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Abstract: Data gaussianity is an important tool in spatial statistical modeling as well as in experi-
mental data analysis. Usually field and experimental observation data deviate significantly from the
normal distribution. This work presents alternative methods for data transformation and revisits the
applicability of a modified version of the well-known Box-Cox technique. The recently proposed
method has the significant advantage of transforming negative sign (fluctuations) data in advance to
positive sign ones. Fluctuations derived from data detrending cannot be transformed using common
methods. Therefore, the Modified Box-Cox technique provides a reliable solution. The method was
tested in average rainfall data and detrended rainfall data (fluctuations), in groundwater level data,
in Total Organic Carbon wt% residuals and using random number generator simulating potential
experimental results. It was found that the Modified Box-Cox technique competes successfully in
data transformation. On the other hand, it improved significantly the normalization of negative sign
data or fluctuations. The coding of the method is presented by means of a Graphical User Interface
format in MATLAB environment for reproduction of the results and public access.

Keywords: Box-Cox; geostatistics; kriging; gaussian transformation; rainfall; groundwater; spatial
analysis; fluctuations

1. Introduction

Geostatistics in terms of kriging methodology is a scientific discipline with wide
application field. In the area of water resources, it has been successfully applied to ex-
press the spatial variability of two very important hydro-geological variables such as
groundwater and rainfall, e.g., [1–3]. A common problem with such observation data is
the non-Gaussianity of them. A normal distribution is usually desirable in linear geostatis-
tics [4]. If data are skewed the kriging estimator is affected. Data with important deviation
from normality can be more suitable for geostatistical analysis after an appropriate trans-
formation. While normality may not be strictly required, outliers and serious violations of
skewness and kurtosis, can affect the variogram structure and the fitting process, and thus,
the kriging results [5,6]. A gaussian distribution provides more stable variograms [7–9].

Ordinary kriging is applied very often for spatial analysis of variable sources of data
and it is well-known to be optimal when the data have a multivariate normal distribution.
Kriging represents variability only up to the second order moment (covariance). Data trans-
formation then may be necessary to normalize the data distribution and reduce the effect
of outliers, improving also the sample’s stationarity [7,10]. Thus, the estimation process
is applied in the gaussian domain which allows to provide unbiased estimates at non-
sampled locations before back-transforming to the original scale [10,11]. Re-transformation
is a major limitation of such methods. Therefore, in this work, the proposed methodology
assures the successful re-transformation to the original data scale. There is always the
potential of application of a non-linear kriging method [12]. However, a successful data
transformation to normal distribution and the application of a linear geostatistical method
is a more straightforward solution in terms of methodological steps.
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The proposed methodology is based on the well-known Box-Cox method, but can be
applied on fluctuations as well. It has been successfully presented and applied on ground-
water data in a previous work [13], but herein the complete framework of the method, its
applicability to variable datasets and the code in terms of a MATLAB function is presented
using a Graphical User Interface (GUI) for the parameters’ selection. The aim of this
technical paper is the introduction of the method for general application on data analysis
and modeling topics. A successful data transformation close to gaussian distribution is
useful for different scientific disciplines to improve modeling accuracy [14–17].

2. Methodology

Three data sets were used to assess the credibility of the proposed method. The
first one consisted of cumulative annual rainfall measurements processed from historical
averages of 100 monitoring stations unevenly spatially distributed at the island of Crete,
Greece (Figure 1). The dataset was processed for the purpose of this work, so specific details
are presented. The range of rainfall values varies from 316.4 mm to 2015.23 mm with a
standard deviation of 312.35 mm. Detrending of the data using the elevation of each station
was also applied a priori in order to work with the fluctuations and test the method for
negative sign values as well. It has to be noted that detrending of rainfall data with auxiliary
correlated variables, i.e., elevation is a common practice in geostatistics to approximate non-
stationarity of the data [18–20]. Herein the Pearson correlation coefficient is equal to 0.57
with a p-value of < 0.00001 meaning that the result is significant at p < 0.01. On the other
hand, rainfall spatial representation depends on other physical factors as well, e.g., distance
from the sea, exposure of the slopes, distribution (coordinates) of monitoring locations.
Such information, if available, should be also considered in rainfall data detrending,
to account for an integrated approach to approximate the rainfall spatial variability. In
addition, the temporal scale and the time period of available data is another important factor
that affects the dynamic spatial representation of rainfall distribution [21–27]. Depending
on the case and time scale, appropriate detrending and data transformation should apply
before geostatistical analysis with kriging.
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Figure 1. Spatial distribution of the rainfall stations at the island of Crete, Greece.

