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Abstract: Despite the fact that streamflow occurs mainly due to depletion of storage, our knowledge
on how a drainage basin stores and releases water is very limited due to measurement limitations.
A window of opportunity, however, is provided to us by GRACE (Gravity Recovery and Climate
Experiment) satellite mission that provides storage anomaly (San) data. Many studies have explored a
range of potential applications of San data such as flood forecasting. Here we argue that the capability
of GRACE satellite mission has not been fully explored as most of the studies in the past have
performed analysis using monthly San data for large river basins. In this study, we use daily San data
for several mid-sized catchments to perform storage–discharge analysis. Our results support the
earlier notion that storage–discharge relationship is highly dynamic. Furthermore, we demonstrate
that San data can be exploited for prediction of k of the Brutsaet–Nieber equation −dQ/dt = kQα

(Q is discharge at time t). For comparison we also use storage information provided by Catchment
Land Surface Model (CLSM) as well as past discharge information to predict k. Our results suggest
that GRACE based storage information can be used to predict k reasonably well in gauged as well as
ungauged basins.

Keywords: recession flow; Brutsaet–Nieber equation; GRACE derived total water storage anomaly
data; dynamic storage–discharge relationship

1. Introduction

Prediction of streamflow is crucial for planning and management of many water resources
infrastructural projects. Unfortunately, it is not easy to predict streamflow as we do not know very
well how rainfall produces streamflow. Hydrological processes responsible for streamflow generation
are complex and our ability to observe them is quite limited. Thus, it is practically impossible
to predict streamflow by employing fundamental equations of water flow that requires detailed
information on the surface and subsurface characteristics of a basin. Hydrologists generally predict
streamflow using simple conceptual models capable of performing reasonably when limited data
is available. However, after the advent of satellite based remote sensing technologies our ability
to obtain hydrologically relevant information has improved dramatically. Hydrological models too
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have evolved over the past few decades to properly utilize information obtained through satellite
remote sensing. For example, many hydrological models are now well equipped to handle fine
resolution topographic and land-cover information obtained through satellite remote sensing [1–4].
Similarly, soil moisture data products obtained through microwave remote sensing are widely used
these days to improve streamflow prediction [5–7]. One limitation of these data products is that they
provide moisture content information of the top soil layer only, whereas for streamflow prediction
purposes it is important to obtain information on the hydrologically-active total water content in a basin
at a given time [8–13]. In this regard the Gravity Recovery and Climate Experiment (GRACE) satellite
mission launched on 17 March 2002, by the National Aeronautics and Space Administration (NASA)
and the German Aerospace Centre (DLR), has made a remarkable achievement. GRACE mission
has been providing total water storage anomaly information of the earth surface by monitoring the
spatiotemporal variation of Earth’s gravity field since 2002 [10,14–19]. The fundamental measurement
is derived from micron level tracking of the satellite-to-satellite distance, which varies due to individual
gravitational attractions on the satellites as they pass over the Earth’s surface. Further, mathematically,
storage anomaly (San) for a basin at time t is given as:

San(t) = S(t) − Sav (1)

where S(t) is storage at time t, which includes water stored in all the surface and sub-surface storage
units of the basin. Sav is the average storage of the data set from period 2002 April to 2009 December.
Since the main aim of a typical hydrological model is to explain how a basin stores precipitated
water and releases it as streamflow or discharge, it is important to characterize the relationship
between storage and discharge of the basin. GRACE based San data is found to be useful by many
for hydrological modelling studies such as detecting trends of anthropogenic groundwater depletion,
hydrological flux estimation and climate model improvement, sea-level change and ocean dynamics,
operational drought monitoring [20]. Further, Total Water Storage Anomaly (TWSA) data was used to
predict flood in large river basins [10,21]. Further, Fang and Shen exploited GRACE based San data for
providing information on high flows as well as low flows in rivers [22]. GRACE based data was also
used for measuring drainable water storage [23].

