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Simple Summary: Studies have revealed a rapid global and continental loss of genetic resources
for native sheep breeds that is more critical in Europe and the Caucasus region. Therefore, an
urgent step is needed to halt this negative trend. Viable and functional epididymal spermatozoa
could be retrieved from castrated, slaughtered, or accidentally dead animals with good pregnancy
outcomes; however, many factors reported to affect the quality and cryo-tolerance of artificial
vagina-collected, as well as electro-ejaculated, ram spermatozoa have not been extensively studied
in ram epididymal spermatozoa despite being a cheap alternative for gene conservation. Given the
context mentioned above, we assessed the effects of three different commercial soy lecithin-based
semen extenders (AndroMed®, BioXcell®, and OviXcell®) and two spermatozoa concentrations
(200 × 106/mL vs. 400 × 106/mL) on the freezability of ram epididymal spermatozoa. BioXcell®

and OviXcell® produced significantly higher post-thaw specific kinematics and better protected the
ram epididymal spermatozoa head membrane compared to AndroMed®. In contrast, the normal
tail morphology is better maintained in AndroMed®. The 400 × 106 spermatozoa/mL concentration
better preserved the ram epididymal spermatozoa head membrane integrity. The ideal concentration
for cryopreserving ram epididymal spermatozoa is 400 × 106 spermatozoa/mL. However, the
extenders must be optimized for more effective ram epididymal spermatozoa freezing.

Abstract: There are limited studies on the factors affecting the success of ram epididymal spermatozoa
(REPS) cryopreservation. On this note, the current study assessed the influence of three commercial
soy lecithin-based semen extenders, AndroMed® (AND), BioXcell® (BIO), and OviXcell® (OVI), and
two concentrations (400 × 106 vs. 200 × 106 spermatozoa/mL) on the pre-freeze and post-thaw
quality of REPS. The REPS were retrieved from nine adult rams’ testes and diluted with each of the
three extenders to both concentrations. Straws were frozen manually. Standard motility (SMP) and
kinematic parameters (KPs) were assessed via a CASA, while spermatozoa viability, morphology, and
acrosomal integrity were assessed via the Kovács–Foote staining technique. The concentration did not
significantly affect the pre-freeze and post-thaw SMP and KPs of REPS. BIO and OVI had significantly
higher pre-freeze and post-thaw BCFs, post-thaw VAP, and the percentage of all intact heads than
AND. In contrast, AND had a significantly lower percentage of REPS with tail defects than BIO and
OVI. The 400 × 106 spermatozoa/mL concentration resulted in a significantly higher percentage of all
intact heads than the 200 × 106 spermatozoa/mL concentration. Freezing significantly increased tail
defects and decreased the percentage of REPS with distal cytoplasmic droplets. The cryopreservation
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of REPS at the 400 × 106 spermatozoa/mL concentration is recommended. All three extenders must
be optimized to preserve the viability, membrane integrity, and better normal morphology of REPS;
the reason for increased tail abnormality after the freezing/thawing process needs to be studied.

Keywords: AndroMed®; BioXcell®; OviXcell®; soy lecithin; ram epididymal spermatozoa; cryopreservation;
membrane integrity

1. Introduction

Semen cryopreservation is an important technique that facilitates modern assisted re-
productive technologies and ensures the conservation of valuable animal genetic resources
(AGRs) in the form of frozen semen for several years or decades, while maintaining its
viability and fertilizing ability. Sperm collection in animals with erectile dysfunction is
compromised or not feasible via artificial vaginas or electro-ejaculators [1]. Therefore,
epididymal spermatozoa (EPS) collection and cryopreservation provides the cheapest and
easiest alternative means of collecting spermatozoa to conserve AGRs of a valuable sire in
the case of sudden death or castration [2]. Moreover, studies in different species proved
that EPS resulted in good-to-excellent pregnancy rates following AI in boar (92.0%) [3],
cattle (58.8%) [4], sheep (87.5%, 58.5%, and 55.0%) [5–7], goats (61.2%) [8], stallions (27.8%
and 64.0%) [9,10], and red deer (75.0%) [11]. Therefore, it is considered the most viable,
cheapest, and easiest way to conserve the genetic resources of endangered, threatened, or
valuable animals that die accidentally.

Semen extenders are solutions that provide nourishment and protect sperm cells from
injury during the cooling and freezing process. They are one factor that affects the fertility
of cervical insemination [12]. Some researchers have reported that they greatly influence
the quality of frozen–thawed EPS in sheep [12,13] and alpacas [2]. Extenders can be conven-
tional or commercially prepared. The most used ram semen extender is tris-citric egg yolk.
The commercially available ones are classified based on their origin/composition. They
include those that are soy lecithin-based (AndroMed®, BioXcell®, Biociphos Plus®, Botu-
Bov®–soy lecithin, and OviXcell®), egg-yolk-based (Biladyl®, Botu-Bov® Triladyl®, and
BullXcell®), milk-based (INRA96®), and protein-free (OptiXcell®) [14–18]. Different studies
were conducted on the effects of commercially prepared semen extenders on the freezability
of the spermatozoa of bulls [15,16,19,20], buffalo [21], goat bucks [22], and rams [23–25].
In recent years, there has been a call by researchers against the use of egg-yolk-based
extenders due to the wide variability of their components and microbial contamination risk,
leading to endotoxin production, reducing spermatozoa post-thaw viability and acrosomal
integrity [25,26]. An alternative cold-shock protector for egg yolk is plant-based lecithin.
Several studies have been conducted on the effects of different semen extenders on the
freezability of artificial vagina (AV)-collected ram spermatozoa [27–29]; however, there
have been fewer studies on ram epididymal spermatozoa (REPS), particularly on the effects
of soy lecithin-based commercially available semen extenders [12,13]. Most of the studies
on the effects of soy lecithin-based semen extenders primarily focused on AV-collected
ram spermatozoa [17,25,26,30–32]. Moreover, the studies conducted on REPS were mostly
on the effects of collection methods [13], handling/storage conditions or transportation
temperature [33–35], washing [36], egg yolk-based extenders [12,13], and the effects of
buffers and sugar combinations [37] on their post-thaw quality characteristics. This being
the case, there is a need to explore other factors affecting REPS’s post-thaw quality.