The other two datasets consisted of groundwater level data in the area of Crete, Greece,
available online by the Special Water Secretariat of Greece [28] and Total Organic Carbon
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wt% data from source rock samples available online from the United States Geological
Survey (USGS) [29]. The first dataset includes values below sea level surface (negative
sign), while the latter was also detrended and accounts for negative sign values analysis
as well.

Well-known statistical metrics that certify data gaussianity are kurtosis k̂z and skew-
ness ŝz coefficients (1), (2). The kurtosis of normal distribution is equal to 3 and the
skewness equal to 0:

k̂z =

1
N

N
∑

i=1
(zi − m̂z)

4

σ̂4
z

(1)

ŝz =

1
N

N
∑

i=1
(zi − m̂z)

3

σ̂3
z

(2)

where z is the sample; zi is the sample variable i = 1 . . . N; m̂z the sample mean; σ̂z is
standard deviation and N is the number of observations.

The most well-known methods for gaussian data transformation and the correspond-
ing advantages and disadvantages are presented in the Table 1. The main limitation of
these methodologies is their applicability to negative sign data. The cube root only can be
applied to negative data but it does not provide, in principle, effective transformations [30].

Table 1. Common transformation methods.

Method Advantages Disadvantages

Log
Right skewed data,

log10(x) is especially good at handling
higher order powers of 10

Zero values
Negative values

Square Root Right skewed data Negative values

Square Left skewed data Negative values

Cube Root Right skewed data
Negative values

Not as effective at
normalizing as log

transform

1/x Making small values bigger and big values
smaller

Zero values
Negative values

Another technique that considers negative sign data transformation is the z-score
transformation. However, in z-score, the transformed dataset is actually standardized with
mean 0 and standard deviation 1, but retains the shape properties of the original dataset
(same skewness and kurtosis). The aforementioned properties are an important reason for
the application and development of non-linear techniques that could also process negative
sign data [31].

A non-linear approach that has been widely used to transform environmental data
close to gaussian distributions is the Box-Cox (BC) method [32]. The transformation
function accounts for only positive data values and is defined in terms of the Equation (3).

y := gBC(z; k) =

{
(zk−1)

k , k 6= 0
log(z), k = 0

(3)

Given the vector of data observations zT = (z1, . . . , zN), the optimal value of the
power exponent k, which leads to the best agreement of yT = (gk(z1), . . . , gk(zN)), with the
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gaussian distribution, can be determined by means of the maximum likelihood estimation
method maximizing the logarithm of the likelihood function:

f (z; k) = −N
2

ln

[
N

∑
i=1

(gBC(zi; k)− gBC(z; k))2

N

]
+ (k− 1)

N

∑
i=1

ln(zi) (4)

where gBC(z; k) = 1
N

[
N
∑

i=1
gBC(zi; k)

]
is the arithmetic mean of the transformed data whilst

the sum of squares
[

N
∑

i=1

(gBC(zi ;k)−gBC(zi ;k))
2

N

]
denotes the transformed data variance.

It has to be noted that BC has been designed to process non-negative data and is
greater than 0 [33]. This limitation can be bypassed by adding a constant to all data to
become positive before transformation. In practice, often a small value such as a 0.5 or 1
is added. However, this depends on the scale of the data. Especially in detrended data
handling, there are responses with high and variable negative values. Therefore, the a
priori addition of a constant is a complex process and it is better to be estimated under an
optimization process [30,33].

