or evaporates, which leads to the shrinkage and displacement of individual rock
particles and restructuring as a result of reducing the shear resistance at the intergranular
contacts. In this case, the instrument detects a smaller elongation due to heating and
consequently, a smaller CLTE. With further temperature growth, the CLTE begins to
increase naturally, corresponding to the results of Agar et al. [61] obtained on samples of
Athabasca bituminous sand (after reducing the volumetric coefficient to a linear one as
divided by three).

Repeated measurements of a non-extracted sample without removing the sample
from the device or measurements on the extracted samples show a lower rate of increase in
CLTE with increasing temperature (the CLTE values increase by 68% when the temperature
increases), while the CLTE values themselves are higher compared to the first measurement
or measurement on non-extracted samples. It is consistent with the results of previous
studies by Agar et al. [61] and Hartlieb et al. [62].

The measured range of CLTE values of the extracted dried (oven-dried) samples
is typical for clastic rocks and is in good agreement with published data, usually given
as a single number for a fixed temperature range: 1.0 × 10−5 ◦C−1 for sandstone in
the temperature range of 20–100 ◦C [63], 10.8 × 10−6 ◦C−1 for fine-grained sandstone
in the range of 20–80 ◦C [64], and 13 × 10−6 ◦C−1 for Berea sandstone in the range of
100–200 ◦C [58]. Figure 9 also shows the range of CLTE variations measured on 16 samples
of quartz–feldspar sandstone of the Tomsk Region [65]. Note that the results obtained
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with the samples of the Karabikulovskoye field should not completely coincide with those
published for a number of reasons, including differences in granular composition [64], type
and degree of cementation, and mineral composition [62,63,65].

5. Effect of Application of Advanced Thermal Petrophysics Methods on the Results of
THD Modeling

An analysis of the impact of modern methods of the thermal petrophysics on the
results of THD modeling of oil recovery at the Karabikulovskoye field was carried out
using a commercial simulator. A model of the production process SAGD was created for a
section of about 1 km2, including thick sections (more than 10 m) of pay zone. The model
included 12 pairs of horizontal injection and production wells. The distance between the
horizontal sections of the wells was 100 m and that between the separate pairs of wells was
75–100 m. Due to the high filtration resistance, the reservoir pre-heating process in wells
was simulated for 120 days prior to the start of the steam injection. Fixed injection rates
(150 t/d) were set as boundary conditions for the wells.

For the analysis of simulation results and publishing, we slightly simplified the
calculations in the following way. First, the surrounding rocks were not explicitly modeled,
and heat loss outside the reservoir was accounted for using the solution of Vinsome and
Westerveld [19]. Second, the anisotropy of thermal conductivity was not taken into account.
Third, the reservoir included only one litho-physical type—oil sands. The analysis is based
upon the comparison of two calculation results—options A and B—that differ only in the
initial data on thermal properties (see Table 4 and Section 5.1). The correction of thermal
properties for pressure was not performed because firstly, simulator developers do not
provide the corresponding option, and secondly, the pressures in this case were small, and
therefore, the correction would be insignificant (see, e.g., [65]).

Table 4. Input datasets on rock thermal properties for modeling.

Element of the Model Parameter Legend Unit
Accepted Value of Parameters

Dataset A Dataset B

Reservoir rocks

Thermal conductivity λs W·m−1·K−1 7.03 1.65–9.8 × 10−4 T *

Volumetric heat capacity Cρs MJ·m−3·K−1 2.32 1.83 + 3.3 × 10−3 T *

CLTE αs 10−6 K−1 3.93 6.6 + 0.027 T

Surrounding rocks
Thermal conductivity λbulk W·m−1·K−1 1.7 1.12 (overburden)

1.67 (underburden)

Volumetric heat capacity Cρbulk MJ·m−3·K−1 2.32 2.03

Oil
Thermal conductivity λoil W·m−1·K−1 0.093 0.141–8.1 × 10−5 T

Specific heat capacity Coil J·g−1·K−1 2.09 1.625 + 4.4 × 10−3

T − 6 × 10−6 T2

* Experimental data after adaptation to stimulator capabilities (see explanations in text).

