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Abstract: Spatio-temporal patterns of climatic variability have effects on the environmental conditions
of a given land territory and consequently determine the evolution of its productive activities. One of
the most direct ways to evaluate this relationship is to measure the condition of the vegetation cover
and land-use information. In southernmost South America there is a limited number of long-term
studies on these matters, an incomplete network of weather stations and almost no database on
ecosystems productivity. In the present work, we characterized the climate variability of the Magellan
Region, southernmost Chilean Patagonia, for the last 34 years, studying key variables associated with
one of its main economic sectors, sheep production, and evaluating the effect of extreme weather
events on ecosystem productivity and sheep production. Our results show a marked multi-decadal
character of the climatic variables, with a trend to more arid conditions for the last 8 years, together
with an increase in the frequency of extreme weather events. Significant percentages of aboveground
net primary productivity (ANPP) variance is explained by high precipitation, mesic temperatures,
and low evapotranspiration. These conditions are, however, spatially distributed in the transition
zone between deciduous forests and steppe and do not represent a general pattern for the entire
region. Strong precipitation and wind velocity negatively affect lamb survival, while temperature and
ANPP are positively correlated. The impact of extreme weather events on ANP and sheep production
(SP) was in most of the cases significantly negative, with the exception of maximum temperature that
correlated with an increase of ANPP, and droughts that showed a non-significant negative trend in
ANPP. The examination of these relationships is urgent under the current scenario of climate change
with the acceleration of the environmental trends here detected.

Keywords: extreme weather events; climate variability; aboveground net primary productivity;
sheep production; Magellan region; Patagonia

1. Introduction

In the Magellan Region (MR, Figure 1), sheep farming has been an important extensive land-use
activity for more than 120 years, consuming large parts of the natural grassland area [1]. The MR
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region contributes 56% to the overall Chilean sheep production (SP) and with 80% to the national
sheep meat production [2]. Consequently, the regional income from this economic sector in 2018
accounted to 63.8 billion USD, representing 0.5% of the country’s GDP [3]. The geographical area of
the MR is, however, environmentally heterogeneous featuring a high climatic variability that defines
different bioclimatic zones (Figure 1). Sheep ranching areas are associated with the zone of deciduous
woodlands and the stepparic grasslands, along the west-northeast gradient from mesic to more xeric
conditions [4].

Climatologically, the MR is prone to a marked west-to-east rainfall gradient, with more than
5000 mm per year at the western Pacific coast decreasing to less than 200 mm towards the eastern
Atlantic coast (Figure 1). The forest-to-steppe transition zone reveals a strong decadal to multidecadal
variability of the annual and seasonal precipitation, indicating a decrease in annual and summer
precipitation whereas winter precipitation tends to increase [5]. Air temperature shows a warming
trend of about 0.15 ◦C per decade over the period 1960–2010 [6]. Regional climate in the MR is
characterized by extreme events (EE), defined as events that are rare at a particular place and time
of year, with high intensity and with acute environmental effects [7]. EE can cause catastrophic
conditions at the ecosystem level [8], including flooding, droughts, as well as being known to have
vast impacts on the regional socio-economic level [9]. Examples of EE in MR are severe droughts
(1920–1926, 1928, 1966), heavy rainfall events with floods (1983, 1990, 2012, 2015), and devastating
snowfall storms [10–12]. The most noticeable EE by sheep farmers is named as the “great snowfall” in
1995, having a high economic impact caused by the loss of 24% in regional SP [11]. Another significant
EE occurred during the summer of 1988 with extremely low rainfall and high wind speed, causing an
important decrease in SP and problems with the Punta Arenas water supply [10].

Under current climate change scenarios, an increase in the frequency and intensity of such types
of EE is expected for the Magallanes Region [13]. Climate projections based on the global climate
model CMIP5 (2022–2044) predict for the MR three crucial trends for the regional climate prediction:
(i) an increase in precipitation of up to 3–4% during the austral winter (JJA), (ii) an increase in mean
annual temperature between 0.5 ◦C and 0.7 ◦C, and (iii) increasing wind speeds between 0.07 and
1.1 ms−1 [14]. Negative effects associated with these trends are expected by sheep farmers in the MR.
According to perception surveys, they feel threatened by a decrease in rainfall (droughts) leading to a
reduced water availability and, consequently, a lower productivity of grasslands for fodder, generating
a strong socio-economic impact [13].