It should be emphasized here that the above studies have largely focused on use of monthly San

data for performing storage–discharge analysis for large river basins. A few studies have been carried
out using daily GRACE data as compared to monthly data. A recent study used daily GRACE data to
track major flood changes in the Ganga-Brahmaputra delta [24]. As hydrological complexity decreases
with scale [25,26], it is expected that storage–discharge analysis at smaller spatial and temporal scales
will reveal finer details about the hydrological processes of a river basin. The main aim of this study is
to use daily San data for providing information on basin-scale storage–discharge relationship. Daily San

data is the ITSG-Grace2016 gravity field model, computed in Graz University of Technology, providing
unconstrained monthly and Kalman smoothed daily solutions. It has been calculated by assuming
that the gravity field does not change arbitrarily from one-time step to the next. They have used
geophysical models the WaterGAP global hydrology model (WGHM), the atmospheric model ECMWF,
and the ocean circulation model OMCT to find the information about the temporal correlation patterns.
Further utilizing this knowledge, the temporal resolution has been enhanced without losing spatial
information within the framework of a Kalman smoother estimation procedure [27]. The stochastic
prior information derived from geophysical models and the daily GRACE observations are included
in the Kalman smoother to deliver an updated state of the gravity field for each day. The stochastic
information is introduced in terms of the process model, which is constructed from spatial and temporal
covariance matrices derived from the output of the geophysical models. Further, they used model
output of the years 1976–2000 (i.e., outside the GRACE time span) to guarantee that the GRACE
solutions are not biased towards the model. In particular, we attempt to utilize daily San data to quantify
the dynamic relationship between storage and discharge, characterized by the power-law coefficient of
−dQ/dt vs. Q curve during streamflow recession. Estimation of the power law coefficient is important
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because it can be used to characterize the interaction of subsurface water and surface water systems [28]
and to undertake prediction of recession flow which can be used for water resource management
during no flow period [29]. It can be used for estimating drainable storage of the catchment [13].
Additionally, the coefficient can be used to obtain information on active drainage network [30] and
baseflow index [31]. To assess the relative usefulness of San data, we also consider storage information
provided by GLDAS (Global Land Data Assimilation System) [32–36] and antecedent discharge, a proxy
of past storage [12,37,38] in our analysis. Section 2 provides information about the data products used
in this study, and Section 3 introduces the methods. In Section 4, the results and discussion about this
study are presented. Finally concluding remarks are given in Section 5.

2. Study Catchments and Preliminary Data Analysis

A total of 51 basins with size ranging from 60 to 8500 km2 were selected from the USGS database
for this study (Table A1). The location of gauging stations is given in the map provided in Figure 1.
In Figure 1 grey grid lines represent the GRACE data footprint used in the analysis, yellow circles
correspond to location of gauging stations and both of them were plotted over a precipitation
map of USA. The background of the map displays mean precipitation in mm/day from the period
1948 to 2010 (data collected from: https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html)
to provide an idea on the hydrological conditions of the study basins. GRACE based gridded
San dataset was obtained from TU Graz (Graz University of Technology), which is available at
https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2016/ [39–41].
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solution, respectively. Although it is recommended to use GRACE derived TWSA data for river 
basins with drainage area greater than 200,000 km2 [42], the data is useful even for small basins in 
USA. For example, Scanlon et al. 2016 used GRACE derived TWSA data for hydrological applications 
in 53 basins with drainage area ranging from 40,000 to 100,000 km2 and found the data to be useful 
in smaller basins [43]. 

We obtained daily San time series for each study basin from the gridded dataset. Further, first, 
a 30 m resolution digital elevation model (DEM) data was used to delineate drainage basins following 
D8 flow direction algorithm which was introduced by O'Catlaghan and Mark [44]. The D8 algorithm 
divides the plane into eight directions: (1) east, (2) north-east, (3) north, (4) north-west, (5) west, (6) 
south-west, (7) south, (8) south-east. The D8 flow directions are assigned to each grid following the 
concept of steepest gradient, i.e., water flows in the direction in which the gradient is the steepest and 
then for each outlet point (outlet points are gauging stations and their details are given in Table A1), 
we obtained boundary shape-files. The entire processing of getting boundary shapefiles was using 

Figure 1. Locations of gauging stations of the study basins with yellow circles and GRACE (Gravity
Recovery and Climate Experiment) data grids (gridlines in grey color) over the precipitation map
of USA.