Note that the simulator used here is widely used in the world and has extensive
capabilities (relative to the vast majority of other THD simulators) for integrating data
on thermal properties into a model. We avoided naming the software used as similar
shortcomings in setting the thermal properties of rocks in a model are valid for any other
simulator, and similar conclusions after modeling can be reached (see Section 2). A clear
example of the fact that the input of properly defined values of λs into a simulator does
not guarantee obtaining bulk values in the model that are close to those experimentally
determined is shown in Figure 10. For the average porosity value (28%), the discrepancy in
bulk λ calculated using different options is significant (up to 100%) and calculated values
do not fit the results of the experiment (the difference is 8%, 28%, and 42% for the weighted
arithmetic, geometric, and Krupiczka [66] formulas, respectively). These results clearly
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demonstrate the necessity of the procedure proposed in Section 5.1 for adapting the results
of experimental studies to the capabilities of a simulator (until the corresponding simulator
option is improved).
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5.1. Two Variants of Input Data on Thermal Properties

In dataset A, the thermal properties (Table 4) were prepared by engaged specialists
based on the analysis of published data (primarily the book by Butler [5]), data taken from
other heavy oil fields, and the “default” data from the simulator. In particular, the thermal
conductivity of the sandstone matrix (7.03 W·m−1·K−1) was calculated using the volumetric
fraction of quartz (assumed to be 0.86) using the well-known formula of Somerton [58]. For
the surrounding rocks, the thermal conductivity (1.7 W·m−1·K−1) was chosen based on the
properties of wet shale. The bulk heat capacity of the oil sand matrix (2.32 MJ·m−3·K−1)
was calculated using the specific thermal capacity formula of Cassis et al. [45] and averaged
over the given temperature range. For the thermal conductivity of oil, the value was taken
as 0.093 W·m−1·K−1. The value of the specific thermal capacity of oil (2.09 J·g−1·K−1) was
taken from the simulator database, and the remaining values were taken from data from
other high-viscosity oil fields in Russia. No recommendation about the choice of mixing
rule for thermal conductivity was given.

We prepared dataset B based on the analysis of the experimental data obtained, taking
into account the features of the simulator applied. The temperature dependence of the
reservoir rock matrix thermal conductivity (Table 4) was calculated according to a specially
developed procedure based on the results of the above-described experimental studies
(the temperature dependence in the range of 8–180 ◦C, results of thermal core profiling,
and porosity determination) and available simulator options for the integration of thermal
conductivity data into the model. The procedure included (1) calculation of effective
thermal conductivity values using all incorporated mixing rules in the characteristic range
of porosity variations for the reservoir (see Figure 10) and (2) selecting the simulator option
and determining the λs in such a way so as to ensure minimal discrepancy between the
calculated and experimentally determined bulk thermal conductivity values. We emphasize
that the value of the matrix thermal conductivity determined in this procedure will differ
from the actual value, which is caused by the limited capabilities of the simulator for the
integration of thermal conductivity data into a model. The temperature dependence of
the volumetric reservoir rock thermal capacity was calculated using experimental data
on the porosity and volumetric heat capacity of oil (Figure 6c) and oil sands (Figure 8c).
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Note that the simulator does not allow for setting a nonlinear temperature dependence of
rock matrix volumetric heat capacity, so the established relationship was approximated
by a linear dependence. The values of the thermal conductivity of the overburden and
underburden rocks (1.12 and 1.67 W·m−1·K−1, respectively) were selected in accordance
with the experimental data in Table 3 (cylindrical samples). Note that the perpendicular
component of effective thermal conductivity is set, since the contribution of this component
is responsible for heat leakage from the reservoir. The simulator’s option for accounting for
heat loss to the surroundings is based on the solution of Vinsome and Westerveld [19] and
does not imply the use of the established temperature dependence of thermal properties
but does imply the use of bulk thermal properties. As a result, a constant value of λbulk
and Cρbulk (2.03 MJ·m−3·K−1) was set according to Table 3 (the average Cρbulk value of
overburden and underburden rocks was chosen). Generally speaking, in the solution [19],
the heat loss to the surroundings is directly proportional to the thermal inertia (the square
root of the product λbulk and Cρbulk of the surroundings).

From Table 4, it can be seen that in dataset A, compared to dataset B, that thermal
properties are taken without accounting for temperature dependence, data on λs are
overstated by ~4 times on average, data on Cρs are overstated by 7% on average, data on
λbulk of overburden are overstated by 50%, data on Cρbulk are overstated by 14%, data on
λoil are underestimated by 30% on average, data on Coil are overstated by 6% on average,
and data on CLTE are underestimated by two times on average.

