
animals

Article

Decision Trees for Predicting the Physiological
Responses of Rabbits

Patrícia Ferreira Ponciano Ferraz 1,*, Yamid Fabián Hernández-Julio 2 ,
Gabriel Araújo e Silva Ferraz 1, Raquel Silva de Moura 3, Giuseppe Rossi 4,
Jairo Alexander Osorio Saraz 5 and Matteo Barbari 4

1 Department of Agricultural Engineering, Federal University of Lavras (UFLA), Lavras,
Minas Gerais 37200-900, Brazil; gabriel.ferraz@ufla.br

2 Faculty of Economics, Administrative and Accounting Sciences, Universidad del Sinú Elías Bechara Zainúm,
Montería, Córdoba 230001, Colombia; yamidhernandezj@unisinu.edu.co

3 Department of Animal Science, Federal University of Lavras (UFLA), Lavras, Minas Gerais 37200-900, Brazil;
raquelmoura@ufla.br

4 Department of Agriculture, Food, Environment and Forestry, University of Firenze, 50145 Firenze, Italy;
giuseppe.rossi@unifi.it (G.R.); matteo.barbari@unifi.it (M.B.)

5 Departamento de Ingeniería Agrícola Alimentos, Sede Medellin, Facultad de Ciencias Agrarias,
Universidad Nacional de Colombia, Medellín 050004, Colombia; aosorio@unal.edu.co

* Correspondence: patricia.ponciano@ufla.br

Received: 7 October 2019; Accepted: 8 November 2019; Published: 18 November 2019
����������
�������

Simple Summary: The primary aim of this paper is to develop decision trees to predict rabbits’
physiological responses, such as the respiratory rate or ear temperature, based on environmental
variables (dry bulb temperature and relative humidity). The decision tree for ear temperature
exhibited better statistical indices, indicating the benefits of using the ear temperature as an indicator
of thermal stress. Our findings confirm that the resulting decision trees are powerful classifiers,
and the results can be easily understood. Hence, the proposed decisions trees can aid in investigating
the influence of environmental conditions on physiological responses and, consequently, the rabbits’
welfare. These results can be used in practical situations and can be obtained in real time to support
rabbit breeders in decision-making to improve environmental conditions for rabbits.

Abstract: The thermal environment inside a rabbit house affects the physiological responses and
consequently the production of the animals. Thus, models are needed to assist rabbit producers in
decision-making to maintain the production environment within the zone of thermoneutrality for the
animals. The aim of this paper is to develop decision trees to predict the physiological responses of
rabbits based on environmental variables. The experiment was performed in a rabbit house with
26 rabbits at eight weeks of age. The experimental database is composed of 546 observed data
points. Sixty decision tree models for the prediction of respiratory rate (RR, mov.min−1) and ear
temperature (ET, ◦C) of rabbits exposed to different combinations of dry bulb temperature (tdb, ◦C)
and relative humidity (RH, %) were developed. The ET model exhibited better statistical indices than
the RR model. The developed decision trees can be used in practical situations to provide a rapid
evaluation of rabbit welfare conditions based on environmental variables and physiological responses.
This information can be obtained in real time and may help rabbit breeders in decision-making to
provide satisfactory environmental conditions for rabbits.
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1. Introduction

The profitability of a rabbit farming system must consider the rabbit’s breed, nutrition,
management, and sanitation as well as the thermal environment of the animal during the productive
period [1]. Currently, increasing pressure has emerged from public opinion and consumers for farms
to improve housing conditions and comply with animal welfare standards [2]. In addition, intensive
housing systems have a direct influence on the comfort and welfare of the animals, due to the difficulty
in maintaining a thermal balance inside the facilities and in allowing natural behaviours of the animals,
affecting the productive performance [3].