In general, sheep production in Patagonia is being affected by climate change mainly through
the effects of the aforementioned trends on the aboveground net primary productivity (ANPP) of the
Patagonian ecosystems [15]. Seasonality is another factor connected with the maximum values of
grasslands productivity for the spring–summer months from September to April [16,17]. Land-use
mitigation and adaptation strategies of this important economic sector, based on regional-scale
approaches, may help to use the forage resources in a more sustainable way [18]. During the last few
decades, research on natural grasslands and its relationship to climatic variability in the Argentinean
part of Patagonia revealed that the most important factors for ANPP is precipitation and temperature.
The significant effects can be related to climate conditions during the previous year and growing season,
suggesting that ANPP will respond in a retarded way to e.g., changes in soil water availability driven
by climate variations [19–22]. Unfortunately, for the MR a lack of long-term studies on topics focusing
on hydroclimate is apparent. Most of the existing studies are either limited in their spatio-temporal
validity, or the underlying data has not been updated [13]. Some of the previous studies highlight
the importance of precipitation on the productivity of natural pasturelands, but the used datasets
are neither widely representative [1,23], nor do long-term series exist to estimate trends and produce
future projections on the relationships. This lack of information for the MR exposes us to a low capacity
for adaptation and mitigation to climate change due to the degraded condition of soils and grasslands,
under traditional techniques, with extensive and intensive land-use for livestock [13]. As a consequence
of the high international demand for wool and sheep meat from the MR, SP and its extensive and
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intensive grazing has had a strong impact on the carrying capacity of the stepparic grasslands [24,25].
Only during the recent decades, precautions arose to improve the carrying capacity of the grasslands
and forage supplies by establishing new species of forage plants or improving the soil by fertilizers as
a way to advance towards agropastoral systems [26]. Such strategies, however, do not yet consider the
risk of climate variability, consequences due to climate change, or extreme weather events (EE).

The assessment of the impact of climate change on the regional SP will require a better
understanding of the sensitivity of grassland productivity to climate variability, with a regional
spatial and temporal wide coverage. This would have an impact on this important economic activity
through improving the efficiency and sustainability of the regional vegetational resources [20]. In the
present work we propose the following group of hypotheses associated with climate control (climatic
variability and extreme events) over vegetation growth and sheep production at MR:

Hypotheses 1 (H1). Aboveground Net Primary Productivity

Water availability determined by precipitation, air temperature and potential evapotranspiration
is a key factor for the onset of the ANPP growing season in MR. We expect ANPP variance at MR to be
explained by these referred climatic variables.

Hypotheses 2 (H2). Sheep Production

SP is determined by the winter–spring critical period of mating and lambing. We expect that
winter-spring precipitation and wind velocity negatively affect lamb survival, while temperature and
ANPP of the same period have a positive effect.

Hypotheses 3 (H3). Extreme Weather Events Impact on ANPP and SP

Extreme weather events determine severe harsh environmental conditions. We expect that extreme
weather events will increase the environmental stress conditions, affecting ANPP and SP negatively.

We propose to test our hypotheses using an approach that considers spatial climatic gradients and
climatic fluctuations time series. With this purpose, we aim to assess the following specific objectives:
(1) to describe the regional variability of precipitation, temperature, wind speed and aridity index, (2) to
quantify spatio-temporal relationships between local climate and ANPP, (3) to investigate monthly
trends in regional SP and link them to derived variations in global/regional climate change, and (4) to
evaluate the impact of extreme weather events on monthly ANPP and annual sheep production.

2. Study Area

The Magellan Region includes the southernmost part of the Chilean Patagonia and Tierra del
Fuego (48.50◦ to 56.50◦ latitude S, 66.5◦ to 75.5◦ longitude W; Figure 1). The Andes Cordillera is
longitudinal aligned acting as a orographic barrier between the high-precipitation western area with
5000 mm per year (mma−1), and the eastern part with approximately 200 mma−1 [5,27,28]. Analyses
on air temperature data reveal a distinct spatial pattern with variations associated with seasonality
and local conditions such as the vicinity of glaciers or lakes, distance to the dominant mountain
chain, among others [29]. Four biotic communities can also be classified [4]: Magellanic moorland,
Evergreen forest, Deciduous Beech forest and Patagonian Steppe (Figure 1). Sheep farming activities
are located within the two areas of the Patagonian steppe and the woodland transition zone between
deciduous forests and steppe. The steppe area is characterized by the dominance of grass-like species
(“coiron” grasslands) including the genera Stipa, Festuca and Poa, together with cushion-like small
thorny shrubs such as Azorella prolifera, Anarthrophyllum spp., and Mulguraea tridens. The ecotone
between the deciduous forest and woodland area is dominated by the presence of different shrub
species such as Chiliotrichum diffusum, Berberis microphylla, Gaultheria marticorenae, associated with
shrub-like tree species Embothrium coccineum and Nothofagus antarctica.
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de Datos Geoespaciales de Chile [31]. 
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corresponds to dry grasslands (Figure 1) [2]. 