5.2. Simulation Results and Their Analysis

The analysis was based on the assessment of changes in the results of determining
the main parameters of development—cumulative oil production (COP) and cumulative
steam/oil ratio (CSOR)—depending on the time for two datasets (A and B). Both parame-
ters are important because they are used to evaluate the revenue and costs when calculating
economic indicators. Note that we did not conduct a caprock integrity analysis, which is
undoubtedly a very important task (a violation of integrity caused by an incorrect selec-
tion of the recovery method or its technological parameters has disastrous consequences
for the corresponding sector of the field). Comprehensive analysis of the consequences
remains outside the scope of this study because (1) it depends on the selected method of
coupling the hydrodynamic and geomechanical solutions (in particular, on how exactly the
porosity depends on pressure, temperature, bulk deformation, or stress), and (2) it should
involve specialized geomechanical software, e.g., ABAQUS of Dassault Systems, VISAGE
of Schlumberger, FLAC of Itasca Consulting Group, etc.; see examples in [67–69].

The results of comparing the main parameters of the development efficiency are shown
in Figure 11. Overestimation of λs in option A leads, on the one hand, to an underestimation
of the maximum temperature near the steam chamber and, on the other hand, to an overes-
timation of the heated volume (conductive heat exchange is the main mechanism for heat
transfer near the boundaries of the steam chamber) and, as a result, to an overestimation of
COP compared to option B. This overestimation is partially compensated by an underesti-
mation of λoil and an overestimation of the volumetric heat capacity of the rock matrix and
oil (see the corresponding studies in [1]). Overestimation of Cρs leads to an overestimation
of energy for heating the reservoir and consequently, to an overestimation of the CSOR.
The overestimation of the thermal inertia of the surroundings leads to an overestimation of
heat loss from the reservoir and consequently, to an additional overestimation of CSOR.
The level of uncertainty influence in rock thermal properties changes over time and leads
to significant errors in the prediction of key parameters of development (up to 20% in the
COP and up to 52% in the CSOR). The error in COP is lower than the error in CSOR, as
the overestimation of every parameter (the thermal inertia of the surroundings governing
heat loss from the reservoir, the volumetric heat capacity of reservoir rocks governing the
energy for the reservoir heating, and the thermal conductivity of reservoir rocks governing
the size and temperature of a heated zone near the steam chamber) results in increasing
the CSOR in option A compared to option B. Simultaneously, the error in COP caused
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by thermal conductivity overestimation is partially compensated by the overestimation
of the volumetric heat capacity, as more energy is needed to heat the rocks to the same
temperature (a detailed study of this effect can be found in [1]).
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6. Conclusions

In order to provide the data necessary for thermo–hydrodynamic (THD) modeling
of Karabikulovskoye high-viscosity oil field development using data on rock thermal
properties, we studied the core material from two wells of the oil field using advanced
methods of thermal petrophysics.

The following results were obtained from the complex experimental studies of the
thermal properties conducted on 342 full-size core samples at room temperature and on 65
specially prepared rock samples and two oil samples at elevated temperatures:

• Average values and the range of variations in properties for each lithological difference
at room temperature (variations in thermal properties were significant and reached
several hundred percent);

• Temperature dependence of thermal conductivity and the specific and volumetric
heat capacity of rocks and oil in the temperature range of 8–180 ◦C (with temperature
growth, the thermal conductivity of oil sand decreased by 11%; siltstones—by 19%; the
specific and volumetric heat capacity of oil sands increased by 27%; and the thermal
conductivity of oil decreased by 15%, while the volumetric heat capacity increased by
18%);

• Temperature dependence of rock CLTE in the temperature range of 8–180 ◦C (CLTE
values increased by 68% with temperature growth).

It was established that the capabilities for integrating the data on thermal properties
into the THD model built in any modern simulator are limited, are outdated in some
aspects, and require revision. This leads to additional uncertainty in the effective (bulk)
values of thermal properties used in numerical calculations.

The obtained experimental data were compared with the results of other field studies
and were used for THD modeling of Karabikulovskoye field sector development with
SAGD (after a special procedure of adaptation to the features of the simulator used). It
was shown that, in view of the features of modern simulators for including data on rock
thermal properties, the use of advanced methods of thermal petrophysics can increase the
reliability of key parameters’ forecasting for the development of high-viscosity oil fields by
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tens of percent. In the considered sector of the Karabikulovskoye field, the cumulative oil
production is specified by up to 20%, and the cumulative steam/oil ratio—by up to 52%.

The improvement of modern THD simulators in terms of providing the input of exper-
imental data to eliminate the lag behind the modern capabilities of thermal petrophysics
will lead to an increase in the reliability of simulation results.
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