For effective rabbit meat production, a thermoneutral zone (TNZ) of 15–25 ◦C should be
maintained [4], with a relative humidity (RH) of 60–70% [5]. In regions with tropical and subtropical
climates, joint problems arise from high indoor temperatures associated with a high RH of the rabbit
house during the summer under imperfect ventilation conditions. Rabbits are much more tolerant of
low temperatures than of high temperatures [6]. When subjected to severe heat stress and heat load
increases, rabbits try to sustain homeothermy by using internal physiological means to re-establish a
thermal balance [7]. According to [8], the respiratory rate (RR, %) and ear temperature (ET, ◦C) reflect
the primary physiological mechanism for heat dissipation because most of the sweat glands in rabbits
are non-functional and little perspiration (evacuation of water through the skin) occurs because of
their fur [7].

The ET plays a vital role in the thermoregulation of rabbits [7]. The rabbit’s ear exerts a
physiological function due to a vasomotor mechanism that controls blood circulation from the body
core to the blood vessels and blood capillaries, which can be dilated and constricted by a vasomotor
tool [9].

When the body temperature of the animal increases, it may cause acceleration in the breathing,
attempting to dissipate the excess heat and maintain homeothermy. According to [10], when behavioural
adjustments do not achieve a maintenance of homeothermy, animals exhibit physiological adaptations,
with a change in RR being one of the first symptoms presented.

Therefore, the environment inside a rabbit house exerts a strong influence on the rabbit production
system because it affects the physiological responses of the animals; thus, it is crucial to characterize the
optimal environmental conditions for raising rabbits. Investigating the influence of the environment
on rabbit physiological responses is vital to understand the effects of thermal conditions on rabbit
breeding [10]. For these reasons, tools (models) are needed to assist rabbit producers in making
decisions to maintain the production environment within the TNZ for the animals, in order to obtain
maximum production.

Decision trees are one of the most potent and popular classifiers available, and because they
follow a flow system similar to that of human logic and reasoning, decision trees can be trained [11–14].
According to [15], the accuracy of a decision tree is comparable to or higher than the accuracy of other
classification models [16] because decision trees do not require a high number of parameters to be
adjusted in their design [17]. Due to their intuitively appealing topology, the resulting classification or
regression models are easy to comprehend [18,19].

Decision trees have been used as reliable techniques for the development of predictive models
to support decision-making because they are hierarchical graphical structures that can be easily
understood and applied. Decision trees are characterized by segmenting heterogeneous data according
to their similarities such that the data become more homogeneous about the target variable [20,21].

For the above-mentioned reasons, the primary aim of this paper is to develop decision trees for
predicting the physiological responses of rabbits based on environmental variables.
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2. Materials and Methods

2.1. Housing and Animals

This experiment was conducted in the Sector of Rabbit Breeding of the Animal Science Department,
Federal University of Lavras (Lavras, Minas Gerais, Brazil). In the trials, 13 female and 13 male hybrid
New Zealand White × Botucatu rabbits at eight weeks of age with a body weight of 1310 (±290) g were
used. This age is considered as the growing period between weaning and slaughter [22]. During this
period, it is expected that the rabbits will gain weight.

The committee of animal research and ethics of the Federal University of Lavras (UFLA) approved
all procedures used in this experiment (protocol number 026/2016).

The rabbit house has the following measurements: 6.20 m wide, 9.60 m long, 3.40 m ceiling height,
0.80 m wall height, 1.15 m eaves. The roof is composed of clay tiles and has an inclination of 30◦

(Figure 1). The rabbit house is oriented along the directions of magnetic East–West. The house has a
concrete floor and two cemented drainage ditches with dimensions of 1.50 × 6.00 m and a depth of
0.80 m.
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Figure 1. Rabbit house scheme. (Left) Floor plan of the rabbit house. (Right) Cut AB of the rabbit
house section (B). Source: adapted from [1].

The rabbits were housed in single cages (0.060 × 0.080 × 0.045 m). Water and a commercial feed
with a constant formulation were provided ad libitum to the rabbits throughout the experimental
period. The feed satisfied the nutritional requirements of the animals, as recommended by [23].