3. Methods 

3.1. Regional Climate Variability 

Climate data and EE analysis for the last 34-years were analysed using a regional data set of 
precipitation (pre), minimum temperature (tmn) and wind speed at 10 m height (ws), derived from 
the gridded datasets of the Climatic Research Unit Time-Series (CRU TS v.4.03; [32]) and Era-Interim 
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we used a 34-years NDVI database for the MR from 1985/86 to 2018/19 [36]. The NDVI represents a 
valuable proxy for the above ground net primary production (ANPP: [20,37,38]). Climate variables 
were analyzed using periods from September to December, January to April, and May to August 
from ERA-Interim [33]. Using this approach, we performed a geographically weighted regression 
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Figure 1. (a) Map of the study area including main vegetation types, isolines of precipitation,
glacier extents, and lakes. Inlay: (b) names of Chilean provinces covered in this study. Vegetation
distribution [4,30], while the information of isohyets, glaciers, lakes and political limits are from
Infraestructura de Datos Geoespaciales de Chile [31].

The local SP system in the MR is based on grazing mainly on grass steppe resulting in large
extensive and intensive sheep ranching areas. The total area for agriculture and livestock use (excluding
native forests) accounts to 4.2 million hectares in the MR. Out of this, 98% of the total area corresponds
to dry grasslands (Figure 1) [2].

3. Methods

3.1. Regional Climate Variability

Climate data and EE analysis for the last 34-years were analysed using a regional data set of
precipitation (pre), minimum temperature (tmn) and wind speed at 10 m height (ws), derived from the
gridded datasets of the Climatic Research Unit Time-Series (CRU TS v.4.03; [32]) and Era-Interim [33].
To quantify regional drought/wet conditions we calculated the SPEI index [34] for a 12-months interval
using the free software R project [35]. We considered two parameters for its calculation: precipitation
(pre) and potential evapotranspiration (pet) based on monthly data from CRU TS v.4.03 [32].

3.2. Relationship between Climate Variability and Vegetation Cover

To investigate the relationship between regional-scale climate variability and vegetation cover
we used a 34-years NDVI database for the MR from 1985/86 to 2018/19 [36]. The NDVI represents a
valuable proxy for the above ground net primary production (ANPP: [20,37,38]). Climate variables
were analyzed using periods from September to December, January to April, and May to August
from ERA-Interim [33]. Using this approach, we performed a geographically weighted regression
analysis (GWR, [39] within the ArcGis software program [40]). We conducted the GWR analysis
on average NDVI values for the periods September to December and January to April (dependent
variables) and average values for precipitation (pre), minimum temperatures (tmn) and potential
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evapotranspiration (pet) of the corresponding same periods (independent variables). The respective
maps with the projection and reference datum Universal Transverse Mercator (UTM-zone, 19 S, World
Geodetic System 84, WGS 84) are finally generated by ArcGIS. For GWR the kernel was constructed at
a fixed distance, Akaike information criterion (AICc) was the bandwidth method selected, and cell size
was 0.25 determined for grilled data [39].

3.3. Relationship between Climate Variability and Sheep Production

For the quantification of the relationship between sheep production and climate variability,
we performed Pearson’s correlation analysis comparing sheep production with climate data and
aboveground net primary productivity, considering a confidence level of 95% and 99% with two
degrees of freedom. We used a monthly time series of the number of sheep being processed in the
slaughterhouses of the MR for the period 1987–2019 as provided by the Servicio Agrícola y Ganadero
(SAG, Chilean Agriculture and Livestock Service). We used this database as a surrogate or proxy
for the complete data due the lack of sheep farming censuses after the year 2007. We chose three
climatic variables (pre, tmn, and ws), and NDVI data [36]. The monthly regional precipitation data
were obtained from the CRU TS v.4.03 data set [32], while minimum temperature and wind speed data
were obtained from two weather stations in Punta Arenas (WMO codes: DGA, DMC), respectively.
These climatic variables were used for the correlation analysis here described assuming a direct impact
on the sheep survival. Critical survival periods are before and after lambing months (September to
December) and harsh weather conditions may provoke an increase in mortality [11,41].

