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Simple Summary: Poultry locomotion is an important indicator of animal health, welfare, and
productivity. This research introduced an innovative approach that employs an enhanced track
anything model (TAM) to track chickens in various experimental settings for locomotion analysis.
The model demonstrated notable accuracy in speed detection, as evidenced by a root mean square
error (RMSE) value of 0.02 m/s, offering a technologically advanced, consistent, and non-intrusive
method for tracking and estimating the locomotion speed of chickens.

Abstract: Poultry locomotion is an important indicator of animal health, welfare, and productivity.
Traditional methodologies such as manual observation or the use of wearable devices encounter
significant challenges, including potential stress induction and behavioral alteration in animals. This
research introduced an innovative approach that employs an enhanced track anything model (TAM) to
track chickens in various experimental settings for locomotion analysis. Utilizing a dataset comprising
both dyed and undyed broilers and layers, the TAM model was adapted and rigorously evaluated
for its capability in non-intrusively tracking and analyzing poultry movement by intersection over
union (mIoU) and the root mean square error (RMSE). The findings underscore TAM’s superior
segmentation and tracking capabilities, particularly its exemplary performance against other state-of-
the-art models, such as YOLO (you only look once) models of YOLOv5 and YOLOv8, and its high
mIoU values (93.12%) across diverse chicken categories. Moreover, the model demonstrated notable
accuracy in speed detection, as evidenced by an RMSE value of 0.02 m/s, offering a technologically
advanced, consistent, and non-intrusive method for tracking and estimating the locomotion speed of
chickens. This research not only substantiates TAM as a potent tool for detailed poultry behavior
analysis and monitoring but also illuminates its potential applicability in broader livestock monitoring
scenarios, thereby contributing to the enhancement of animal welfare and management in poultry
farming through automated, non-intrusive monitoring and analysis.

Keywords: poultry locomotion; deep learning; track anything model; animal welfare; non-intrusive
tracking

1. Introduction

Precision livestock farming (PLF) has rapidly evolved into a key field, merging modern
technology with traditional animal farming to improve animal welfare and streamline
production processes [1]. In poultry farming, it is essential to monitor and understand bird
movement and behavior closely. This not only ensures the well-being of the animals but
also helps improve production efficiency in a sustainable environment [2–4]. Chickens
display a variety of behaviors, including different movement patterns, social interactions,
and reactions to their surroundings. This requires advanced systems to track and analyze
them effectively.

Deep learning, an advanced form of machine learning technology, is becoming a key
tool for analyzing and predicting patterns in large and complex datasets [5,6]. In animal
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behavior studies, deep learning helps provide a detailed understanding of movement,
interactions between species, and overall health [7]. In poultry farming, the use of deep
learning offers more than just a glimpse into bird behaviors. It acts as a powerful tool to
closely observe and track their activities [8]. Regarding post-observational monitoring,
a slew of algorithms has found their footing in this domain, with you only look once
(YOLO) being at the forefront. For instance, in large-scale poultry farms, the surveillance
of thousands of chickens for health, activity, and behavioral patterns becomes pivotal [9].
YOLO’s rapid detection capabilities can identify early signs of disease or distress in chickens
by recognizing subtle behavioral changes, thereby aiding farmers in timely interventions [5].
In addition, the proposed ChickTrack model uses deep learning to detect chickens, count
them, and measure their movement paths, providing spatiotemporal data and identifying
behavioral anomalies from videos and images [10]. However, while YOLO has shown
commendable performance in a variety of scenarios, it is not exempt from limitations. For
effective use in poultry farming, it demands rigorous training on domain-specific data to
fine-tune its detection and tracking capabilities. The nuances of poultry behavior, their
interactions, and variations in physical appearances require YOLO to be trained with vast
and diverse datasets. But even with comprehensive training, the model might still face
challenges in tracking individual entities within dense flocks, especially under varying
environmental conditions [11]. It is in this context that the track anything model (TAM)
emerges as a promising candidate. This research aims to harness the potential of TAM,
enhancing its capabilities to not just track individual chickens in a flock, but to analyze their
complex locomotion patterns in real-time [12–14]. By bridging the gaps left by previous
models and incorporating the strengths of YOLO’s detection capabilities, TAM is poised to
offer a holistic solution to the multifaceted challenges in poultry behavior analysis.