2.2. Environmental and Physiological Response Measurements

To characterize the thermal environment inside the house, the dry bulb temperature (tdb, ◦C) and
RH (%) at a height of 1.0 m inside the house were measured.

The environmental variables (tdb and RH) were evaluated using a digital thermal hygrometer
(INSTRUTEMP®, mod. ITWH-1280, precision of ±0.1 ◦C and 1.0%). The sensors were positioned to
form a 1.0 × 1.0 m grid, with a total of 48 data points inside the house.

The ET was measured at three different points in the animal ear (base, middle, and tip), and the
average of the values was calculated. An infrared thermometer (Raytek Raynger ST, Raytek Corporation,
precision of ±0.1 ◦C) was used, with the emissivity control set to 0.95. The RR was obtained by counting
the movements of the flank of each animal for 15 s; this number was then multiplied by four to
determine the number of breaths per minute. The RR was evaluated with the aid of a digital timer
(±0.01 s). The environmental variables (tdb and RH) and physiological responses (ET and RR) of all
rabbits were assessed three times a day for seven days during the periods P1 from 7:00 to 8:00 a.m., P2
from 12:00 to 1:00 p.m. and P3 from 5:00 to 6:00 p.m. These periods were chosen to assess different
thermal conditions during the day.
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2.3. Dataset

A database containing the raw data for tdb (◦C) and RH (%) as input variables and the RR
(mov.min−1) and ET (◦C) as output variables was generated for the rabbits. The experimental database
was composed of 546 observed data points obtained from the experiment.

Data Partition Method for Validation of the Models

For analysis, the complete dataset (100%) was randomly distributed among two subsets using
random sampling as data partition method: The percentage for the first subset (training) was
70%, and for the second subset (validation) was 30%, following the methodology proposed by [24].
These parameters can be customized by the user to train the decision trees. Additionally, a further
subset was used to test the overall system performance; this subset consisted of the mean values of the
experimental measurements, according to the methodology proposed by [25]. In total, 21 mean values
were used to test the decision tree performance (Table 1).

Table 1. Mean experimental values for validation of the decision tree models.

Input Variables Output Variables

tdb (◦C) RH (%) RR (mov.min−1) SD ET (◦C) SD

23.4 76 83 ±14.1 23.8 ±1.8
23.5 70 71 ±15.8 22.9 ±2.1
23.6 77 78 ±16.5 24.2 ±1.5
23.6 74 76 ±14.3 20.2 ±1.5
23.8 86 72 ±20.7 24.2 ±1.6
24.5 78 75 ±11.9 25.8 ±1.5
24.5 87 81 ±22.1 24.2 ±1.9
24.7 77 70 ±18.6 24.6 ±2.0
25.0 73 86 ±17.4 25.4 ±1.9
25.4 84 81 ±21.8 26.4 ±1.7
25.5 80 86 ±14.5 24.7 ±1.7
26.0 73 82 ±22.5 28.1 ±1.0
27.5 72 107 ±23.3 28.5 ±0.9
27.6 81 108 ±28.1 28.8 ±0.9
27.7 73 97 ±28.2 29.3 ±1.0
27.7 74 72 ±12.7 28.1 ±1.2
27.8 84 88 ±23.4 28.8 ±1.5
27.9 82 83 ±32.6 29.2 ±0.9
28.0 75 109 ±23.2 28.9 ±1.0
28.1 77 98 ±23.4 28.7 ±1.3
29.2 67 99 ±28.4 29.1 ±1.2

tdb: dry bulb temperature. RH: relative humidity. RR: respiratory rate. ET: ear temperature. SD: standard deviation.

2.4. Data Preparation

The objective is to arrange the input and output variables in matrix form (m × n), where m
represents the number of instances and n represents the number of variables [26]. Table 1 shows the
mean values described in the previous section. The first two columns represent the input variables,
and the third and fourth columns represent the output variables. A similar table was constructed with
the complete dataset (546 data pairs) to apply the random data sampling method.