3.4. Impact of Extreme Event on Aboveground Net Primary Productivity and Sheep Production

To gain a more precise estimation of the effect of the EE on aboveground net primary productivity
(ANPP; [21]) and SP we performed a superposed epoch analysis (SEA) [42,43]. This analysis allowed
us to test the effect on the ANPP and SP of a time series of extreme weather events, evaluated at the
same time of the event occurrence (lag = 0) and after four-time lags. SEA is widely used to estimate
the effects of catastrophic events such as volcanic eruptions and droughts on the tree-growth series.
To apply this analysis in this study we defined as extreme weather events those climatic records
(pre, tmn, tmx and ws, already described in Section 3.1) with values below the 1st percentile or above
the 99th percentile. Then we calculated how significant was the deviation from the mean value for
ANPP and SP during the occurrence of EE and after four-time lags. ANPP data was provided by the
NOAA [36], while SP data was provided by SAG (see Section 3.3).

4. Results

4.1. Recent Changes in Regional Climate Variability

Figure 2 illustrates the MR monthly time series plots of precipitation, minimum temperature,
wind speed and SPEI from January 1985 to December 2018, showing a marked multi-decadal character.
For each of these series, the extreme events are indicated as values below (above) the 1st (99th)
percentile. Air temperature time series (Figure 2a) presents extreme events of minimum temperature
only for the 9-year period from July 1992 to July 2001. After 2001, the values vary close to the entire
period average (1985–2018) with only a slight positive trend. For the period February 2010 to December
2018 minimum temperature values stay above the overall mean. The wind speed time series (Figure 2b)
only reveals EE values since December 1998, and in every case those values above the 99th percentile
occurred during periods when wind speeds were above average. The longest lasting of these periods
are the five years between 2006 and 2013, including two of the four EE observed for the entire analysed
period. The precipitation series (Figure 2c) shows a marked multi-decadal variability, with phases
below the average (1988–1990, 1999–2003 and the longest 2010–2018), and two phases of higher rainfall
(1990–1993, and 2003–2010). Interestingly, during the longest dry phase or meteorological drought
(2010–2018), there are also a couple of extreme precipitation events.
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4.2. Relationship between Climate Variability and Seasonal Vegetation Cover 

Furthermore, we investigated the relationship between climatic variability, represented by the 
best-correlated variables precipitation (pre), minimum temperature (tmn), and potential 
evapotranspiration (pet) and the variations of regional vegetation cover (NDVI) as proxy for the 
aboveground net primary productivity (ANPP: [20,37,38]) on a spatio-temporal scale. We investigate 
the vegetation explained variance (LR2) by each of these climatic variables in the MR using a GWR 

Figure 2. Magellan Region (MR) monthly climate time series (Climatic Research Unit Time-Series
(CRU TS) 4.03) from January 1985 to December 2018 for: (a) minimum temperature (in ◦C); (b) wind
speed (in ms−1), (c) precipitation (in mm), (d) standardized precipitation-evapotranspiration index
(SPEI). Extreme events (EE) below the 1st percentile and above the 99th percentile are indicated (values
surpassing dotted lines). SPEI scale ranges from −2 (very dry) to +2 (very wet). Pink (light blue) shaded
stripes indicate dry (wet) periods.

The aridity index SPEI-12 (Figure 2d) is, as described, strongly influenced by the dry or wet
precipitation periods. Thus, conditions with low precipitation values, higher minimum temperature
and strong winds determine low values of SPEI-12 (drought) and vice-versa for wet periods. We
found that most of the maximum precipitation events, in May 1986, March 2000, April 2009, March
2012, and winter 2015, occurred within phases of relatively dry conditions. In these cases, the erosion
associated with the extreme events, with soil losses produced by an abrupt increase of running water,
was higher than if these had occurred in more mesic conditions. These consequences included 2012
flooding in Punta Arenas [12], with more than 360 people affected [44].

4.2. Relationship between Climate Variability and Seasonal Vegetation Cover

Furthermore, we investigated the relationship between climatic variability, represented by
the best-correlated variables precipitation (pre), minimum temperature (tmn), and potential
evapotranspiration (pet) and the variations of regional vegetation cover (NDVI) as proxy for the
aboveground net primary productivity (ANPP: [20,37,38]) on a spatio-temporal scale. We investigate
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the vegetation explained variance (LR2) by each of these climatic variables in the MR using a GWR
analysis. We used a gridded climate dataset from 1985 to 2018, and NDVI from 1985/86 to 2018/19.
Table 1 and Figures 3–5 show the results for the climatic variable with higher explained variance (LR2)
for the regional NDVI data.

Table 1. Geographically weighted regression (GWR) analysis for NDVI data as a measure of
aboveground net primary productivity (ANPP) using different climatic variables. Most significant
results are shown in Figures 3–5, while those with less significance are not shown.

