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Simple Summary: Arapaima gigas is a large, air-breathing, giant fish found in Amazonian rivers,
a characteristic that gives this species an advantage in oxygen-deprived waters. It has a very attractive
potential for aquaculture in the Amazon region due to its many advantages, including a fast growth
rate that approaches 10–15 kg/year. Here, we describe the gut microbiome of Arapaima to understand
the potential contribution of this bacterial community to the growth of this fish.

Abstract: Arapaima gigas is a large air-breathing fish found in Amazonian rivers, a characteristic that
gives this species an advantage in oxygen-deprived waters. It shows high potential for aquaculture
in the Amazon region due to its fast growth rate that approaches 10–15 kg/year. The aim of this
study was to explore the composition of the intestinal bacterial community of Arapaima gigas reared
in Ecuador using 16S rRNA gene high-throughput sequencing. The analysis revealed significant
differences in alpha diversity indices (p < 0.05) and differential distribution of minor components of
the intestinal microbiome between small and large fish. However, components with greater relative
abundance, such as Cetobacterium, are found in similar proportions.
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1. Introduction

Arapaima gigas (Cuvier, 1829), also called paiche or piracucu, is a giant Arapaimidae native to the
Amazon River basin, which can reach up to 3 m in length and 250 kg in weight and is found in Brazil,
Ecuador, Bolivia, Colombia, and Peru. This species has excellent attributes for aquaculture, including
a high growth rate of nearly 10–15 kg per year [1]. Information from the Food and Agriculture
Organization of the United Nations (FAO) on the production of this species have only been reported by
Brazil and Peru—in 2015, production totalled 8522 tons [2]. The intestinal microbiota of vertebrates is
composed of a diverse population of microorganisms that present a broad range of metabolic activities,
and may contribute to various metabolic processes of the host. Thus, microbiota may contribute
enzymes to complement digestive processes and vitamins to enhance nutrition. They may also play
a role in the defence against pathogenic microorganisms by preventing colonization, competing
for nutrients and adhesion sites, producing antimicrobial substances, and may also modulate the
host immune system [3]. In this context, understanding the composition of the microbiota could
provide relevant information regarding the management of the species’ food requirements in the
development of a sustainable aquaculture. It could also be useful for manipulating microbiota
during different growth stages in aquaculture systems to prevent pathogenic infection or to improve
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nutrition. Although microbiota modulation has been studied by probiotic supplementation, the use of
autochthonous probiotics seems to be more beneficial than the use of probiotics from other sources
of isolation [4]. The aim of this study was to explore the composition of the bacterial community of
Arapaima gigas reared in Ecuador using high-throughput sequencing.

2. Material and Methods

2.1. Sample Collection

A total of 7 fish were used in this study. These fish were collected from Acuatilsa farm, which is
located in Puyo-Pastaza, Ecuador. The intestinal contents were collected from small (n = 3, 70–95 g body
weight) and large (n = 4, 3–7 kg body weight) Arapaima gigas individuals. Using aseptic techniques, we
separated the digestive tract from the abdominal cavity, and compressed the hindguts to express the
intestinal contents into a sterile container. These samples were frozen at −20 ◦C until analysis.

2.2. DNA Extraction

Nucleic acid extraction was conducted using an MO BIO PowerFaecal® DNA Isolation Kit (MoBio
Laboratories Inc., Carlsbad, CA, USA), following the manufacturer’s instructions, with an initial
enzymatic treatment using lysozyme and proteinase as described in [5]. DNA concentration was
determined using the Qubit® dsDNA HS Assay kit (Life Technologies, Grand Island, NY, USA).
The V2–V4 region of the 16S rRNA gene was amplified by the fusion primer method using the primers
341F and 788R. The amplicons we obtained were purified with the QIAquick® PCR Purification kit
(Qiagen, Valencia, CA, USA). DNA sequencing was performed via an Ion Torrent (Life Technologies,
California, CA, USA).

2.3. Bioinformatics and Statistical Analysis

Sequencing reads of the 16SrRNA gene were processed and analyzed using UPARSE [6].
The quality of the reads was assessed using FastQC software, and the reads were filtered by quality and
length by using the USEARCH algorithm. After the resulting quality-filtered FASTA files were merged,
the sequences were trimmed to 160 bp, sorted by abundance, and singletons were discarded. The reads
were then clustered into operational taxonomic units (OTUs) based on 97% identity using UPARSE
with the “cluster_otus” command in USEARCH. OTUs containing <5 sequences were also removed
from the dataset. Taxonomy was assigned via the SINTAX approach implemented in USEARCH.
Taxonomy assignment of the OTUs was performed by comparing sequences, with the RDP training set
v16 [7] as the reference database. The R package Phyloseq [8] was used for data analysis and plotting.
Differential abundance of bacterial components between small and large A. gigas was assessed using
the Wald test, and P values were corrected using the Benjamini–Hochberg false discovery rate method
using the R package DESeq2 [9]. Microbiota data have been deposited in the Sequence Read Archive
of the National Center for Biotechnology Information (Sequence Read Archive (SRA), NCBI, Bethesda,
MD, USA) under the accession ID SRP152854.

2.4. Ethical Notes

The study was conducted in accordance with the guidelines of the Bioethics and Biosecurity
Committee of the Instituto de Nutrición and Tecnología de los Alimentos (INTA) at Universidad de
Chile. The ethical approval code is FCYT2/17JR.