2.5. Decision Tree Model Development

Sixty decision tree models were developed to predict the RR and ET of rabbits exposed to thermal
challenges of different intensities and durations. Ten repetitions for each type of predictor selection
(“allsplits”, “curvature”, “interaction-curvature”) for each output variable were applied in the training
process, indicating that each output variable has thirty decision tree models containing tdb and RH as
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input variables and RR or ET as the output variable. As mentioned above, the mean data values were
used to assess the performance of the decision tree models. From these models, the model with the
best performance was selected to derive the performance results. To develop the decision tree models,
the MATLAB® 2017a [27] software tool was used.

Decision Tree Model Parameters

From the selected decision tree models, the ET model has the settings reported in Table 2.

Table 2. Decision tree parameters for ET.

Parameter Value

SplitCriterion ‘mse’
MinParent 10

MinLeaf 5
MaxSplits 381

NVarToSample ‘all’
MergeLeaves ‘on’

Prune ‘on’
PruneCriterion ‘mse’

QEToler 1.00 × 10−6

NSurrogate 0
MaxCat 10
AlgCat ‘auto’

PredictorSelection ‘interaction-curvature’
UseChisqTest 1

Stream []
Version 2
Method ‘tree’

Type ‘regression’

mse: mean square error.

The RR model has the parameters reported in Table 3.

Table 3. RR decision tree parameters.

Parameter Value

SplitCriterion ‘mse’
MinParent 14

MinLeaf 7
MaxSplits 381

NVarToSample ‘all’
MergeLeaves ‘on’

Prune ‘on’
PruneCriterion ‘mse’

QEToler 1.00 × 10−6

NSurrogate 0
MaxCat 10
AlgCat ‘auto’

PredictorSelection ‘allsplits’
UseChisqTest 1

Stream []
Version 2
Method ‘tree’

Type ‘regression’

mse: mean square error.
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3. Results and Discussion

The parameters listed in Tables 2 and 3 were automatically selected by the software tool.
Descriptive statistical indices, such as the absolute and standard deviation, percentage error, coefficient
of determination R2, standard error and root mean square error (RMSE), and histograms were
computed to evaluate the effectiveness of the decision trees in predicting the physiological responses.
The performance results of the decision trees for the test subset (mean dataset) are listed in Table 4.

The average structures of the RR and ET decision trees are depicted in Figures 2 and 3, respectively.
In both decision trees, two splits can be observed; the first split is related to tdb and the second split is
related to RH, as the most important factors influencing the studied physiologic variables (RR and
ET). According to the experimental data, these decision trees are related to tdb values of 23.4–29.2 ◦C
and RH values of 67–87%, which represent common conditions in hot climates. In both decision trees,
the first split for tdb occurs at approximately 25 ◦C, which is in accordance with reports affirming that
the TNZ for rabbits is below 25 ◦C [4]. Conditions of stress induce behavioural and physiological
modifications to enable rabbits to cope with the stressor [28].
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Table 4. Statistical indices for test results for the decision tree models.

Input Variables Output Variables

tdb (◦C) RH (%)
Observed

RR
(mov.m−1)

Predicted
RR

(mov.m−1)

Absolute
Deviation

Standard
Deviation

Percentage
Error

Observed
ET (◦C)

Predicted
ET (◦C)