The dilution rate or sperm-freezing concentration effect is another exciting factor worth
investigating regarding REPS freezability. Some researchers have reported it to affect the
quality/success of AV-collected cryopreserved spermatozoa in sheep [26,38,39]. The lower
concentration (200 × 106 spermatozoa/mL) was reported to result in better post-thaw quality
parameters than the higher doses (400 × 106 or 800 × 106 spermatozoa/mL) [26,40], however,
extreme dilution was found to negatively affect the membrane integrity of ram spermatozoa
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and cause capacitation-like changes [41], and cryopreservation has an additive effect that
damages the cells [38]. Moreover, for a successful artificial insemination program, the
technique employed in depositing spermatozoa into the receptive female reproductive tract
determines the dilution rate [39]. Hence, it is important to identify the most ideal dilution
rate/sperm concentration with which to freeze REPS. Moreover, there are fewer or no
studies on the ideal spermatozoa concentration of REPS that leads to less detrimental effects
on its post-thaw quality. On this note, the current study attempted to investigate the effects
of three different commercially available soy lecithin-based semen extenders (AndroMed®

(AND), BioXcell® (BIO), and OviXcell® (OVI), with compositions detailed in Table 1) and
two different spermatozoa concentrations (400 × 106 vs. 200 × 106 spermatozoa/mL), or
their most suitable interactions, on the freezability of REPS. The current study did not
consider the breed effect because the sole aim was to identify the ideal concentration,
extender, or their most suitable interactions for freezing REPS, regardless of the breed, to
enhance the gene conservation of local sheep breeds.

Table 1. Compositions of the three commercial soy lecithin-based semen extenders.

AndroMed® (100 mL) BioXcell® (1000 mL) OviXcell® (100 mL)

Phospholipids Glycine (0.2 g/L) Amino acid
TRIS TRIS (2.3 g/L) Buffers
Citric acid Monohydrate citric acid (2.5 g/L)

Sodium citrate (6.2 g/L)
Potassium chloride (0.8 g/L)
Hydrate of calcium lactate (0.7 g/L)

Salts

Sugars
Fructose (1.2 g/L)
Monohydrate lactose (0.8 g/L)
Anhydrous glucose (0.5 g/L)

Sugars

Antioxidants Taurine (0.005 g/L) Taurine
Glycerol (6.7%) Glycerol (7.0%/40.2 g/L) Glycerol
Tylosin (5.7 mg) Tylosin tartrate (0.33 g/L) Tylosin tartrate
Gentamicin (28.6 mg) Gentamycin sulphate (0.24 g/L) Gentamicin
Spectinomycin (34.3 mg) Spectinomycin Spectinomycin sulfate (<0.2%)
Lincomycin (17.2 mg) Licospectin 100 (0.385 g/L) Lincomycin hydrochloride
Soy lecithin Soy lecithin (1.5 g/L) Soy lecithin
Ultrapure water Ultrapure water (ad 1000 mL) Ultrapure water

Sources: Extenders’ leaflets; [42].

2. Materials and Methods
2.1. Media, Reagents, and Materials

Three different commercial semen extenders, AndroMed® (AND) (13503/1200 CSS
One-step, 200 mL), BioXcell® (BIO) (016218 Easy to use, 250 mL), and OviXcell® (OVI)
(020997 Ready-to-use extender, 100 mL), were purchased from Minitube Ltd. (Tiefenbach,
Germany) and IMV technologies (L’Aigle, France). The AND and BIO extenders were
reconstituted according to the manufacturers’ guidelines, filled into sterilized 10 mL cen-
trifuge tubes, and stored at frozen conditions until required. All other plastic wares were
purchased from Falcons® (Corning Inc., Corning, NY, USA), and 0.25 mL transparent semen
straws were purchased from IMV Technologies (L’Aigle, France).

2.2. Study Location and Testicle Collection

The study was conducted at the Hungarian University of Agriculture and Life Sciences,
spermatology laboratory, Herceghalom, Hungary. Nine pairs of intact testes were collected
from 9 adult healthy rams (with health status according to the relevant EU regulations) of
different breeds, Merino (4), Racka (3), and Dorper (2), from slaughterhouses in Hungary
between November 2022 and March 2023. They were transported to the laboratory in a
cold box within 2 h and processed individually within 24 h to simulate field conditions, as
described by Egerszegi et al. [43].
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2.3. Epididymal Sperm Collection

The testes were weighed using a digital weighing scale after removing the scrotal
sac and lamina parietalis of the tunica vaginalis. Each cauda epididymis (CE) was care-
fully separated and weighed, and the spermatozoa were retrieved through slicing. The
visceral layer of the tunica vaginalis covering the CE was carefully removed to avoid blood
contamination. The stripped CE was washed with a PBS solution and then sliced with
a scalpel in a Petri dish containing 3 mL of a tris-citric acid fructose buffer solution (Tris
(Hydroxyl methylamino methane), 3.028 g; citric acid monohydrate, 1.70 g; fructose, 1.25 g;
and distilled water up to 100 mL), as described by Ahmed et al. [36]. The sliced CE was
placed in the tris buffer solution for 10 min to enhance spermatozoa collection, rinsed with
2 mL of the tris buffer, and filtered with gauze sheets; the final volume was then recorded.
The tris buffer solution was added to each sample from each CE, making an equal volume
of 10 mL, and centrifuged at 880 g for 10 min, according to Ahmed et al. [36]; see Figure 1.
Finally, the supernatant was removed, and the pellets that were retrieved from both CEs of
the same ram with a good mass motility score of 4–5 were mixed.
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Figure 1. Epididymal sperm collection via the slicing method. (a) Stripping the CE for slicing.
(b) Stripped CE ready for slicing. (c) Slicing the stripped CE. (d) Rinsing the sliced CE. (e) Filtering
the retrieved epididymal spermatozoa. (f) Centrifuging the retrieved epididymal spermatozoa.