Dependent
Variables

Independent
Variables Reference R2 R2 Adjusted

LR2
Steppe &

Transition Area

NDVI (sond) pre (mjja) Figure 3 0.76 0.72 60
NDVI (jfma) pre (sond) 0.70 0.62 42
NDVI (jfma) tmn (jfma) Figure 4 0.67 0.62 47
NDVI (sond) tmn (mjja) 0.83 0.77 50.5
NDVI (jfma) pet (jfma) Figure 5 0.67 0.62 39
NDVI (sond) pet (sond) 0.77 0.74 57.5
NDVI (ann) pre (ann) Not shown 0.73 0.63 30
NDVI (ann) tmn (ann) Not shown 0.66 0.59 25
NDVI (ann) pet (ann) Not shown 0.62 0.57 30

Values of May to August and September to December average precipitation for this study were
6.6 mm and 7.3 mm, respectively (Figure 3). The spatial patterns for the distribution of precipitation
illustrate the pronounced west-to-east regional gradient, reaching maximum values at high elevated
glaciers and ice caps. NDVI presents values between 0.2 and 0.3 with more abundant vegetation cover
occurring during the southern hemispheric spring months (SOND).
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1985–2018 (right-hand plots). JFMA = January to April, SOND = September to December, LR2 = local
squared regression coefficient.

In general, we found the best levels of explained variance of vegetation cover, both with May to
August and September to December precipitation, along the transition zone between forest-woodland
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and steppe from north of Ultima Esperanza province and south of the Tierra del Fuego province
(Figures 1 and 3). Not surprisingly, this is the zone where the most productive livestock farms in
the MR are located. The amount of variance explained by the winter precipitation varied from 45 to
75% for Ultima Esperanza and south of Tierra del Fuego, respectively. Variance explained by spring
precipitation varied between 45% and 60% in a northwest to southeast direction from Ultima Esperanza
to south of Tierra de Fuego, while for the north-east steppe areas of Tierra del Fuego the explained
variance varied from 24 to 45%. The resulting maps clearly indicate areas of strong positive correlation
values between precipitation and vegetation cover. Significant values of explained variance (yellow
to blue pixels) are found also in areas where high values of precipitation coincide with high values
of NDVI.

Figure 4 indicates that January to April and May to August mean minimum temperatures were
6.6 and 0.76 ◦C, respectively. The spatial patterns for the minimum temperature during winter clearly
indicate high values in the eastern area contrasted by low values in the surroundings of glaciated areas
in the western parts. The pictured and temporal patterns of the NDVI are the same as already described
in Figure 3. The amount of variance of vegetation cover explained by the minimum temperature
varied from 48% to 60% from northern Ultima Esperanza to south of Tierra del Fuego. In contrast,
the northernmost region of Tierra del Fuego presents an explained variance of 34%. May to August
minimum temperature determines three areas of significant explained variance for the vegetation cover,
namely northern Ultima Esperanza (25–76%), the north eastern parts of Tierra del Fuego (32–60%) and
the southern parts of Tierra del Fuego (24–60%).

Figure 5 illustrates that the potential evapotranspiration per day for January to April and
September to December were 2.1 mm in both cases. The highest values of pet are visible for the
northern Ultima Esperanza province, east of Magallanes and Tierra del Fuego province with values of
around 3 mm, indicating high values of loss of water by evaporation and transpiration. These values
can be associated with solar radiation, temperature and wind [45,46]. The areas of the MR having the
most significant values of explained variance by January to April of 40% and 50% are situated between
Ultima Esperanza and south of Tierra del Fuego, and the northern parts of Tierra del Fuego with 34%.
In addition, the eastern zone of Magallanes obtained explained variance values of around 28%. During
the September to December period, the pet shows its highest values of explained variance at northern
Ultima Esperanza (60%) and in the south of Tierra del Fuego (55–60%).

The spatial distribution of the vegetation cover explained variance (LR2) shows a similar
geographical pattern for the different environmental factors considered here (Figures 1 and 3–5).
In all cases, values with highest significance are the north-eastern zone of Ultima Esperanza province,
the central part of Magallanes province and the southern zone of Tierra del Fuego province. These areas
correspond to the transition zone between the deciduous forest-woodlands and the steppe. In contrast,
the lowest values as displayed for the extreme west area of the MR, and the northern area of Tierra
del Fuego can be associated with zones of less significance in terms of livestock usability (mountains,
icefields, etc).