Absolute
Deviation

Standard
Deviation

Percentage
Error

23.4 76 83 83 0 0.00 0.00 23.8 23.6 0.2 0.14 0.84
23.5 70 71 72 1 0.71 1.41 22.9 23.1 0.2 0.14 0.87
23.6 77 78 73 5 3.54 6.41 24.2 24.3 0.1 0.07 0.41
23.6 74 76 74 2 1.41 2.63 20.2 20.3 0.1 0.07 0.50
23.8 86 72 71 1 0.71 1.39 24.2 24.3 0.1 0.07 0.41
24.5 78 75 76 1 0.71 1.33 25.8 25.9 0.1 0.07 0.39
24.5 87 81 80 1 0.71 1.23 24.2 24.3 0.1 0.07 0.41
24.7 77 70 70 0 0.00 0.00 24.6 24.6 0 0.00 0.00
25.0 73 86 89 3 2.12 3.49 25.4 25.6 0.2 0.14 0.79
25.4 84 81 83 2 1.41 2.47 26.4 26.2 0.2 0.14 0.76
25.5 80 86 85 1 0.71 1.16 24.7 24.6 0.1 0.07 0.40
26.0 73 82 80 2 1.41 2.44 28.1 28.2 0.1 0.07 0.36
27.5 72 107 113 6 4.24 5.61 28.5 28.4 0.1 0.07 0.35
27.6 81 108 108 0 0.00 0.00 28.8 28.8 0 0.00 0.00
27.7 73 97 98 1 0.71 1.03 29.3 29.2 0.1 0.07 0.34
27.7 74 72 72 0 0.00 0.00 28.1 28.1 0 0.00 0.00
27.8 84 88 91 3 2.12 3.41 28.8 28.9 0.1 0.07 0.35
27.9 82 83 82 1 0.71 1.20 29.2 29.2 0 0.00 0.00
28.0 75 109 111 2 1.41 1.83 28.9 28.7 0.2 0.14 0.69
28.1 77 98 101 3 2.12 3.06 28.7 28.7 0 0.00 0.00
29.2 67 99 97 2 1.41 2.02 29.1 29.1 0 0.00 0.00

Mean: 1.8 1.2 2.0 0.1 0.1 0.4
Minimum: 0 0 0 0 0 0

Median: 1 0.71 1.41 0.1 0.07 0.39
Maximum: 6 4.24 6.41 0.2 0.14 0.87

Standard error: 2.01 0.1
RMSE: 2.34 0.1

R2: 97.5% 99.8%

tdb: dry bulb temperature. RH: relative humidity. RR: respiratory rate. ET: ear temperature.



Animals 2019, 9, 994 8 of 13

According to the literature, the best parameter to assess for eventual stress conditions in rabbits is
the ET, due to the vasoconstriction process that occurs in this part of the body [28,29]. The rabbit ear is
the primary cutaneous vascular bed and plays a major role in temperature regulation [30]. According
to [31], if tdb is low (below 10 ◦C), the animal will curl up to minimize the total area losing heat and to
lower the ET. If the temperature is high (above 25–30 ◦C), the animal will stretch out to lose as much
heat as possible by radiation and convection and to increase the ET. Additionally, when tdb is higher
than the TNZ, the animal also pants to increase heat loss through water evaporation (latent heat).
Sweat glands are not functional in rabbits, and the only controlled means of latent heat evacuation
is achieved by altering the RR [31]. The RR is widely used and is considered the simplest variable
for evaluating the physiological conditions of animals [32]; moreover, it has the advantage of being
measured through visual analysis. The RR is an important parameter for evaluating an animal’s
comfort and well-being because as tdb increases, the RR also increases to enhance heat dissipation [33].