2.4. Sample Dilution, Equilibration and Freezing

Samples were checked for concentration with a Makler counting chamber (Sefi Med-
ical Instruments, Haifa, Israel), using a phase-contrast microscope at ×200 magnifica-
tion. Part of the sample was taken and divided into three aliquots, and each of the
aliquots was diluted with one of the commercial semen extenders to a concentration
of 400 × 106 spermatozoa/mL at room temperature to give AND 400, BIO 400, and OVI
400. Part of each extended sample was aliquoted again and further diluted with the cor-
responding extender to a final concentration of 200 × 106 spermatozoa/mL, giving AND
200, BIO 200, and OVI 200. The extended samples were manually filled and sealed using
polyvinyl alcohol (PVA) into well-labelled and color-coded French Mini straws.

The filled and sealed straws were equilibrated in a refrigerator (5 ◦C for 2 h). The
freezing of REPS was conducted in a similar way as conventional AV-collected spermatozoa
freezing. It was carried out manually in a Styrofoam box at 4 cm above the liquid nitrogen
(LN2) for 8 min. Finally, the frozen straws were plunged into the LN2 for permanent
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storage. After about 2 weeks, the frozen samples were thawed (37 ◦C for 30 s) and assessed
for standard motility and kinematic parameters. Smears were prepared for membrane
integrity and morphology evaluation (Figure 2).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Experiment flow chart. 
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Figure 2. Experiment flowchart.

2.5. Sample Quality Assessment
2.5.1. Standard Motility and Kinematic Parameters

Pre-freeze and post-thawed spermatozoa’s motility and kinematic parameters were as-
sessed using a computer-assisted sperm analyzer (CASA) (Sperm VisionTM

Version 3.8 software, Minitübe Ltd., Tiefenbach, Germany). The samples were diluted to a
50–60 × 106 spermatozoa/mL concentration using the same extender. At least 10 random
fields per sample or a total of 500 spermatozoa were analyzed for standard motility (total
motility (TM, %) and progressive motility (PM, %)) and kinematic parameters: curvilinear
velocity (VCL, µm/s), average path velocity (VAP, µm/s), straight line velocity (VSL µm/s),
linearity (LIN = VSL/VCL × 100, %), straightness (STR = VSL/VAP × 100, %), beat cross
frequency (BCF, Hz), wobble (WOB = VAP/VCL × 100, %), and amplitude of lateral
head displacement (ALH, µm), as described by Goovaerts et al. [44], Kang et al. [4], and
Bergstein-Galan et al. [45].

2.5.2. Viability and Morphology Assessment

The acrosome, head, and tail membrane integrity, as well as the morphology, of
spermatozoa were evaluated via a modified Kovács–Foote staining method, using a



Animals 2024, 14, 1237 6 of 16

0.16% Chicago sky blue 6B (Sigma-Aldrich, St. Louis, MO, USA, C-8679) viability stain,
neutral red (Sigma N 2880), formaldehyde fixation, and 7.5% Giemsa solution (Sigma
GS-500) in distilled water prepared freshly before use for acrosome staining [46,47]. The
procedure involved the viability staining of the diluted samples and the air-drying of the
slides, fixation for 4 min, followed by rinsing with tap and distilled water, and finally staining
with a Giemsa solution for 3.5–4 h. After this, rinsing with tap water and the differentiation
of the stained slides in distilled water for 2 min were carried out for better categorization of
the spermatozoa. Slides were evaluated using an oil-immersion objective with bright-field
microscopy at ×1000 magnification with a yellow filter for better live/dead differentiation [46].
A total of three hundred cells were counted on each slide and classified into eight categories:
intact head, intact tail, and acrosome membrane (Intact); normal morphology (IHITIA);
intact with a proximal cytoplasmic droplet (IPD); intact with a distal cytoplasmic droplet
(IDD); intact with a tail defect (bent, broken, hairpin curved, or coiled tail) (IBT); intact
head and tail, damaged acrosome (IHITDA); damaged head with intact tail (DHIT); intact
head with damaged tail (IHDT); and damaged head, damaged tail, and damaged acrosome
(DHDTDA), as described by Kútvölgyi et al. [46]. Different spermatozoa categories are shown
in Figure 3. In addition, all distal cytoplasmic droplets and all bent, hairpin-curved tails were
counted regardless of intact or damaged membranes, and per cent, all intact spermatozoa
(IHITIA + IPD + IDD + IBT), all intact heads (IHITIA + IPD + IDD + IBT + IHITDA + IHDT),
and all intact tails (IHITIA + IPD + IDD + IBT + IHITDA + DHIT) were also calculated.
The values obtained for each category were presented in percentages.

(g) 

(c) 

(h) 

(f) 

(b) 

(d) 

(a) (e) 

Figure 3. The different post-thaw ram epididymal spermatozoa categories stained with the modified
Kovács–Foote staining technique (magnification × 1000, using a light microscope with an oil immer-
sion objective). (a) Intact head, intact tail, and acrosome membrane (Intact: IHITIA). (b) Intact with a
proximal droplet (IPD). (c) Intact with distal droplet (IDD). (d) Intact with a bent tail (IBT). (e) Intact
head, tail, damaged acrosome (IHITDA). (f) Damaged head with intact tail (DHIT). (g) Intact head
with damaged tail (IHDT). (h) Damaged head, damaged tail, and damaged acrosome (DHDTDA).