The dataset provides daily San data from April 2002 to December 2016 at one degree by one degree
spatial resolution. However, it should be noted that the actual spatial resolutions of the gridded daily
TWSA data is lower with approximately 3◦ × 3◦ and 5◦ × 5◦ for monthly and daily solution, respectively.
Although it is recommended to use GRACE derived TWSA data for river basins with drainage area
greater than 200,000 km2 [42], the data is useful even for small basins in USA. For example, Scanlon et al.
2016 used GRACE derived TWSA data for hydrological applications in 53 basins with drainage area
ranging from 40,000 to 100,000 km2 and found the data to be useful in smaller basins [43].

We obtained daily San time series for each study basin from the gridded dataset. Further, first, a 30 m
resolution digital elevation model (DEM) data was used to delineate drainage basins following D8 flow
direction algorithm which was introduced by O’Catlaghan and Mark [44]. The D8 algorithm divides
the plane into eight directions: (1) east, (2) north-east, (3) north, (4) north-west, (5) west, (6) south-west,
(7) south, (8) south-east. The D8 flow directions are assigned to each grid following the concept of steepest
gradient, i.e., water flows in the direction in which the gradient is the steepest and then for each outlet
point (outlet points are gauging stations and their details are given in Table A1), we obtained boundary

https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
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shape-files. The entire processing of getting boundary shapefiles was using ArcGis 2010. For each basin
spatial weighted average rule was followed to obtain San each day. Weightage of a grid pixel for a basin is
the area of the pixel falling within the basin boundary.

For comparison purposes, we also obtained storage data provided by GLDAS [32]. We particularly
used storage data provided by Catchment Land Surface Model (CLSM) [45]. Unlike other land surface
models that assume uniform topographic and hydrologic characteristics at the grid scale, CLSM divides
the land surface into topographically defined catchments and models hydrologic processes based on
each catchment’s topographical statistics. It provides storage information at daily [45,46] timescale
from 1948 to present. CLSM model based total water storage data (Scl) is obtained for the study basins
following the same spatial average technique discussed earlier.

Available daily discharge (Q) time series data for each study basin was obtained from the USGS
website https://waterwatch.usgs.gov/. Since we were interested in analyzing recession flows, we first
delineated the recession curves for each basin. A recession curve is defined as a continuously decreasing
streamflow time series lasting at least 5 days [47]. We also identified the recession curves from each
basin for which −dQ/dt continuously decreases with time to ensure minimization of the effect of errors
in our analysis [48,49]. Note that we selected basins that are relatively free from human interventions
using satellite maps (courtesy, Google Earth) to ensure that the streamflow time series were not
considerably altered. The basins are located either in rural areas, forest area or sub-urban areas of USA
states. Further we avoided the basins where dams have been constructed. The basins used in our
analysis are basically from a list of basins used by Swagat et al. [38].

3. Theoretical Backgrounds

Storage (S) change in a basin at any time (t) has to be equal to inflow rate (I) minus outflow rate
(O): dS/dt = I−O. Inflow is either rain or snowfall, whereas streamflow (Q), evapotranspiration (ET),
and groundwater loss (GL) constitute outflow (O). GL corresponds to outflow from the basin through
subsurface pathways. Although the mass balance equation provides a foundation to determine the
relationship between S and Q for a basin, the main challenge in solving the equation is that some of
the quantities are unobservable. In particular, direct measurement of storage S and GL is practically
infeasible. Large-scale ET measurements are generally associated with significant errors, particularly
when ground measurements are not available for calibration purposes [50]. An easy step towards
simplification of the mass balance equation is to focus on recession periods when inflow I is zero,
i.e., dS/dt = −O = −(Q + ET + GL). If all the three outflow variables (Q, ET and GL) decrease together
in time during a recession event, we can expect to see a strong functional relationship between Q and
dS/dt: Q = f(dS/dt). This assumption is particularly useful because dS/dt = dSan/dt, which means
we can directly use GRACE based storage anomaly information for determining the storage–discharge
relationship of a basin. Such a possibility, however, is mired with the fact that dSan/dt observations
are expected to be associated with large errors with respect to change in discharge measurement per
day (see Figure 2a). Large observational errors are likely involved because we are extracting San for
each basin from the GRACE dataset which is having a very poor resolution with respect to the average
size of our study basins [51]. One alternative to the obstacle above is to express discharge as a function
of storage itself: Q = f(San), since compared to dSan/dt, San is not expected to be influenced a lot by
observational errors. This is because as San(t) = S(t) − Sav, when we take dSan, i.e., San(t) − San(t− 1),
we will be left with S(t) − S(t− 1), as Sav will get cancelled. The term S(t) − S(t− 1) will have lot of
noise and is not suitable for storage discharge analysis.