Based on Figures 2 and 3, it can be observed that for tdb values higher than the TNZ (25 ◦C),
the rabbits showed higher RR and ET values. These changes in physiological parameters arise because
rabbits are highly susceptible to heat stress, as they have few functional sweat glands and have
difficulty in eliminating excess body heat when the environmental temperature is high [7]. During
the experimental period, the RR of rabbits submitted to tdb values higher than 26.75 ◦C varied from
72 to 113 mov.min−1, and the ET ranged from 28.0 to 29.2 ◦C. In thermoneutral conditions, a rabbit’s
RR can range from 44 to 98 mov.min−1 for male and female rabbits, and the ET can range from
26.4 to 26.9 ◦C [34]. When tdb is above the TNZ, a number of adverse impacts on the animal can
result, such as reduced energy intake and metabolic rate [28], which, in most cases, are accompanied
by reduced performance, such as reduced growth rate, elevated mortality, and reduced resistance
to disease [35]. Furthermore, according to [36], high tdb values can cause drastic changes in the
reproductive performance of female rabbits, such as a reduced conception rate, altered embryonic
development, reduced milk production, changes in age at puberty, and increased pre- and post-weaning
mortality. In males, high tdb values can cause decreased testosterone concentrations, reductions in
ejaculate volume, concentration, and quality; and changes in sexual desire. Figure 2 shows that when
tdb was lower than 26.75 ◦C, the RR was lower (from 68 to 86 mov.min−1); moreover, Figure 3 shows
that when tdb was lower than 25.75 ◦C, the ET ranged from 20.3 to 26.2 ◦C. Based on the physical
responses (ET and RR), these results indicate that the rabbits are in a thermal comfort situation.

When tdb is below the TNZ, a negative influence is exerted on the animals. Similar to findings for
other animals, in cold challenge conditions, part of the animal’s feed energy intake that could be used
for growth or production is diverted to thermoregulation to maintain homeostasis [37]. For a severely
low tdb, animals can experience hypothermia, decreased alertness, and behavioural and physiological
disorders [38].

In addition to tdb, the RH is an essential parameter indicating thermal conditions for rabbits.
Rabbits are sensitive to very low humidity (below 55%) but not to very high humidity [31]. During
most of the experimental period, the RH was high, and the humidity level was not found to adversely
affect the rabbits at moderate temperatures. However, when tdb is too high (close to the rabbit’s
body temperature), a high RH can be a problem. According to [10], in this situation, latent heat
dissipation becomes inefficient because it is dependent on the RH. The dissipation of heat through
respiratory water vapour is decreased by the increase in ambient RH, resulting in discomfort and
potential prostration [31]. Unfortunately, this is a common situation in tropical climates during the
rainy season.

According to Figure 3, the decision tree can be interpreted as reported in Table 5.
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Table 5. Decision-making rule base.

Node Antecedent Then Part Consequence Antecedent Then Part Consequence

1 if tdb < 25.75 then node 2 elseif tdb ≥ 25.75 then node 3 else 26.4
2 if tdb < 23.7 then node 4 elseif tdb ≥ 23.7 then node 5 else 24.3
3 if tdb < 27.55 then node 6 elseif tdb ≥ 27.55 then node 7 else 28.7
4 if RH < 75 then node 8 elseif RH ≥ 75 then node 9 else 22.9
5 if RH < 85 then node 10 elseif RH ≥ 85 then node 11 else 25.1
6 if tdb < 26.75 then node 12 elseif tdb ≥ 26.75 then node 13 else 28.3
7 if RH < 73.5 then node 14 elseif RH ≥ 73.5 then node 15 else 28.8
8 if tdb < 23.55 then node 16 elseif tdb ≥ 23.55 then node 17 else 21.8
9 if tdb < 23.5 then node 18 elseif tdb ≥ 23.5 then node 19 else 23.9

10 if RH < 82 then node 20 elseif RH ≥ 82 then node 21 else 25.4
11 fit = 24.3
12 fit = 28.2
13 fit = 28.4
14 if tdb < 28.45 then node 22 elseif tdb ≥ 28.45 then node 23 else 29.2
15 if RH < 74.5 then node 24 elseif RH ≥ 74.5 then node 25 else 28.7
16 fit = 23.1
17 fit = 20.3
18 fit = 23.6
19 fit = 24.3
20 if tdb < 24.6 then node 26 elseif tdb ≥ 24.6 then node 27 else 25.2
21 fit = 26.2
22 fit = 29.2
23 fit = 29.1
24 fit = 28.1
25 if tdb < 27.95 then node 28 elseif tdb ≥ 27.95 then node 29 else 28.8
26 fit = 25.9
27 if RH < 75 then node 30 elseif RH ≥ 75 then node 31 else 24.9
28 if tdb < 27.85 then node 32 elseif tdb ≥ 27.85 then node 33 else 28.9
29 fit = 28.7
30 fit = 25.6
31 fit = 24.6
32 if tdb < 27.7 then node 34 elseif tdb ≥ 27.7 then node 35 else 28.8
33 fit = 29.2
34 fit = 28.8
35 fit = 28.9

tdb: dry bulb temperature. RH: relative humidity.