2.6. Data Analysis

Data from pre-freeze, post-thaw, and Kovács–Foote-stained REPS were collected,
recorded, and analyzed for descriptive statistics, using IBM® SPSS® statistical software
version 29. Normality was checked using a Shapiro–Wilk test, and transformations were
achieved using a two-step transformation. A general linear model using two-way anal-
ysis of variance was used to analyze the effects of extender and sperm concentration
(400 × 106 vs. 200 × 106 spermatozoa/mL), as well as their interaction, on standard motil-
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ity, kinematic parameters, viability, and morphological parameters, with the level of the
significance set at p < 0.05. Means were separated using the Tukey post hoc test. The
effects of freezing using different commercial soy lecithin-based semen extenders and the
overall effects of freezing and thawing on the percentage of distal droplets and tail defects
were analyzed using Student’s paired-sample t-test, and the significance difference was
checked using a two-tailed test. The results are presented as means ± standard errors of
means (SEs).

3. Results
3.1. General Parameters of Ram Epididymal Spermatozoa

In the current study, we determined certain parameters related to the ram testicles
and cauda epididymal (CE) weight, in addition to the concentration of the spermatozoa
retrieved from rams of different breeds (Table 2). The mean testicular weight, epididymal
weight, and spermatozoa concentration obtained were 157.78 ± 22.15 g, 14.25 ± 1.38 g, and
9061.44 ± 845.53 × 106/mL, respectively.

Table 2. General parameters of the ram epididymal spermatozoa retrieved from different ram breeds.

Parameters Range Mean ± SE

Testicular weight (g) 113.07–308.09 157.78 ± 22.15
Cauda epididymal weight (g) 7.89–20.39 14.25 ± 1.38
Spermatozoa concentration (106/mL) 5800–14,240 9061.44 ± 845.53

SE: standard error of means, n = 9.

3.2. Effects of Three Different Commercial Soy Lecithin-Based Semen Extenders and Two
Spermatozoa Concentrations on the Standard Motility and Kinematic Parameters of Pre-Freeze
Ram Epididymal Spermatozoa

The effects of the three different commercial soy lecithin-based semen extenders and
two spermatozoa concentrations on pre-freeze REPS are presented in Table 3. There was no
significant (p > 0.05) interaction between the extender and the spermatozoa concentrations
for all the parameters studied, so we present the main treatment effect. Similarly, the
standard motility and all kinematic parameters showed no significant (p > 0.05) difference
among the extenders and between the two spermatozoa concentrations, except for BCF.
The BIO and OVI extenders had significantly (p < 0.05) higher BCFs (30.18 ± 1.1 and
29.99 ± 1.0 Hz) than the AND extender (26.80 ± 0.8 Hz).

Table 3. Effects of three different commercial soy lecithin-based semen extenders and two sperma-
tozoa concentrations on the standard motility and kinematic parameters of pre-freeze ram epididy-
mal spermatozoa.

Extenders
Standard Motility and Kinematic Parameters

TM (%) PM (%) VCL (µm/s) VAP
(µm/s)

VSL
(µm/s) LIN (%) STR (%) BCF (Hz) WOB (%) ALH

(µm)

AndroMed® 72.22 ± 3.2 64.89 ± 3.4 163.94 ± 5.8 76.85 ± 2.3 54.05 ± 2.4 32.83 ± 1.3 70.00 ± 2.2 26.80 ± 0.8 a 46.61 ± 0.5 5.55 ± 0.2
BioXcell® 69.00 ± 3.8 62.44 ± 4.0 168.11 ± 3.9 82.21 ± 2.3 60.64 ± 3.1 35.50 ± 1.6 72.83 ± 2.4 30.18 ± 1.1 b 48.44 ± 0.6 5.21 ± 0.2
OviXcell® 67.61 ± 3.7 60.78 ± 3.9 169.06 ± 3.2 83.16 ± 2.2 62.00 ± 3.4 35.94 ± 1.5 73.22 ± 2.2 29.99 ± 1.0 b 48.56 ± 0.7 5.27 ± 0.1

p-value 0.633 0.727 0.863 0.336 0.215 0.267 0.463 0.020 0.080 0.695
Conc.

(106/mL)
200 67.85 ± 3.3 61.26 ± 3.4 167.48 ± 3.7 81.14 ± 1.9 59.80 ± 2.5 35.26 ± 1.2 72.85 ± 1.9 29.24 ± 0.9 48.04 ± 0.6 5.25 ± 0.2
400 71.37 ± 2.5 64.15 ± 2.8 166.59 ± 3.6 80.34 ± 1.9 58.00 ± 2.5 34.56 ± 1.2 71.19 ± 1.9 28.71 ± 0.8 47.70 ± 0.5 5.42 ± 0.2

p-value 0.170 0.231 0.556 0.379 0.302 0.808 0.584 0.834 0.985 0.181
p-value
Ext. *
Conc.

0.619 0.643 0.852 0.744 0.659 0.887 0.840 0.854 0.946 0.712

Conc.: concentration. TM: total motility. PM: progressive motility. VCL: curvilinear velocity. VAP: average
pathway velocity. VSL: straight line velocity. LIN: linearity of movement. STR: straightness. BCF: beat cross
frequency. WOB: wobble. ALH: amplitude of the lateral head displacement. Ext. * Conc.: extender * concentration
interaction effects. SE: standard error of means, n = 9. Means in the same column with different superscripts
a,b differ significantly.
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3.3. Effects of Three Different Commercial Soy Lecithin-Based Extenders and Two Spermatozoa
Concentrations on Standard Motility and Kinematic Parameters of Post-Thaw Ram
Epididymal Spermatozoa