In this research, an innovative approach involving the strategic dyeing of chickens
was adopted to augment the model’s capability to distinctly identify and track individual
entities within the flock. The dyed chickens, exhibiting distinct and consistent coloration,
serve as a unique identifier, facilitating improved tracking and identity preservation by
the algorithms. The research further explores the adaptation of TAM, integrating a speed
detection function, thereby providing a comprehensive tool for detailed poultry behavior
analysis and monitoring. Through rigorous evaluations and comparative analyses, this
research aims to underscore the efficacy and potential of TAM and its adaptation, TAM-
speed, in providing a multifaceted solution for real-time poultry behavior tracking and
analysis, thereby contributing to the advancement of precision livestock farming.

The objectives of this study were to: (1) develop a tracker model for monitoring the
locomotion speed of individual chicks based on the TAM; (2) compare the TAM-speed
model with state-of-the-art models such as YOLO, which are trained using images of
chickens; and (3) test the performance of these newly developed models under various
production conditions.

2. Materials and Methods
2.1. Data Acquisition

The dataset was obtained from two different experimental chicken houses (i.e., broilers
and layers houses) in the Poultry Research Center at the University of Georgia (UGA),
USA. Chickens were subjected to dyeing to assess the detection differences between dyed
and undyed samples. Broilers were dyed with specific colors (green, red, and blue) and
laying hens with another set (green, red, and black). Figure 1 illustrates the experimental
chicken houses alongside their dyed counterparts. HD cameras (PRO-1080MSFB, Swann
Communications, Santa Fe Springs, CA, USA) were affixed at a 3 m height on ceilings and
walls in each room, capturing chicken behavior at 18 FPS with a 1440 × 1080 resolution.
Lens maintenance involved weekly cleaning for clarity [15]. Image data were initially
stored on Swann video recorders and subsequently transferred to HDDs (Western Digital
Corporation, San Jose, CA, USA) at UGA’s Department of Poultry Science.
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Figure 1. Contrast of dyed and undyed broilers and layers in experimental settings.

2.2. Marking Approach

Chickens were first subjected to a random selection process to determine which
individuals would be used for the experiment. Once chosen, these chickens were dyed
using the all-weather Quick Shot dye (LA-CO INDUSTRIES, INC, Elk Grove Village, IL,
USA). The selection of dye colors aims to reduce feather flecking in dyed chickens [16].
The application process required a coordinated effort from a two-person team: while one
individual gently held and restrained the bird to ensure its safety and ease of application,
the other expertly applied the spray dye to the specific targeted areas on the chicken’s body,
ensuring consistent and even coverage. This methodology was designed to minimize stress
to the chickens while achieving a uniform application of the dye.

2.3. Model Innovation for Tracking Chickens

In our study, we utilized the track anything model (TAM) to monitor chicken locomo-
tion. Recognizing the versatility of TAM, we further enhanced it with a speed detection
function, enabling the real-time measurement of each chicken’s velocity [17]. In the pre-
processing phase, we utilized the XMem video object segmentation (VOS) technique to
discern the masks of chickens across subsequent video frames [18]. XMem, renowned for
its efficiency in standard scenarios, usually generated a predicted mask. However, when
this forecast was suboptimal, our system captured both the prediction and key intermediate
parameters, namely the probe and affinity. In instances where the mask quality fell below
expectations, the SAM technique was harnessed to further refine the XMem-proposed
mask using the said parameters as guidance. Recognizing the limitations of automated
systems in intricate situations, we also factored in human oversight, allowing manual mask
adjustments during real-time tracking to ensure optimal accuracy (Figure 2). The TAM
architecture was structured such that preprocessed frames of size 1440 × 1080 served as
input. Within the model, convolutional neurons were dedicated to extracting essential
features like shape and color patterns. Crucially, by integrating TAM’s inherent capabilities
with our innovations, we developed a layer that not only estimated chicken trajectories
but also calculated their speed using the change in positional coordinates across frames
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and the associated time differential [19]. The output then presented both the chicken’s posi-
tion and speed. We later benchmarked our enhanced TAM with a speed detection model
(TAM-speed) against several state-of-the-art simple online and real-time tracking (SORT)
models including observation-centric SORT (OC-SORT) [20], deep association metric SORT
(DeepSORT) [21], ByteTrack [22], and StrongSORT [23], focusing on criteria such as tracking
accuracy, speed measurement accuracy, frame processing rate, and model robustness in
scenarios with dense poultry populations. For the models like OC-SORT, DeepSORT, Byte-
Track, and StrongSORT, the comparison with TAM was primarily based on their tracking
function. However, when it came to comparing TAM with you only look once version
5 (YOLOv5) and you only look once version 8 (YOLOv8), our motivation was distinct.
YOLOv5 and YOLOv8 are renowned for their advanced segmentation capabilities, which
are crucial for detailed object recognition and delineation in complex environments [24]. By
comparing TAM with these YOLO versions, we aimed to evaluate how our model fares in
terms of segmentation accuracy, efficiency, and reliability. Given the intricate patterns and
overlapping scenarios often observed in poultry behavior, a robust segmentation function
can significantly enhance the precision of tracking. Thus, understanding how TAM stands
against the segmentation prowess of YOLOv5 and YOLOv8 can provide insights into
potential areas of improvement and adaptation for our model. This adaptation of the TAM
model aims to provide a comprehensive solution for real-time poultry behavior tracking,
potentially paving the way for broader applications in livestock monitoring.
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2.4. Methods of Speed Calculation in Chicken Tracking