4.3. Relationship between Sheep Production and Climate Variability

Pearson Correlation analyses were performed for climatic variables (precipitation, wind speed
and minimum temperature), NDVI and annual SP in the MR (Table 2 and Figure 6). Our target was
to detect if any climate variable and NDVI indicate a direct and significant impact for SP. Since 1960
the SP has had a negative trend associated with the degraded grasslands [10]. We also found the
same negative trend during the studied period and two short periods, 1995–1997 and 2015–2019, with
extremely low SP.
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Figure 6. Pearson correlation analysis of sheep production (SP) with regional climatic variability and
NDVI data as a measure of ANPP. Number of sheep (black line) against (a) previous May and June
precipitation (pMJ: blue line), (b) previous September and November wind speed (pSN: orange line),
(c) minimum temperature of previous July and August (pJA: red line) and (d) NDVI from NOAA of
previous May and current May (pMcM: green line). The correlations coefficient are indicated at p < 0.05
(*), p < 0.01 (**) and no significant (n.s). Note that precipitation and wind speed values are displayed
inverted for better understanding.
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Table 2. Correlation analysis for sheep production and climatic variables. Significance is indicated by.
* 95%, ** 99%, or n.s = not significant.

Dependent
Variables

Independent
Variables Reference Correlation

SP pre (MJ) Figure 6a −0.37 * (1987–2019)

SP ws (SN) Figure 6b −0.42 * (1987–2019)
−0.70 ** (2000–2019)

SP tmn (JA) Figure 6c 0.49 ** (1987–2019)
0.60 ** (1987–2007)

SP NDVI (pMcM) Figure 6d 0.04 n.s (1987–2019)
0.56 * (2005–2019)

SP pre (ann) Not shown 0.24 n.s (1987–2019)
SP ws (ann) Not shown −0.11 n.s (1987–2019)
SP tmn (ann) Not shown 0.33 n.s (1987–2019)
SP NDVI (ann) Not shown −0.14 n.s (1987–2019)

In our study area, decreasing sheep production is strongly determined by the previous-year
May–June precipitation, September–November wind speed, July–August minimum temperature and
May to May ANPP. The SP time series clearly shows previously reported events that directly and
indirectly affected production: (i) increased mortality by water deficit conditions in 1988, mid-1989 and
early 1990, with negative effect in SP over the 1991–1992 period [10] (Figures 2c and 6a), (ii) low SP in
1996 can be clearly attributed to the harsh winter condition during the event called the “great snowfall”
in 1995 [11] (Figure 6c). Previous May and June precipitation reveals a significant negative correlation
with r = −0.37 (p < 0.05) (Figure 6a). June 2015 precipitation was approximately 70 mm, representing
an EE and showing a strong negative impact on the annual sheep production (Figure 6a). In addition,
a strong coincidence between the wind speed of around 10 ms−1 in September and November 2015
and the respective decline in sheep production is apparent (Figure 6b). This is further underlined by
correlation analyses between both time series revealing a significant negative relationship (r = −0.42,
p < 0.05) when considering previous September and November. By contrast, the correlation between
sheep production and minimum temperature is positive with previous July and August (r = 0.49,
Figure 6c), showing a direct influence of this climatic variable on the sheep production. Low SP for
2016 may be related to the extreme precipitation event of May–July of 2015, with values exceeding the
70 mm, and strong wind speed in September and November of the same year.

Despite correlation between SP and ANPP was not significant for the entire period, showed a
positive correlation for the 2005–2019 period (r = 0.56, p < 0.05) (Figure 6d). The same is true when
we consider shorter periods for the correlation between SP and temperature for the period 1987–2007
(r = 0.60, p < 0.01) and for the correlation between SP and wind speed during the 2000–2019 (r = −0.70,
p < 0.01) (Figure 6b,c, respectively).

In addition, two low SP periods are influenced by the “great snowfall” and extreme weather
events such as heavy rainfall and strong wind speed. Interestingly, all significant correlations are
obtained with months and seasons of the previous year and not with the current vegetation period.
The two extreme decays in sheep mass observed during these last 34 years coincide with extreme
events of the climate variables selected for the previous years, indicating a clear delayed effect.

4.4. Impact of Extreme Events on Above Net Primary Productivity and Sheep Production

SEA results show that EE impacts critical stages of the SP as well as vegetation life cycles severely
affecting their growing and survival rates (Figure 7). Vegetation cover is negatively affected by EE of
both precipitation and frost events (Figure 7a). Heavy rainfall would affect growth for several months,
while drought conditions do not show significance but showed a negative trend. Maximum summer
temperatures have a positive effect on vegetation growth for the next month and negative effect on the
next third and fourth months. Our SEA indicated that there is a negative effect for the same and the
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following month, most likely associated with the winter snow covering resulting in low grassland
productivity; whereas, there would be a positive effect for the fourth month due to water storage
availability (Figure 7a).Geosciences 2020, 10, x FOR PEER REVIEW 13 of 18 
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Figure 7. Superposed epoch analysis (SEA) comparing the effect of extreme weather events on (a) NDVI
time series from 1985 to 2018, and (b) SP time series from 1987 to 2019. The black bars indicate values
significant at the p < 0.05 level. Plot labels pre 99% and pre 1% represent EE defined by precipitation
values above the 99th percentile and below the 1st percentile, respectively; tmn 1% represents EE
defined by minimum temperature values below the 1st percentile; ws 99% represents EE defined
by wind speed values above the 99th percentile; and tmx 99% represents EE defined by maximum
temperature values above the 99th percentile.