Table 4 presents the effects of the three commercial soy lecithin-based semen extenders
and two spermatozoa concentrations on the REPS’s post-thaw standard motility and
kinematic parameters. There was no significant (p > 0.05) interaction between the extender
and spermatozoa concentrations for all of the studied parameters, so we present the
main effect of the extenders and the spermatozoa concentrations. The standard motility
parameters of the post-thaw REPS were also not significantly (p > 0.05) different among
the extenders and between the spermatozoa concentrations. The BIO and OVI extenders
had statistically the same post-thaw VAPs (77.78 ± 3.2 vs. 80.48 ± 3.1 µm/s) and BCFs
(32.81 ± 1.1 vs. 32.46 ± 1.0 Hz) and were significantly (p < 0.05) higher than the AND
extender (67.72 ± 3.5 µm/s and 28.72 ± 0.9 Hz). Moreover, OVI had significantly higher
(p < 0.05) per cent WOB than the AND extender (50.56 ± 0.8 vs. 47.67 ± 0.7 %), while BIO
and OVI were statistically the same (49.56 ± 0.9 vs. 50.56 ± 0.8 %). All other kinematic
parameters were statistically the same (p > 0.05) among the extenders and between the
spermatozoa concentrations.

Table 4. Effects of the three different commercial soy lecithin-based semen extenders and two
spermatozoa concentrations on the standard motility and kinematic parameters of post-thaw ram
epididymal spermatozoa.

Extenders
Standard Motility and Kinematic Parameters (Mean ± SE)

TM (%) PM (%) VCL (µm/s) VAP (µm/s) VSL
(µm/s) LIN (%) STR (%) BCF (Hz) WOB (%) ALH

(µm)

AndroMed® 34.89 ± 3.9 27.11 ± 3.4 139.55 ± 6.3 67.72 ± 3.5 a 50.58 ± 3.3 35.72 ± 1.4 74.06 ± 2.3 28.72 ± 0.9 a 47.67 ± 0.7 a 4.41 ± 0.2
BioXcell® 38.83 ± 3.5 31.50 ± 3.1 156.72 ± 5.0 77.78 ± 3.2 b 58.96 ± 3.9 37.11 ± 1.8 74.28 ± 2.5 32.81 ± 1.1 b 49.56 ± 0.9 ab 4.42 ± 0.2
OviXcell® 37.61 ± 3.7 31.56 ± 3.5 157.39 ± 5.4 80.48 ± 3.1 b 61.46 ± 3.9 38.33 ± 1.7 75.00 ± 2.4 32.46 ± 1.0 b 50.56 ± 0.8 b 4.55 ± 0.2

p-value 0.893 0.509 0.191 0.024 0.154 0.554 0.816 0.012 0.044 0.849
Concen-
trations

(106/mL)
200 34.33 ± 2.3 27.33 ± 2.2 150.40 ± 5.3 75.43 ± 3.2 57.92 ± 3.4 37.74 ± 1.4 75.41 ± 1.9 31.83 ± 0.9 49.37 ± 0.8 4.33 ± 0.1
400 39.89 ± 3.5 32.78 ± 3.1 152.04 ± 4.3 75.22 ± 2.4 56.07 ± 2.8 36.37 ± 1.3 73.48 ± 1.9 30.83 ± 0.8 49.15 ± 0.6 4.58 ± 0.2

p-value 0.170 0.249 0.878 0.957 0.534 0.486 0.566 0.400 0.815 0.250
p-value
Ext. *
Conc.

0.723 0.946 0.648 0.855 0.913 0.976 0.959 0.827 0.882 0.927

TM: total motility. PM: progressive motility. VCL: curvilinear velocity. VAP: average pathway velocity.
VSL: straight line velocity. LIN: linearity of movement. STR: straightness. BCF: beat cross frequency. WOB: wob-
ble. ALH: amplitude of the lateral head displacement. Ext. * Conc.: extender * concentration interaction effects.
SE: Standard error of means, n = 9. Means in the same column with different superscripts a,b differ significantly.

3.4. Effects of Different Soy Lecithin-Based Commercial Semen Extenders and the Two Spermatozoa
Concentrations on the Post-Thaw Viability and Morphological Characteristics of Ram
Epididymal Spermatozoa

The effects of different soy lecithin-based commercial semen extenders and the two
spermatozoa concentrations on the post-thaw viability and morphological characteristics
of the REPS are presented in Table 5. There was no significant (p > 0.05) interaction be-
tween the extenders and the spermatozoa concentrations. Similarly, neither the extender nor
the spermatozoa concentration significantly affects the percentage of the post-thaw REPS
with IHITIA. The AND extender had a significantly (p < 0.05) lower percentage of the in-
tact REPS with bent tails (IBT), all intact heads, and all bent tails categories (2.56 ± 0.6,
34.64 ± 3.2, and 9.74 ± 1.4%) than the BIO (8.14 ± 1.5, 45.33 ± 3.3, and 18.33 ± 2.4%) and OVI
(7.19 ± 1.3, 44.68 ± 2.9, and 17.39 ± 1.7%) extenders. In contrast, the BIO and OVI extenders
were statistically the same and had a lower percentage of categories of REPS with DHIT than
the AND extender: 2.91 ± 0.7 and 2.53 ± 0.4 vs. 6.31 ± 1.1, respectively. The 400 × 106

spermatozoa/mL concentration resulted in a significantly (p < 0.05) higher percentage of all
intact head categories than the 200 × 106 spermatozoa/mL (45.15 ± 5.1 vs. 37.95 ± 3.4%)
concentration. The extenders and the spermatozoa concentrations did not affect all of the
other parameters.
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Table 5. Effects of the three different commercial soy lecithin-based semen extenders and two spermatozoa concentrations on the viability and morphological
parameters of post-thaw ram epididymal spermatozoa.