Following the aforementioned action, Yeo and Johnson [34] presented a new family
of distributions based on the Box-Cox idea that considers negative values as well [35,36].
The major modification of the equation is an internal addition of a constant equal to 1 to
the vector of original data, and for the negative data, an additional modification of the
power exponent:

y := gBC(z; k) =


((z + 1)k − 1)/k, k 6= 0, z ≥ 0
log(z + 1), k = 0, z ≥ 0
−[(−z + 1)2−k − 1]/(2− k), k 6= 2, z < 0
− log(−z + 1), k = 2, z < 0

(5)

However, the optimization of any added terms in transformation equations instead of
the use of specific constant is preferable [36]. Therefore, a modified method was developed
named Modified Box-Cox [13] defined by the following function:

y := gκ(z) =
(
z− zmin + a2)λ − 1

λ
, κT = (λ, a) (6)

(λ̂, â) = argmin
(λ,a)

{[
m̂y(λ, a)− ŷ0.50(λ, a)

σ̂y(λ, a)

]2

+
[
k̂y(λ, a)− 3

]2
}

(7)

where y := gκ(z) are the transformed values; κ a vector of parameters; λ is the power
exponent and a is an offset parameter that allows negative z values so that Equation
(6) can be applied to fluctuations as well. To simplify the estimation, the skewness and
kurtosis coefficients of the data are normalized, i.e., the nonlinear equations are solved for
ŝy = 0, and k̂y = 3 (where 0 and 3 are, respectively, the skewness and kurtosis coefficient
of the normal distribution).

The proposed method applies the same equation for both positive and negative
data compared to the Yeo and Johnson method that provides a different function for the
two cases. The function is inspired from the similar principle of including a constant to
modify the original data, but here, it is an unknown parameter that is calculated during an
optimization process independently for every dataset tested. In addition, the original data
vector is subtracted with regards to its minimum value to standardize the sample.

The nonlinear system (6) is solved with respect to (λ, a) by means of the provided
minimization function (7). In Equation (7), m̂y(λ, a) stands for the sample mean, ŷ0.50(λ, a)
is the sample median, σ̂y(λ, a) is the sample standard deviation of the transformed variable,
and (m̂y − ŷ0.50)/σ̂y is the Pearson skewness coefficient. The optimization is performed
using the Nelder–Mead simplex method [37]. The MATLAB code of the method is pre-
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sented in a public access repository [38]. The re-transformation equation is presented in
Equation (8):

z = (λy + 1)(
1
λ ) + zmin − a2 (8)

Such a transformation is valid because the normalization is succeeded in terms of
the two basic parameters of normal distribution, skewness and kurtosis. Please see

Equation (7). The term m̂y(λ,a)−ŷ0.50(λ,a)
σ̂y(λ,a) denotes skewness and the term

[
k̂y(λ, a)− 3

]
kur-

tosis. It is well known that the nonparametric skew is defined as µ−ν
σ , where µ is the mean,

ν is the median, and σ is the standard deviation. Both parameters are directly minimized
under the same function, Equation (7). The basic idea behind the proposed method was
the incorporation of the offset parameter α. The transformation equation has a similar form
to the one of Box-Cox.

3. Results and Discussion

Both original data and fluctuations were tested for gaussian transformation. Trend
model residuals usually have negative signs, therefore, a common well-known transfor-
mation method such as the Box-Cox cannot be used to transform them close to normal
distribution. The proposed Modified Box-Cox approach presented in this work was ap-
plied in both positive and negative sign data by implementing Equation (6). Minimization
of Equation (7) is applied to calculate the parameters of Equation (6) that control the
transformation optimizing the skewness and the kurtosis of the transformed sample.

Before the transformation, the normality measures for the original rainfall data were
k̂z = 5.78 and ŝz = 1.41. After the transformation using the Box-Cox method (Equation (3))
which calculated k = −0.24, the normality measures maximizing Equation (4) were im-
proved significantly as k̂z is now equal to 2.61 and ŝz = 0.12, which are closer to the typical
values of the normal distribution. On the other hand, the Modified Box-Cox method simi-
larly significantly improves the normality metrics, with calculated λ = 0.38 and α = 7.64,
delivering k̂z = 3.0 and ŝz = 0.22. In Figure 2, frequency histograms fitted the gaussian
curve, and present the distribution of the original data and the improvement of the trans-
formed data normality using both methods. The Modified Box-Cox method competes the
Box-Cox, with its metrics to deviate, on average, less from the typical normal distribution
values (Table 2).