Video analysis often encounters challenges in measuring the velocity of chickens due
to distortions from camera perspectives. A video, which comprises continuous frames,
enables the calculation of “pixel speed” by evaluating the chicken’s pixel displacement
across frames within a time interval of 55.56 milliseconds (ms) at 18 FPS. However, the
chicken’s motion can appear distorted in 2D frames due to 3D environmental dynamics.
Our solution transforms the video frame to a top-down perspective, using open source
computer vision library (OpenCV)‘s perspective transformation capabilities based on
known rectangle coordinates in the original frame (Figure 3) [25]. This transformation
eliminates horizontal discrepancies and relates vertical pixel shifts to the chicken’s actual
distance traveled. Using this method and the time between frames, we were able to estimate
individual chickens’ average velocity, which also indicates their real-time walking/running
speed in closely spaced frames.
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So, the equation to compute the actual speed V for chickens:

V =
∆Y × W

(M − N)× 55.56 ms

where:

∆Y is the vertical pixel displacement of the chicken in the top-down view.
W is the actual physical distance represented by one pixel in the top-down view.
M and N are the frame numbers where the chicken’s position was recorded.

2.5. Model Evaluation Metrics

In our endeavor to optimize the track anything models for monitoring chickens’
locomotion, rigorous model evaluations were centered on specific metrics to ensure precise
and consistent tracking of individual chickens across video sequences. The multiple
objects tracking accuracy (MOTA) gauges the accuracy of the tracking model, considering
discrepancies like false positives, misses, and identity switches. The identification F1
score (IDF1) becomes paramount in assessing the model’s proficiency in recognizing and
consistently maintaining the identity of each chicken throughout sequences. IDF1 is
computed as the harmonic mean of identification precision (IDP) and identification recall
(IDR). IDP evaluates how many detections of a particular chicken identity are correct, while
IDR calculates the proportion of actual detections for a chicken identity. Furthermore, the
identity switches (IDS) metric quantifies instances when the system erroneously alters a
chicken’s identity. The frames per second (FPS) metric serves as a testament to the model’s
real-time monitoring efficacy, elucidating its processing speed [26]. When comparing
TAM with YOLO, the mean Intersection over Union (mIoU) becomes essential. mIoU is
a metric that evaluates the overlap between the predicted segmentation and the ground
truth, providing insights into the model’s segmentation accuracy. In the context of TAM-
speed detection accuracy, the root means square error (RMSE) is employed to quantify the
model’s prediction accuracy in determining the chickens’ speed [27]. RMSE represents
the square root of the average squared differences between the observed actual speed and
the speed predicted by the model. Through this lens, the TAM-speed model’s efficacy in
accurately detecting and predicting the chickens’ speed was rigorously evaluated, ensuring
that the model not only proficiently tracks the chickens but also precisely gauges their
speed, thereby providing a comprehensive tool for detailed poultry behavior analysis and
monitoring. For each metric, we calculated the average from test results based on a test
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dataset across different models. These average values were then utilized to compare the
performance among the various models.

MOTA = 1 − (FalsePositives + Misses + IdentitySwitches)
TotalGroundTruthObjects

IDF1 =
2 × (IDP × IDR)

(IDP × IDR)

IDP =
TruePositives

TruePositives + FalsePositives

IDR =
TruePositives

TruePositives + Misses

FPS =
TotalFrames

TotalTime(inseconds)

mIoU =
1
N∑N

i=1

∣∣∣∣Predictioni ∩ GroundTruthi
Predictioni ∪ GroundTruthi

∣∣∣∣
where N is the number of classes, Predictioni is the predicted segmentation for class i, and
GroundTruthi is the ground truth for class i.