Extenders

Viability and Morphological Parameters (Mean ± SE)

IHITIA (%) IPD (%) IDD
(%)

IBT
(%)

IHITDA
(%)

DHIT
(%)

IHDT
(%)

DHDTDA
(%) All Intact (%) All Intact

Head (%)
All Intact Tail

(%)

All Distal
Droplets

(%)

All Bent Tails
(%)

AndroMed® 5.92 ± 1.2 0.87 ± 0.3 9.72 ± 1.4 2.56 ± 0.6 a 0.04 ± 0.0 6.31 ± 1.1 15.52 ± 1.8 59.06 ± 3.4 19.08 ± 2.2 34.64 ± 3.2 a 25.42 ± 2.9 28.44 ± 2.9 9.74 ± 1.4 a

BioXcell® 6.55 ± 1.1 0.91 ± 0.2 9.44 ± 1.4 8.14 ± 1.5 b 0.03 ± 0.0 2.91 ± 0.7 20.27 ± 2.5 51.73 ± 3.3 25.03 ± 1.5 45.33 ± 3.3 b 27.97 ± 1.9 21.89 ± 2.7 18.33 ± 2.4 b

OviXcell® 7.46 ± 1.3 0.68 ± 0.2 9.33 ± 1.5 7.19 ± 1.3 b 0.02 ± 0.0 2.53 ± 0.4 20.00 ± 1.8 52.79 ± 3.0 24.66 ± 2.4 44.68 ± 2.9 b 27.21 ± 2.6 20.33 ± 2.4 17.39 ± 1.7 b

p-value 0.717 0.613 0.981 0.003 0.866 0.155 0.143 0.242 0.094 0.030 0.771 0.100 0.0001
Con.

(106/mL)
200 5.43 ± 1.3 0.70 ± 0.3 9.03 ± 2.1 6.39 ± 1.9 0.04 ± 0.0 4.83 ± 0.8 16.36 ± 2.2 57.23 ± 4.1 21.55 ± 2.8 37.95 ± 3.4 A 26.41 ± 3.7 24.15 ± 4.1 16.81 ± 2.9
400 7.86 ± 1.9 0.94 ± 0.3 9.96 ± 2.1 5.53 ± 1.1 0.02 ± 0.0 3.00 ± 0.9 20.83 ± 4.0 51.83 ± 5.1 24.29 ± 2.9 45.15 ± 5.1 B 27.32 ± 3.4 22.96 ± 3.7 13.49 ± 2.1

p-value 0.186 0.079 0.587 0.820 0.703 0.165 0.151 0.160 0.267 0.049 0.760 0.713 0.118
p-value Ext. *

Conc. 0.337 0.692 0.946 0.819 0.374 0.876 0.783 0.918 0.750 0.724 0.984 0.833 0.277

IHITIA: intact head, intact tail, and acrosome membrane (Intact). IPD: intact with proximal droplet. IDD: intact with distal droplets. IBT: intact with a bent tail. IHITDA: intact
head and tail, damaged acrosome. DHIT: damaged head with intact tail. IHDT: intact head with damaged tail. DHDTDA: damaged head, damaged tail, and damaged acrosome.
Ext. * Conc.: extender * concentration interaction effect. SE: standard error of the means. Stained with a modified Kovács–Foote staining technique, three hundred cells were evaluated
and categorized per slide, using a bright-field microscope with an oil-immersion objective at ×1000 magnification, n = 9. Means in the same column with different superscripts among
the extenders a,b and between the spermatozoa concentrations A,B differ significantly.
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3.5. Effect of Freezing with Different Commercial Soy Lecithin-Based Semen Extenders on All
Distal Droplets and Tail Defects of Ram Epididymal Spermatozoa

Table 6 presents the effects of freezing REPS with different commercial semen exten-
ders on all distal droplets and tail defects of REPS. Considering that the 200 and 400 million
spermatozoa/mL concentrations were statistically the same (Table 5), the data were pooled
to assess the effects of freezing REPS on all distal droplets and all bent tails, in addition
to the overall effects of freezing. Significant (p < 0.05) differences existed between the
pre-freeze and the post-thaw distal droplets, as well as the bent tails, in all of the ex-
tenders and the overall means: AND, 38.51 ± 4.8 vs. 28.17 ± 2.9% and 5.52 ± 1.3 vs.
9.74 ± 1.4%; BIO, 32.92 ± 5.5 vs. 21.72 ± 2.8 and 11.24 ± 2.7 vs. 18.33 ± 2.4%; and OVI,
26.62 ± 3.6 vs. 20.33 ± 2.5% and 11.31 ± 2.4 vs. 17.39 ± 1.7%. And the overall means were
32.69 ± 2.7 vs. 23.41 ± 1.6 % and 9.29 ± 1.3 vs. 15.15 ± 1.2% for all distal droplets and all
bent tails, respectively.

Table 6. Effects of freezing and thawing with different commercial soy lecithin-based semen extenders
on distal droplets and tail defects of ram epididymal spermatozoa.

All Distal Droplets
p-Values

All Bent Tails
p-Values

Extender Pre-Freeze Post-Thaw Pre-Freeze Post-Thaw

AND 38.51 ± 4.8 a 28.17 ± 2.9 b 0.002 5.52 ± 1.3 a 9.74 ± 1.4 b 0.003
BIO 32.92 ± 5.5 a 21.72 ± 2.8 b 0.009 11.24 ± 2.7 a 18.33 ± 2.4 b 0.003
OVI 26.62 ± 3.6 a 20.33 ± 2.5 b 0.032 11.31 ± 2.4 a 17.39 ± 1.7 b 0.002

Overall 32.69 ± 2.7 a 23.41 ± 1.6 b 0.0001 9.29 ± 1.3 a 15.15 ± 1.2 b 0.0001

AND: AndroMed® extender. BIO: BioXcell® extender. OVI: OviXcell® extender. SE: standard error of the means,
n = 9. Stained with a modified Kovács–Foote staining technique, three hundred cells were evaluated and
categorized per slide using a bright-field microscope with an oil-immersion objective at ×1000 magnification.
Means in the same row with different superscripts a,b differ significantly.