https://waterwatch.usgs.gov/
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Figure 2. (a) There is almost zero correlation between dSan/dt and Q due to high observational errors
associated with dSan/dt, suggesting that dSan/dt cannot be used to predict Q. Although Q vs. San plot
exhibits less scatter, the correlation is not very strong, likely because of the fact that the relationship
is not one-to-one as shown in (b). Note that the figure was prepared using data from the sample
basin of Bluestone river near Pipestem, West Virginia with USGS id 03179000 having drainage area of
395 square miles.

Figure 2b shows the Q vs. San plot for the sample basin. Although the correlation of this plot
is better than that of the dSan/dt-Q plot, there is still a large amount of scatter, which is because
the relationship between San and Q can change from one recession event to another [33,48,49,52–55].
Figure 3 essentially shows that although the relationship San and Q can be strong for a recession event,
the relationship may vary considerably across events. It essentially suggests that we cannot construct
a single mathematical relationship between San and Q for a basin to predict streamflow. We need
to first characterize the dynamic relationship nature of storage–discharge relationship. One avenue
in this regard is proper characterization of the relationship between dQ/dt and Q during recession
periods following the method proposed by Brutsaert and Nieber [56]. Generally, the relationship
between dQ/dt and Q can be expressed as −dQ/dt = kQα, from which we can easily determine the
storage–discharge relationship of the basin [48,57,58]. Biswal and Marani noticed that the value of α
generally remains fairly constant for a basin, although the coefficient k varies by orders of magnitude
across recession events [47]. The median of the α values observed across the recession events can be
considered as the representative α (αr) of the basin [11,48]. Once αr is determined for a basin, k can
be computed for each recession event separately by fixing α at αr. This is essential because α and k
are typically highly correlated as the unit of k is dependent on α, and thus, α has to be fixed before
computing [54,55]. Although the value of αr is generally close to 2 [13], large variations are observed
sometimes [59]. However, for the sake of simplicity we assume here that αr = 2 for all the study basins.

It can be reasoned that k is primarily influenced by the initial storage in the basin [12,13]. Following
this, we attempt here to relate k with GRACE based storage anomaly, San. Since San has negative
values too, we modified San by subtracting maximum negative San from the storage time series of
each basin and added 1 to the time series. Since storage depletes gradually, we can expect k to be
influenced by past storage states of the basin [12,38]. In other words, k can be expressed as a function
of past San, and SanPN, the mean San from N to 2 days before the hydrograph peak. The analysis was
carried out following the least square linear regression method. Regression analysis was carried out
between dQ/dt and Q to get k and α of the Brutsaet–Nieber equation −dQ/dt = kQα. The correlation
between k and SanPN (indicated in terms of the coefficient of determination R2

anPN) is expected to
weaken with N. This logic was first proposed by Biswal and Nagesh Kumar [12], who related k
with QPN, mean discharge from N to 2 days before the hydrograph peak, a proxy for past storage.
The correlation between k and QPN is indicated in terms of R2

QPN.
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60 (c), and 120 (d). Decrease of R2 with N supports the hypothesis that the effect of catchment storage
on discharge decreases with time.