RMSE =

√
1
n∑n

i=1 (yi − ŷi)
2

where n is the total number of observations, yi is the actual speed of the chicken in the ith
observation, and ŷi is the predicted speed of the chicken in the ith observation.

3. Results
3.1. Comparison of Segmentation Approaches

In our rigorous comparative analysis of segmentation methodologies for chicken
tracking analysis, we evaluated YOLOv5, YOLOv8, and TAM. The chicken dataset, encom-
passing 1000 images, served as the foundation for this analysis. For the models necessitating
training phases, specifically YOLOv5 and YOLOv8, a distribution of 600 images was allo-
cated for training, 200 for validation, and the residual 200 for testing. The training regimen
was orchestrated within a Python 3.7 environment, harnessing the capabilities of the Py-
Torch deep learning library, facilitated by an NVIDIA-SMI graphics card with a 16 GB
capacity. Our segmentation efficacy evaluation spanned four distinct chicken categories:
undyed broilers, undyed layers, dyed broilers, and dyed layers. A recurrent theme was
the enhanced segmentation precision observed in dyed chickens, attributed to the pro-
nounced color contrast introduced by dyeing, which counteracted the challenges posed
by the chromatic resemblance between the chickens’ white plumage and the light brown
litter. Despite the distinction between broilers and layers, no significant segmentation
performance variance was observed, suggesting challenges predominantly driven by color
rather than morphology. Among the methodologies, TAM, leveraging its pre-trained model,
consistently outperformed both YOLOv5 and YOLOv8. This superiority can be attributed
to TAM’s architectural robustness, its adeptness at high-dimensional feature extraction, and
the efficacy of its pre-trained model [17], which potentially aligns better with the challenges
presented by the chicken dataset. The forthcoming mIoU values in Table 1 will further
detail TAM’s segmentation prowess, and a visual representation in Figure 4 underscores its
potential as a leading choice for future chicken segmentation research.
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Table 1. A comparison of TAM and YOLOv5 and YOLOv8 in terms of mean intersection over
union (mIoU).

Method
Semantic Segmentation of Broilers Semantic Segmentation of Layers

Undyed Dyed Undyed Dyed

YOLOv5 81.26 85.63 80.79 85.51
YOLOv8 83.44 86.91 82.59 87.72

TAM 93.15 95.13 92.17 94.82
Notes: Track anything model (TAM) and you only look once (YOLO).
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3.2. Assessing the Performance of Chicken Tracking

Navigating through the intricate domain of chicken tracking, a comparative analysis
was conducted, scrutinizing various algorithms, each harboring a unique blend of detection
and tracking capabilities. The algorithms under the lens included YOLOv5+DeepSORT,
YOLOv5+ByteTrack, YOLOv8+OC-SORT, YOLOv8+StrongSORT, and TAM, each metic-
ulously paired to harness the strengths of YOLO’s object detection and the respective
tracking proficiencies of the algorithms. YOLOv5 was paired with both DeepSORT and
ByteTrack, leveraging its enhanced detection capabilities with DeepSORT’s deep association
metrics and ByteTrack’s byte-level tracking, respectively, to maintain persistent identities
of chickens, especially amidst occlusions and flock interactions. The dyed chickens, with
their distinct colors, provided a vibrant scenario to evaluate the color-based tracking of
these algorithms. The color distinction in dyed chickens inherently offers a unique iden-
tifier that facilitates improved tracking and identity preservation by the algorithms. In
experiments, dyed chickens consistently demonstrated superior MOTA and IDF1 scores
across all algorithms, indicating enhanced tracking accuracy and identity preservation,
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respectively. For instance, YOLOv5+DeepSORT exhibited a MOTA of 92.13% and IDF1
of 90.25% for dyed chickens, compared to slightly lower percentages for undyed ones.
This trend was consistent across all algorithms, underscoring the pivotal role of distinct
coloration in enhancing tracking performance [28].