In addition to these descriptive statistical indices, functional relationships between the RR and ET
values predicted by the decision trees and the values observed during the experiment period were
compared, resulting in the respective equations (Equations (1) and (2)).

RRsimulated by DT = 0.90×RRObserved + 8.09 (Standard error = ±2.01) (1)

ETsimulated by DT = 1.014× ETObserved − 0.38 (Standard error = ±0.12) (2)

According to [39], if the intercept is close to 0 and the slope is close to 1, then the accuracy is
relatively high. The slope value in Equation (1) is close to 1, while the slope value for Equation (2) is
equal to 1, but the intercept value in Equation (1) is not close to 0. In Equation (2), the intercept value is
close to 0, indicating a better precision in the prediction of the output values [39]. Figures 4 and 5 show
histograms of the occurrence frequencies for the absolute deviation.

From 60 decision tree models, two final models were selected to predict two physiological output
variables: the RR and ET. The results show that the predicted values from the two final models are very
similar to the experimentally observed values. The ET model exhibited better statistical indices than
the RR model. The statistical indices indicate that the prediction errors of the decision tree for RR are
concentrated (76%) over a smaller range of absolute deviation, from 0 to 2 mov.min−1. The remaining
24% of the absolute deviations were concentrated from 3 to 6 mov.min−1. For the ET model, 76.3%
of the prediction errors were concentrated in an absolute deviation range of 0–0.1 ◦C. The remaining
23.8% of the absolute deviations are concentrated at 0.2 ◦C. Together, these results indicate an excellent
predictive capacity of the decision tree models.
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Figure 5. Occurrence frequencies for absolute deviation of the ET.

The decision trees developed in this research can be used in practical situations to provide
a rapid evaluation of rabbit welfare conditions. The decision trees enable one to estimate the
physiological responses (ET and RR) of rabbits under different thermal conditions based on tdb and
RH. This information can be obtained in real time and may help in decision-making to maintain
satisfactory environmental conditions for rabbits. Therefore, these physical responses may act as
indicators of thermal comfort or discomfort of the animals. If the rabbits are determined to be in
discomfort conditions based on their physical responses, it can be inferred that this thermal stress
situation may cause an imbalance in their body temperature and hence adversely affect growth and
reproduction [7,36]. In addition, animals reared under thermal stress can suffer losses in performance
and production due to eating disorders, weight gain, feed conversion, water consumption, changes
in blood parameters and enzymatic and hormonal reactions in addition to the imbalance of proteins,
energy, and minerals [40,41]. Therefore, the proposed decision trees can be used to evaluate the
physiological responses of rabbits to their thermal environment in order to better understand this
relationship, leading to an enhancement of both animal welfare and production efficiency [1]. In this
sense, for applications in intensive rabbit breeding, in an attempt to mitigate the harmful effects
of environmental stress, the housing characteristics and equipment must be adequate to provide
appropriate comfort to the animals, while also supporting the management of breeding, providing
greater financial gain for the producer [1].
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4. Conclusions

Decision tree models were successfully employed to predict physiological variables, based on
ranges of input variable values and decision-making rules determined from the data.

Environmental variables (such as tdb and RH) and physiologic variables (such as RR and ET)
can be evaluated as a knowledge-based management subsystem in a decision support system, which
provides information about data and potential relationships to assist in decision-making.

Additionally, it was shown that the decision trees can assist in predicting physiological responses.
The model exhibited a good fit between the observed and predicted data. Thus, the final decision trees
can support decision-making to avoid thermal stress conditions.
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