4. Discussion

It is well established that cryopreservation decreases spermatozoa viability, function-
ality, and fertilizing ability [19,39,48]. Furthermore, many factors affecting the success of
REPS’s cryopreservation have not been extensively studied, as in AV- and EE-collected ram
spermatozoa [26,49]. Among these are the spermatozoa concentration and the diluents
used, in particular the readily available commercial soy lecithin-based extenders. On this
note, the current study attempted to investigate the earlier-mentioned factors of the pre-
freeze quality and freezability of postmortem REPS. Furthermore, the diluents/extenders
were reported to affect the freezability of EPS in different species [2,12,13]. Moreover, the
animal-based semen extenders were reported to contain variable compositions with a high
microbial contamination risk, reducing spermatozoa’s post-thaw viability and acrosome
integrity compared to the plant-based extenders [27]. Hence, it is important to identify the
ideal commercially available soy lecithin-based diluent and spermatozoa concentration for
freezing REPS.

The average weight of the testes and the CE processed in this study (157.78 ± 22.15
and 14.25 ± 1.38 g) were slightly lower than what was reported by Kaabi et al. [34]:
191.11 ± 4.9 and 18.14 ± 0.4 (g), respectively. However, our results presented higher values
of standard error, which might be attributed to individual animal differences due to age,
season, and breed effects.

The kinematics are important in determining spermatozoa functionality and freez-
ing/thawing success, and spermatozoa with higher BCFs and lower ALH result in a high
PM [50]. Similarly, the VAP parameter is preferred over the PM in predicting fresh and
post-thaw bull spermatozoa fertilizing potentials [51]. Moreover, the kinematic parameters
show relatively high breed similarities in sheep; however, specific kinematic parameters, like
the VCL, might vary even between individual sperm from 50 to 320 µm/s in a single field of
analysis, and the spermatozoa sub-population with the highest velocity has higher cervical
mucus penetration and fertilization rates [50], with the VCL and VAP being the only kinematic
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parameters that showed a significant positive correlation with cervical mucus penetration in
sheep [52] and litter size in pigs [53]. The pregnancy rate in sheep has a strong and significant
positive correlation with the spermatozoa PM and VAP (r = 0.62), LIN (r = 0.86), and STR
(r = 0.55), but it is negatively correlated with the VCL (r = −0.65), while the average litter size
is positively correlated with LIN (r = 0.87) and STR (r = 0.77) [54].

The current study demonstrates that there was no significant (p > 0.05) difference
among the three commercial soy lecithin-based semen extenders, AND, BIO, and OVI,
and between the spermatozoa concentration, 200 × 106/mL or 400 × 106/mL, on stan-
dard motility parameters of pre-freeze and post-thaw REPS. These findings contrast with
the findings of D’Alessandro et al. [39], who reported that the freezing concentration ef-
fect on the freezability of AV-collected ram spermatozoa was due to extender differences
(milk-based vs. egg yolk-based); however, in the current study, all of the extenders com-
pared were soy lecithin-based, and this might be why we could not observe any signif-
icant difference among them. Similarly, Abdussamad et al. [15] reported no significant
(p > 0.05) difference in the post-thaw TM between two different egg yolk-based extenders in
bull cryopreserved spermatozoa and between two soy lecithin-based semen extenders. Our
result for the post-thaw motility parameters agrees with Braga et al. [19] and Ondřej et al. [55],
who reported no significant difference in motility between the AND and BIO extenders in
bull AV-collected post-thaw spermatozoa. It also tallies with that of Akçay et al. [26] in rams.
Similarly, Fernandes et al. [27] reported no significant difference (p > 0.05) in the post-thaw
TM (33.7 vs. 41.7%) and PM (4.6 vs. 5.0%) between the AND and OVI extenders in Portuguese
Merino breed AV-collected spermatozoa.

For the pre-freeze kinematics, the BCF was the only parameter that was significantly
(p < 0.05) different among the extenders. The REPS diluted with the BIO and OVI extenders
had significantly (p < 0.05) higher BCFs than those in the AND extender. A higher BCF
value was reported to be associated with increased fertilization rates [44].

The REPS frozen in the BIO and OVI extenders had statistically the same post-thaw
VAP and BCF and were significantly higher (p < 0.05) than the AND extender. Therefore,
freezing REPS in the BIO and OVI extenders might lead to a higher fertilization rate than
that when using the AND extender. This is because the higher BCFs and lower ALH of
sperm heads could facilitate zona pellucida penetration [44], and a higher VAP might
lead to higher cervical mucus penetration and fertilization rates [52]. The WOB parameter
depicts the degree of oscillation of the sperm head/balancing [56]. The spermatozoa
concentration did not affect the parameter but differed significantly between the AND
and OVI extenders. Moreover, spermatozoa with higher progression tend to have higher
cryo-survival and fertilization potentials [57]. Our results of the effects of semen extenders
on the WOB parameter contradict the findings of Dorado et al. [58] in goat bucks and
Domingo et al. [59] in rabbits, that being that semen extenders have no significant effect on
the WOB parameter. With regard to the spermatozoa concentrations, our result was not in
agreement with that of Akçay et al. [26] and Nascimento et al. [40], who reported better
post-thaw quality parameters in AV-collected ram spermatozoa frozen at 200 × 106/mL
than at 400 × 106/mL. This might be due to the differences in spermatozoa source, as well
as the extenders’ compositions. Moreover, D’Alessandro et al. [39] and Akçay et al. [26]
reported that increasing the freezing concentration to 800 × 106/mL has a more significant
negative influence on the post-thaw quality of ram spermatozoa.