4. Results and Discussion

Most studies assume that the relationship between basin-scale storage and discharge, which is
characterized by the power-law coefficient k, to be unique for a basin [29,58]. Typically, k is related
to some observable basin properties for hydrological modelling purposes [38]. However, our study
supports the hypothesis that k can vary significantly across recession events as done by Biswal and
Nagesh Kumar [12], which is revealed by the fact that for the sample basin 08153500, where, k varies
by several orders of magnitude (Figure 4).
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We showed that k has a power–law relationship with basin storage represented by SanPN. R2
anPN

decreased with N in most cases, which was expected. Figure 4 demonstrates k vs. SanPN plots for a
sample basin. This phenomenon essentially suggests that the effect of storage on streamflow diminishes
with time [12,58]. We therefore consider only N = 10 for the subsequent analysis. Figure 5 shows k vs.
SanPN plots along with k vs. QPN plots and k vs. SclPN plots for three sample basins for N = 10. All the
plots exhibit power–law relationship. It essentially suggests any data that provides information on
basin storage can be used to predict recession coefficient k. Considering all the study basins, we found
that the 25th, 50th, and 75th percentiles are (0.46, 0.56, and 0.66), (0.28, 0.39, and 0.50), and (0.44, 0.50,
and 0.60), respectively, for R2

QP10, R2
anP10, and R2

clP10 (see Figure 6a–c). Performance of SanP10 (Figure 6b)
seems to suggest that GRACE is useful in providing information on basin storage for streamflow
modelling even though the data is available at such a coarse (1◦ × 1◦) resolution. Moreover, both QP10
and SclP10 appear to be more useful than SanP10 in predicting recession coefficient k (Figure 6a–c),
indicating that GRACE data is more erroneous. In other words, better estimation of k can be done
if we are provided with more accurate San data. To test this hypothesis, we continued our analysis
for the recession events during which both Q and San continuously declined with time. Note that
for 18 study basins only we found more than seven recession events satisfying the above criterion.
Figure 6d,e shows the boxplots considering R2

anP10 values for the 18 study basins. The 25th, 50th,
and 75th percentiles of R2

anP10 improved from (0.27, 0.43, and 0.54) (Figure 6d) to (0.36, 0.54, and 0.78)
(Figure 6e), respectively, which seems to be supporting the notion that better San data can lead to better
prediction of k. However, even according to Figure 6e R2

anP10 is close to zero for some of the study
basins, implying that GRACE data is not useful for estimation of recession coefficients in every basin.
It might be also possible that the relationship between past storage and recession coefficient is not
strong for those basins because of quick depletion of storage from groundwater reservoirs [12].Geosciences 2020, 10, x FOR PEER REVIEW 8 of 16 
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Figure 6. (A) The boxplots (a)–(c) are for the coefficient of determination (written in black) values of
the relationships between k and QP10 (R2
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, and between k and SclP10 (R2

clP10),
respectively, considering the 51 study basins. Figure 6, panel (B) is for 18 basins in which figure (d) is
the boxplot for coefficient of determination (written in blue color) for the condition when only discharge
decreases with time. (e) shows boxplot for the same 18 basins, considering only the recession events
during which both Q and San continuously decreases with time.

It should be highlighted that GRACE data is known for being associated with large observational
uncertainties [60], which is the reason why most studies use monthly average San. That is, daily GRACE
based San information is expected to be associated with even larger observational errors. Furthermore,
San data with 1◦ × 1◦ spatial resolution (a single pixel covers an area 12,321 sq. km) was obtained from
the original San dataset with 500 km spatial resolution [24], which means its use for small to medium
sized basins is not very appropriate. This is why it is recommended to use GRACE based San data for
large river basins with drainage area greater than 200,000 km2 [32,61]. GRACE based San data was also
used for relatively smaller basins and observed that the agreement between San and discharge declines
with decreasing drainage area [62]. Nevertheless, despite the above limitations related to GRACE
based San data quality, our results highlight the potential of gravimetric satellite missions to provide
crucial information on how the power–law coefficient varies across recession events. One possible
reason behind this could be that storage does not fluctuate a lot in space and time. This is perhaps
the reason why prediction of k in a basin can be performed even using San data from a nearby basin.
It should be kept in mind that recession flow is a result of complex interactions between various
hydrological phenomena such as rainfall, evapotranspiration, overland channel flow, and groundwater
flow. Nevertheless, despite the complexities, it seems basin scale hydrology can be described quite
well by simply understanding the relationship between storage and discharge. In connection with this
point, our results further strengthen the earlier notion that past storage information can be exploited to
predict k of a basin. This is because a basin is expected to drain groundwater slowly over a long period
of time, and hence past storage states can provide crucial information about the coefficient k of an
event [13,29,37,38].