SEA results for SP show only negative effects of EE either considering precipitation or temperature.
The clearer effect is related to the year after decrease of SP due to strong rainfall/wind speed and frost.
Droughts, for its side, show a direct negative effect on SP during the same year of the EE occurrence
(Figure 7b).

5. Discussion

5.1. Extreme Weather Events, Net Primary Productivity and Sheep Production

MR time series of temperature, precipitation, wind velocity and aridity index show marked
multi-decadal fluctuations as a general pattern. Climatic conditions fluctuate between wet-cold to
dry-warm several times during the last decades. Climatic trends indicated by our work are coincident
with the climatic projections for the next 50 years under the climate change in the Magallanes Region [14].
In addition, the large-scale climatic forcings such as the Antarctic Oscillation (AAO) with an increasing
trend towards positive index values during the summer and autumn seasons may have a sustained
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effect on evaporation [47,48] Positive AAO values are also associated with dry conditions, which can
also translate into a reduced cloud cover and more input of solar energy to the surface, increasing the
evaporation process. During positive phases of the AAO, the advection of cooler sub (polar) air masses
diminish, favouring the pronounced westerly airflow that would result in slightly higher temperatures
during the winter season and a milder summer season.

An examination of the last three decades of climatic data show slight trends of increasing minimum
temperatures. In contrast, precipitation is decreasing, leading to increasing aridity conditions. Under
this general pattern, our study area showed recurrent extreme events (EE) such as the water deficit
condition in 1988 [10], “great snowfall” of August 1995 [11], or extremely high precipitation over
winter 2015 at Punta Arenas [12]. Wind speed is another important factor of environmental stress,
which can directly impact vegetation cover and SP. The impact of increasing wind velocity has been
demonstrated in wind exclusion essays for different crops that have a negative effect for its erosional
and desiccant actions [46,49].

SEA results showed significant effects on ANPP and SP derived from stressed conditions associated
with EE. ANPP for example is negatively affected by extreme rainfall-provoked flooding and frosting
under extreme low minimum temperature as is shown also by recent work [17]. They studied the
relationship between snow cover and NDVI for Tierra del Fuego, found out that strong snowfall
may have a year-long effect on vegetation, prolonging the dormancy period. This would determine
an opposite relationship between NDVI and snowfall and a legacy effect [21]. The correlation
analyses between climate variables such as minimum temperature, reasonably associated with snowfall
conditions in the MR and SP supports a one-year legacy effect (Figures 6 and 7).

Gestation and lambing periods during the 2015 winter–spring transition were affected by the
extreme precipitation event of May–July of 2015 that provoked flooding. During this strong rainfall
season sheep were giving birth or were already pregnant [41]. Therefore, the occurrence of an extreme
event may affect fertility and/or the viability of newborn lambs, causing the low SP one year later
(Figure 7b). During or soon after labor, ewes and lambs are outdoors, solely depending on the weather
conditions, being ewes supply of colostrum of vital importance to avoid hypothermia. Spatial patterns
of climate variability and ANPP and its associated SP reveal a more heterogeneous picture. Temporal
trends in climate variability and its effect on vegetation cover do not reflect a uniform spatial expression
across the MR. Spatial patterns of a strong relationship between precipitation and NDVI were already
described for this region [4]. In our study we found similar results to those already reported for the
Argentinian Patagonian steppe where precipitation and mean temperature are valuable predictors
for vegetation growth [19–22]. We also found that the steppe and woodland vegetation is affected by
summer minimum temperatures and spring–summer potential evapotranspiration. The north-eastern
steppe areas of the MR with low amounts of precipitation, high temperatures and high potential
evapotranspiration, are more prone to environmental stress. Potential evapotranspiration values are
a good indicator of the areas with highest water loss, representing a parameter to be considered by
sheep farmers looking to diminish irrigation costs [13,45]. These ecosystems must cope with higher
water losses and consequently react with a corresponding high impact on plant iWUE strategies [50,51].
Differences in environmental stress along the southwest-to-northeast gradient determine differences
on the response of the vegetation to climatic variability. Studies in Argentinian Patagonia pointed out
that the ANPP in a network of ecosystems from arid to sub-humid is better correlated with climatic
variables when the spatial distribution of these ecosystems are considered (based on multi-annual
averages for different localities), more than using a temporal approach (based on inter-annual changes
in single localities) [21]. More detailed studies including ecophysiological monitoring of the different
ecosystems would allow us to look for a biological explanation for these differences, and more precise
estimation of the effect on growing seasons of the plant communities [20].
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5.2. Sheep Production, Climate and Aboveground Net Primary Productivity (ANPP)