3. Results

In total, 193,139 raw reads were obtained after sequencing. After the initial quality filtering
process, 56,430 sequences were retained. The mean read depth per sample was 8062 ± 1795 sequences
per sample. In all samples, a total of 168 OTUs were detected. Within these OTUs, all those with fewer
than 5 sequences, those assigned as Cyanobacteria, and sequences that were unclassified at the kingdom
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level were eliminated—thus, 84 OTUs were retained. Table 1 shows the calculated alpha diversity
of the bacterial composition within each sample as expressed through the observed OTUs, Chao1,
Shannon, and Simpson indices. The normal distribution of each index value was determined using the
Shapiro-Wilk test, and subsequently, the t-test was applied for comparison. This analysis showed that
small fish have alpha diversity indices that are significantly higher than those of large fish.

Table 1. Alpha diversity indices of small and large Arapaima gigas individuals.

Group Size Sample
Alpha Diversity Index *

OTUs Chao1 Shannon Simpson

Small

C1 51 60 2.087 0.823

C2 50 53 1.915 0.759

C4 60 63 2.291 0.818

Est. mean 54 a 59 a 2.098 a 0.800 a

Large

7 33 35 1.527 0.638

8 37 38 1.618 0.659

12 42 49 1.758 0.748

18 40 40 1.932 0.793

Est. mean 38 b 40 b 1.709 b 0.709 a

* Different letters superscripts (a or b) indicate significant differences in alpha diversity between groups,
considering p < 0.05.

Composition of the intestinal microbiota of both small and large A. gigas is dominated by two
phyla—Fusobacteria and Firmicutes (Figure 1A), which together represent approximately 100% of the
relative abundance of each sample. Furthermore, the prevalent classes in both cases correspond to
Fusobacteriia and Clostridia. Composition of microbiota at the genus level is represented by two genera,
Cetobacterium and Romboutsia (Figure 1B). Relative abundance of Cetobacterium ranged from 55 to 82%
in small fish and from 58 to 87% in large fish. This genus was followed by Romboutsia with 2.3–13%
and 1.3–36%, respectively. Other genera observed in minor abundances were Clostridium sensu stricto,
Hespellia, Sphingobacterium, and Staphylococcus. Interestingly, the significant differences in composition
of the microbiota between small and large fish were observed in these minor components (Figure 2).
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Figure 2. Analysis identifying statistically significant differences in intestinal microbiome components
of Arapaima gigas. The positive values of the log2-fold change indicate that the operational taxonomic
units (OTUs) are significantly higher in small fish than in large fish, considering p < 0.05.

4. Discussion

Our results clearly indicated that the intestinal microbiota of A. gigas is dominated by the genus
Cetobacterium. This genus has been identified as a component of the microbiota of other freshwater
fish, such as Oreochromis niloticus [10] and Cyprinus carpio [11]. Interestingly, Cetobacterium has
been observed in high relative abundance (72–94%) in Lepomis macrochirus, Micropterus salmoides,
and Ictalurus punctatus [12]. It has been reported that Cetobacterium isolated from the intestine of
freshwater fish produces vitamin B-12 [10]. The importance of this genus in the production of
vitamin B-12 in fish was revealed in a study of microbiota of the Japanese eel, ayu, carp, tilapia,
goldfish, and catfish—specifically, carp and tilapia did not require dietary vitamin B-12, and they
showed high levels of Cetobacterium (namely, Bacteroides type A) and vitamin B-12 in their intestinal
content [13]. A recent study by Hao et al. [14] described that the abundance of Cetobacterium was
negatively correlated with Bacteroides, and this balance might be modulated by their diet. In fact,
Cetobacterium decreased drastically due to dietary changes in grass carp Ctenopharyngodon idella.
According to our results, abundance of Bacteroides is low with respect to Cetobacterium. Therefore,
studies about microbiota and diet are necessary to understand the possible beneficial presence
of this vitamin-producing bacterium. On the other hand, the genus Romboutsia corresponds to a
recently created taxon [15] that includes some strains that were previously classified as Clostridium.
Genomic information revealed that the sequenced strain of this taxon showed a limited capacity
to synthesize amino acids, vitamins, and pathways for the utilization of simple carbohydrates.
Considering this data, the role of this bacterium in the gut of A. gigas could be less relevant in
terms of the supply of vitamins and cofactors.

The significant bacterial genera presented in small fish were Bacteroides, Sphingobacterium,
Corynebacterium, Staphylococcus, and Hespellia. Carbohydrate fermentation occurs by members of
the genus Bacteroides, which are known to be short-chain fatty acid producers with an important role
against gut inflammation [16]. On the other hand, members of the genus Corynebacterium isolated from
fish have been highlighted regarding the production of amino acids [17].

Previous studies have described the changes in dominant populations of fish microbiota during
growth [18]. In the case of coho salmon, studies suggest that stable gastrointestinal microbiota could
be acquired in the juvenile stage, where microbiota showed a similar composition in several sizes
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examined [19]. Our results coincide with these previous observations, considering the dominance of
Cetobacterium and the reduced alpha diversity in larger fish. Other examples of high abundant bacteria
(>80% relative abundance) in fish microbiota have been reported previously [18,20].

5. Conclusions

Although there are significant differences in the intestinal microbiota of small and large fish
of A. gigas, members with greater relative abundance have been found to be present in similar
proportions. Our results also highlight the dominance of the genus Cetobacterium in both sizes
examined. The contribution of this genus to host nutrition and health should be explored in future
studies. These results can be useful developing a sustainable set of this species.
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