In the current study, we used the Kovács–Foote viability staining technique to evaluate
the REPS’s head, tail, and acrosome membrane integrity, as well as morphology. Although
the technique is a subjective evaluation, it is economical, as it does not require a costly device
and permits the investigator to see damage/abnormalities in the spermatozoa. Using this
method, the acrosome, head, and tail membranes of the sperm can be assessed separately,
ensuring the precise determination of lesions’ locations. The retained cytoplasmic droplets
are caused by incomplete maturation in the epididymis, leading to abnormal spermatozoa
morphology and, thus, impairing viability and capacitation in boars [60,61]. The percentage
of distal droplets was also reported to increase significantly with bulls’ age [62], and it
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is positively correlated with ROS production in men [63]. Additionally, the presence of
distal droplets has been associated with a higher percentage of ubiquitinated protein and
morphological abnormality, and they also harbored 15-lipoxygenases, which are responsible
for mitochondria degradation in ejaculated boar spermatozoa [64,65]; however, they are
a normal organelle in EPS, and the complete absence of them indicates spermatogenesis
abnormality [66]. Similarly, maintaining tail/flagella integrity is very important because it
aids spermatozoa’s heads in achieving fertilization [50]. AND preserved the REPS’s normal
tail morphology better than the BIO and OVI extenders did. The 400 × 106 spermatozoa/mL
concentration was superior in preserving the REPS’s head membrane integrity compared to
the 200 × 106 spermatozoa/mL (45.15 ± 5.1 vs. 37.95 ± 3.4%) concentration. Freezing REPS
with the BIO or OVI extender better maintained the REPS’s head membrane compared to
the AND extender, as indicated by their significantly higher percentage of all intact head
values. The highest value of “all intact heads” that we observed in the current study was in
BIO, 45.33 ± 3.3%, and was slightly below what was reported by [36], 51.38 ± 4.44%, using
the eosin–nigrosin staining technique. The percentage of spermatozoa with IHDT recorded
in the current study (15.52 ± 1.8 to 20.27 ± 2.5%) was similar to that reported in bulls, 20%;
boars and rams, 5 to 25% [67]; deer, 20% [68]; and stallions, 19.0% [69].

We supposed that the percentage of “all intact” cells corresponds to the percentage
of “live” spermatozoa with intact cell membranes and presumably actively moving sper-
matozoa, while cells with damaged tails and intact heads are supposed to not move and,
hence, be non-fertile in vivo [67]. The percentage of all intact spermatozoa observed in the
current study ranges between 19.08 ± 2.2 and 25.03 ± 1.5%. It agrees with Salamon and
Maxwell’s report [49] that only about 20–30% of post-thawed ram spermatozoa remain
biologically intact.

The highest post-thaw percentage of all distal cytoplasmic droplets observed in the cur-
rent study (AND: 28.17 ± 2.9%) was comparable to that reported in goat bucks (27.8%) [70],
but it was lower than that of Kaabi et al. [34] (55.1 ± 5.3%) in rams under similar conditions;
however, in the latter experiment, both proximal and distal cytoplasmic droplets were
counted. They retrieved spermatozoa in different ways: no extender was used in the slicing
procedure to allow sperm to swim out, and there was no centrifugation step in the protocol.
These steps probably enhanced the drifting of the distal droplets in some of the cells. Cen-
trifugation was reported to reduce the number of distal cytoplasmic droplets in collared
peccaries (Pecari tajacu Linnaeus) [71] and in cat epididymal spermatozoa [72]. Therefore,
more studies are needed to confirm this speculation in rams. Freezing REPS with all of the
extenders showed a significant difference in the percentage of all distal droplets and all tail
defects. We observed that the bent tails increased by about the same percentage as the distal
droplets decreased in the frozen samples compared to the pre-freeze condition. The reason
for this may be that spermatozoa’s moving tails suddenly get stuck and enclose the droplet
and become a spermatozoon with a distal midpiece reflex (also called a hairpin-curved
tail), or the osmotic changes during the freezing/thawing process can cause the bending
of the tail for some of the distal droplet-bearing sperm. This phenomenon seems to have
occurred more in the BIO and OVI extenders than the AND extender, which resulted in a
higher percentage of spermatozoa with bent tails in the former extenders than in the latter.
Similarly, the overall mean proved that freezing in general significantly (p < 0.05) increases
the percentage of REPS with tail defects (9.29 ± 1.3 vs. 15.15 ± 1.2%), with a significant
decrease in the percentage of all distal droplets (32.69 ± 2.7 vs. 23.41 ± 1.6%). Our result of
the percentage of distal droplets was consistent with the findings of Kaabi et al. [34].

5. Conclusions

Ram epididymal spermatozoa can behave differently than ejaculated spermatozoa
during the freezing/thawing process; the membrane structure could be more unstable, so
improving and optimizing the freezing technique of REPS is needed. The BIO and OVI
extenders showed significantly higher post-thaw VAP and BCFs and were superior to the
AND extender in preserving the ram epididymal spermatozoa head membrane integrity. In
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contrast, the AND extender was superior in maintaining the normal tail morphology of ram
epididymal spermatozoa compared to the BIO and OVI extenders. Freezing significantly
decreased the percentage of spermatozoa with distal cytoplasmic droplets and increased
the percentage of ram epididymal spermatozoa with tail defects; these phenomena could
be connected. All three commercial soy lecithin-based extenders must be optimized to
better preserve the viability, membrane integrity, and normal morphology of REPS. Future
studies should investigate the effect of extenders and spermatozoa concentration on REPS’s
mitochondrial membrane potentials, ATP content, and in vivo fertility. Ram epididymal
spermatozoa are suggested to freeze in the 400 × 106 spermatozoa/mL concentration, as it
better preserves the head membrane integrity of REPS compared to cryopreserving in the
200 × 106 spermatozoa/mL concentration. The effect of centrifugation on REPS distal cyto-
plasmic droplets and the reason for increased tail abnormalities after the freezing/thawing
process need to be studied.

For postmortem gamete extraction and cryopreservation, selecting the best cryopreser-
vation procedure for ex situ in vitro gene conservation is essential. Using the appropriate
extender allows the samples to be stored more successfully; therefore, our research is a
valuable step in this regard.
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