The advantage of GRACE based storage anomaly data is that it can be used to predict k,
an important variable in hydrological modelling, without using streamflow data once the relationship
between SanPN and k is known. One may thus wonder if there is a unique or one-to-one relationship
between SanPN and k in which case we can predict k even for ungauged basins, i.e., basins that do not
have streamflow gauging stations. Figure 7 shows k vs. SanP10 plot considering all the recession events
from all the study basins. It is quite apparent that k vs. SanP10 data points from individual basins
show appreciable correlation, although the combined k vs. SanP10 plot is characterized by very high
scatter. It can be clearly noticed that (SanPN, k) data points from different basins show very different
relationships, meaning there is no unique relationship between SanPN and k. This is perhaps because
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the value of Sav (see Equation (1)) is not constant everywhere, and, therefore, San cannot independently
provide information on S, which actually controls the value of k. However, Sav is not expected to
vary considerably within a small region, which means if two basins are not situated far apart, we can
safely assume them to exhibit the same SanPN-k relationship. The basis for this assumption is that
hydrological characteristics do not fluctuate that much in space. For example, Figure 1 shows that
mean precipitation does not fluctuate so much within a GRACE pixel.
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and, therefore, it is not possible for us to use SanPN data for predicting streamflow in ungauged basins.

Following the reasoning above if we assume that SanPN values from both basins have appreciable
correlation, we can use SanPN time series of one basin to predict k for the other basin. The consequence
of this assumption is that we can predict k for an ungauged basin using SanP10 from a nearby gauged
basin. The idea is implemented here to predict k of a recession event for an ungauged basin using its
SanP10 value for the event in the k vs. SanP10 regression equation borrowed from the nearby gauged
basin. Note that a similar hypothesis was tested by Varaprasad et al. who used past discharge data
from nearby gauged basins to predict recession coefficients [29]. The main premise is that storage does
not fluctuate a lot in space. Figure 8a shows the predicted k vs. observed k plot for a sample basin
considered as pseudo-ungauged with the correlation coefficient (R2∗

anP10) which compares well with its
R2

anP10 (i.e., when the basin is considered as a gauged basin). The boxplot for the R2∗
anP10 considering

results from all the study basins is shown in Figure 8b. The 25th, 50th, and 75th percentile values of
R2∗

anP10 are, respectively, 0.31, 0.40, and 0.44. Figure 8c plots R2
anP10 −R2∗

anP10 values for all the basin to
show how R2∗

anP10 compares with R2
anP10. Overall, the results here suggest that GRACE based storage

anomaly data can be used to predict recession coefficients in completely ungauged basins.
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5. Summary and Concluding Remarks

Basin storage is an elusive entity of which direct observation is practically infeasible at present.
For hydrological modelling purposes, therefore, information on basin storage is commonly obtained
following a suitable analytical method. Once storage is estimated, it can be used to predict discharge
by constructing the relationship between storage and discharge. However, storage–discharge analysis
is typically associated with several uncertainties, and, therefore, any information on storage obtained
through measurement is expected to be very helpful in hydrological modelling. In this regard,
storage anomaly information (San) provided GRACE satellite mission has been proven itself to be
quite useful. The main aim of this study was to use GRACE based San data to predict the power
law recession coefficient k that effectively characterizes basin-scale storage–discharge relationship.
In particular, we attempted to predict k using past San information, SanPN, i.e., mean San from N to 2
days before the recession event. Results here seem to suggest that GRACE based San information can
explain variation of k across recession events. The relationship between SanPN and k was observed
to be declining with N, which supports the notion that the effect of storage k declines with time.
Furthermore, we observed that SanP10 is reasonably good at explaining variation of k. The correlation
between SanP10 and k further improved when we considered only the recession curves for which
both Q and San declined continuously, which means there is scope to improve k prediction if more
accurate satellite based San information is provided. Many studies have used different land surface
models to enhance data quality derived from GRACE and have successfully used them for hydrological
analysis [63–65]. Our study can further be improved by assimilating GRACE derived storage data with
CLSM storage data. Another limitation of GRACE based San data is that we cannot obtain the value of
average storage Sav for a region, and thus it is not possible to construct a universal relationship between
SanPN and k. However, results here imply we can safely assume that both San and Sav do not vary so
much in space, in which case k can be estimated for a recession event in an ungauged basin by putting
the SanP10 value in the k-San regression equation of a neighboring gauged basin. Overall, our study
demonstrated the potential of GRACE based San information to explain the dynamic nature of the
storage–discharge relationship.
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Appendix A