Due to SP and ANPP being affected by biotic and abiotic factors, in livestock farming activities
the management of biotic factors such as the appropriate choice of the animal variety, the forage
availability along the year, animal loading and grazing period, and supplementary food use, will
determine the overall success or failure of livestock production. In this work, we found that the
percentage of explained variance for precipitation, temperature, wind, aboveground net primary
productivity and its impact on the livestock population is highly significant. In this way, it is possible to
analyse how extreme events can have additional effects on SP, if they are combined within multi-annual
climatic variability. The low SP in 1991–1992 as consequence of water deficit in 1988, mid-1989 and
early 1990 [10] and 1996 is attributed to harsh winter conditions during the “great snowfall” event
in 1995 [11]. In our study, we detected that decreasing SP in 2016 relates to heavy precipitation and
strong wind conditions of the previous months (Figures 6 and 7). In addition, the conditions of the
previous years’ spring-summer season are of similar relevance. We also identify better correlations
when we compared SP with wind speed, minimum temperature and ANPP considering alternated
shorter periods of analysis, reinforcing the idea that the climatic and ANPP influence on SP changes
over time.

In general terms, current climate change in Fuego-Patagonia with its accelerated warming and
dryness trend, together with increased wind velocities, have produced a vulnerable scenario without
short- or long-term mitigation measures. The increase in minimum temperatures, winter precipitation,
and the number of maximum wind speed events during spring, have led to several impacts on the
grassland growth cycle and in consequence strongly affect the sheep production in the MR. Although
some works speculate on possible beneficial effects of warming trends in areas traditionally affected by
cold stress [17] our results indicate that the projections must consider the local characteristics in every
case. Depending on the position of the management area in the MR environmental gradient, these
effects must be positive or negative.

In summary, the SP sector must be aware of the climatic variability of this region and its potential
impacts and of the months when these effects are more frequent. For this purpose, we suggest
that public services and farming associations check monthly DMC reports [52] with seasonal and
sub-seasonal meteorological forecasts (temperature, precipitation) three months in advance.

6. Conclusions

Our first hypothesis (H1) is partially accepted given that a significant percentage of ANPP
variance is explained by high precipitation (400 to 1000 mm), more mesic temperatures, and lower
evapotranspiration. These conditions are, however, spatially distributed in the transition zone between
deciduous forests and steppe and is not a general pattern for the entire region. The second hypothesis
(H2) is also accepted, with strong precipitation and wind velocity negatively affecting lamb survival,
while temperature and ANPP present a positive correlation. The third hypothesis (H3) that tests the
impact of EE on ANPP and SP, is also partially accepted. Most of the climatic variables negatively
affect ANPP and SP; nevertheless, extreme events of maximum temperature resulted in an increase of
ANPP, and droughts only showed a negative but non-significant trend in ANPP.

Our results found marked multi-decadal climatic fluctuations for the last 34 years with increasing
importance of EE. These trends are affecting vegetation productivity and consequently SP in MR.
Although sheep farming of Magallanes represents most of the total country’s production, this important
factor has not been studied from the perspective of the recent trends in climate change. Our results
indicated that climate variables impact vegetation cover and sheep production, in a combined
way. By not considering the result of our study and using only traditional practices, pasturelands
deterioration might increase and farming productivity may be reduced accompanied by decreasing
stocking rate.

Farmers in the MR should consider that the frequency of extreme events (EE) might increase
in future due to climate change. Under this probable enhancement of extreme events the 3-month
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forecasting document developed by DMC, using temperature and precipitation, is an interesting tool
of early alert for winter EE. Given our results, we support the conclusions in terms that the MR is a
vulnerable zone prone to further pressure by EE under climate change scenario(s) [(Meza, 2014)].

This type of study fulfills the permanent analysis that should be submitted on the variations of
the referred factors and its impacts on the local economy. The comparison of these variables should
provide possibilities and recommendations for mitigation and/or adaptation measures, and to open
communication channels among academia, public services, and local farmers, these last being the
users of the resulting information.
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