Table 2. Gaussianity metrics of the tested rainfall data.

Statistical Metrics Original Data Cube Root Box-Cox Yeo and Johnson Box-Cox
Extension Modified Box-Cox

Kurtosis (k) 5.78 3.31 2.61 3.21 3.00
Skewness (s) 1.41 0.6 0.12 0.27 0.22

Detrended Data Cube Root Box-Cox Yeo and Johnson Box-Cox
Extension Modified Box-Cox

Kurtosis (k) 5.46 1.5 NA 4.34 4.17
Skewness (s) 0.98 0.29 NA 0.18 0.01

The significant advantage of the Modified Box-Cox method is its application on
negative sign data. The detrended data (fluctuations) normality metrics were k̂z = 5.46
and ŝz = 0.98, while after the transformation, which calculated λ = 0.12 and α = 23.3,
were k̂z = 4.17 and ŝz = 0.01. Although the kurtosis coefficient is not very close to the
optimum value, it is significantly improved, and the skewness almost fits the optimum
value. Figure 3 provides the improvement on the detrended data gaussianity. Moreover,
the proposed Modified Box-Cox method provides improved results compared to other
transformation functions that treat negative sign data. The complete gaussianity metrics
of the original and detrended rainfall data, and of the transformed ones, are presented
in Table 2.
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transformed values (b) using the Modified Box-Cox method.

The proposed Modified Box-Cox method was also assessed in two more real world
cases to demonstrate, in a wider frame, its usefulness. The first accounts for Crete, Greece.
The national water monitoring program [28] provides groundwater level information for
311 wells in the area of Crete. Observations include negative sign records (below sea
surface) in coastal aquifers. The space-time dataset gaussianity metrics of the original
data are: skewness, ŝz = 2.36 and kurtosis, k̂z = 9.56, while after transformation with the
proposed method are: ŝz = 0.37 and k̂z = 3.00, which are very close to the desired gaussian
distribution metrics.

A second application refers to petroleum resources evaluation using data of source
rocks in the Gulf Coast Basin of Mississippi and Louisiana where 132 samples of Total
Organic Carbon wt% were used to test the Modified Box-Cox method efficiency. The data
were first detrended using a surface based on their coordinates, therefore, negative sign
values were produced. The residuals’ skewness was initially 1.68 and kurtosis 4.86, while
after transformation, the metrics were improved to ŝz = 0.02 and kurtosis, k̂z = 3.26, very
close to the desired gaussian distribution metrics.

In addition, the method was also tested with a random numbers’ generator in MAT-
LAB environment, which is applied very often in simulation tests of field or experimental
data for the development of potential realizations, providing also transformation of data
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very close to the normal distribution. The provided MATLAB code includes also ran-
dom generator number functions for data reproduction to certify the statement [38]. The
available MATLAB function includes a GUI as well, where the initial parameters of mini-
mization function (Equation (7)) can be selected. Furthermore, the Box-Cox setup of the
build in MATLAB function is also included for reference application.

Summarizing, real world case studies’ data usually deviate from gaussianity which is
very significant in spatial data analysis (variogram calculation) and modeling approaches
(uncertainty quantification), and often include negative sign data. Thus, the establish-
ment of a solid function such as the Modified Box-Cox method for reliable gaussian data
transformation is important.

4. Conclusions

From a spatial statistics point of view, both Box-Cox and the Modified Method, ac-
cording to the results, provide transformed data with normality metrics close to the normal
distribution values that allows improved dataset properties for spatial interpolation. There-
fore, the Modified Box-Cox method consists of an alternative transformation technique
that can be applied equally well as the Box-Cox transformation in field measurements and
a proposed method for normalization of fluctuations with negative sign. Furthermore, this
work showed that the method can be successfully used in different disciplines as well as in
synthetic data.
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