Table A1. Coefficient of correlation between k (recession constant) and past discharge and between k
and past total water storage from GRACE. Column 1 gives basin ID. Columns 2 and 3 are the latitude
and longitude of the gauging station of the basin. The 4th column is the drainage area of basin in square
miles. The 5th column is the correlation between k and past average discharge between 2 and 10 days
of discharge from peak discharge. The 6th column is the correlation between k and corresponding past
average total water storage from GRACE.

Basin ID Latitude Longitude Area (km)2 R2
QP10 R2

anp10

1591400 39.26 −77.05 59.31 0.72 0.71

1605500 38.64 −79.34 463.61 0.51 0.46
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Table A1. Cont.

Basin ID Latitude Longitude Area (km)2 R2
QP10 R2

anp10

1611500 39.58 −78.31 1748.24 0.43 0.44

1632000 38.64 −78.85 543.90 0.45 0.37

2013000 37.80 −80.05 419.58 0.42 0.48

2020500 37.99 −79.49 365.19 0.45 0.35

2053800 37.14 −80.27 282.31 0.59 0.54

2111180 36.07 −81.40 131.83 0.62 0.45

2111500 36.18 −81.17 231.03 0.68 0.44

2143040 35.59 −81.57 66.56 0.69 0.61

2152100 35.49 −81.68 156.69 0.56 0.56

2160105 34.54 −81.55 1965.80 0.66 0.34

2177000 34.81 −83.31 536.13 0.77 0.45

2330450 34.68 −83.73 115.77 0.71 0.38

2363000 31.59 −85.78 1289.82 0.41 0.16

2482550 32.71 −89.53 3486.13 0.00 0.00

3069500 43.13 −112.52 1869.97 0.49 0.06

3170000 37.04 −80.56 800.31 0.67 0.52

3179000 37.54 −81.01 1023.05 0.64 0.52

3182500 38.19 −80.13 1398.59 0.54 0.33

3237500 38.80 −83.42 1002.33 0.74 0.50

3301500 37.77 −85.70 3364.40 0.55 0.03

3303000 38.24 −86.23 1232.84 0.65 0.45

3441000 35.27 −82.71 104.64 0.64 0.27

3463300 35.83 −82.18 112.15 0.65 0.40

3473000 36.65 −81.84 784.77 0.63 0.59

3479000 36.24 −81.82 238.54 0.59 0.37

3500000 35.15 −83.38 362.60 0.77 0.42

6422500 44.14 −103.46 244.50 0.90 0.28

6431500 44.48 −103.86 427.35 0.60 0.70

7021000 37.15 −90.08 1095.57 0.43 0.61

7050700 37.15 −93.20 637.14 0.52 0.39

7056000 35.98 −92.75 2147.10 0.32 0.08

7058000 36.63 −92.31 1476.29 0.51 0.28

7148400 36.82 −98.65 2543.37 0.55 0.43

7196900 35.88 −94.49 105.15 0.66 0.12

7197000 35.92 −94.84 808.08 0.42 0.28

7261500 34.87 −93.66 1061.90 0.47 0.13

7268000 34.48 −89.22 1362.33 0.55 0.29
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Table A1. Cont.

Basin ID Latitude Longitude Area (km)2 R2
QP10 R2

anp10

8066200 30.72 −94.96 365.19 0.45 0.27

8150700 30.66 −99.11 8409.70 0.59 0.55

8153500 30.29 −98.40 2411.28 0.63 0.63

9484600 32.04 −110.68 1183.63 0.03 0.03

11055500 34.12 −117.14 43.77 0.85 0.39

11109600 34.52 −118.76 963.48 0.64 0.33

11451100 39.17 −122.62 155.92 0.87 0.44

14034470 45.34 −119.52 175.08 0.18 0.17

14307620 44.06 −123.88 1522.91 0.83 0.41
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