In the case of YOLOv8, it was paired with OC-SORT and StrongSORT, evaluating
their potential to minimize identity switches and maintain tracking accuracy amidst the
dynamic and interactive poultry house environment. The algorithms were evaluated
based on the TAM, ensuring a balanced assessment of both accuracy and computational
efficiency, focusing on metrics such as MOTA, IDF1, and IDS. In the context of dyed
chickens, YOLOv5+DeepSORT exhibited commendable tracking accuracy, leveraging the
color features effectively, yet faced challenges in maintaining identities during occlusions.
YOLOv5+ByteTrack showcased robustness in handling identity switches but at a computa-
tional cost, reflected in a lower FPS. YOLOv8+OC-SORT demonstrated enhanced tracking
accuracy in scenarios of chicken interactions and occlusions due to its observation-centric
approach, while YOLOv8+StrongSORT, maintaining a high MOTA, faced challenges in
dense chicken populations, leading to a higher IDS [29]. Considering the comparative
values provided in experiments and illustrated in Table 2, TAM emerges as the superior
model, substantiating its position as the best model among those evaluated. It boasts the
highest MOTA, indicating the highest accuracy in tracking while minimizing misses and
false positives. It achieves the highest IDF1 score, showcasing its proficiency in maintain-
ing consistent identities throughout the tracking period. Furthermore, TAM registers the
lowest number of Identity Switches (IDS), reflecting its capability to preserve identities
accurately across frames with minimal switches. This unique capability of TAM to provide
accurate tracking alongside its superior tracking accuracy underscores its unparalleled
utility in comprehensive poultry behavior analysis, thereby substantiating its position as
the best model among the ones evaluated. This assessment reveals a trade-off between
tracking accuracy and computational efficiency, suggesting that advancements in TAM
could potentially enhance poultry tracking in future applications.

Table 2. Comparative analysis of tracking algorithms for dyed and undyed chickens.

Algorithm Condition MOTA (%) IDF1 (%) IDS FPS

YOLOv5+DeepSORT Dyed 92.13 90.25 15 18
YOLOv5+DeepSORT Undyed 88.47 86.32 25 18
YOLOv5+ByteTrack Dyed 93.21 91.47 14 15
YOLOv5+ByteTrack Undyed 89.36 87.14 22 15
YOLOv8+OC-SORT Dyed 95.67 93.12 12 17
YOLOv8+OC-SORT Undyed 91.78 89.12 20 17

YOLOv8+StrongSORT Dyed 94.56 92.34 13 18
YOLOv8+StrongSORT Undyed 90.12 88.45 23 18

TAM-speed Dyed 97.45 95.67 10 16
TAM-speed Undyed 94.78 92.34 18 16

Notes: Track anything model (TAM), you only look once (YOLO), multiple objects tracking accuracy (MOTA),
identification F1 score (IDF1), identity switches (IDS), and frames per second (FPS).

3.3. Evaluating Velocity Measurement

In the meticulous pursuit of accurate and reliable chicken tracking, TAM-speed has
been subjected to a thorough evaluation, particularly focusing on its capability to accu-
rately detect and quantify the speed of chickens within a controlled environment. In our
experiments, where the average speed of the chickens was measured to be 0.05 m/s, the
precision with which TAM-speed could predict and validate these speed measurements
became paramount. Utilizing the RMSE as a pivotal metric to quantify the average dis-
crepancies between the speeds predicted by TAM-speed and the actual observed speeds,
a comprehensive analysis was conducted. Given that RMSE provides a high penalty for
larger errors, it serves as a stringent metric, ensuring that the model’s predictions are not
only accurate on average but also do not deviate significantly in individual predictions.



Animals 2024, 14, 911 9 of 13

In our analysis, dyed chickens, with their distinct and consistent coloration, provided a
somewhat stable basis for the tracking algorithm to latch onto, potentially minimizing the
instances where tracking was lost or inaccurately assigned. The RMSE for dyed chickens
was recorded at a laudable 0.02 m/s, indicating a high degree of accuracy in speed detec-
tion. The distinct coloration likely assisted the model in maintaining a consistent track,
thereby enabling more accurate speed calculations over a sequence of frames. Conversely,
undyed chickens, with their more variable and less distinct visual features, posed a slightly
more complex scenario for TAM-speed. The RMSE for undyed chickens was marginally
higher, recorded at 0.025 m/s. This subtle elevation in error might be attributed to the
challenges in maintaining consistent tracking amidst the visually similar undyed chickens,
potentially leading to brief losses in tracking or misidentifications, which in turn, could
slightly skew the speed calculations [30]. Despite these discrepancies, it is crucial to note
that in the dynamic and somewhat unpredictable environment of a poultry house, numer-
ous variables can influence the chickens’ speed, such as their age, size, and overall health,
as well as external factors like lighting and noise levels. Despite the challenges, TAM-speed
has showcased a commendable capability in speed detection, providing predictions that,
while subject to error, still provide valuable insight into the locomotion and behavior of
the chickens. The utility of such a model extends beyond mere speed detection, offering
potential insights into the health and well-being of the poultry by monitoring their mobility
and activity levels [31]. In conclusion, while TAM-speed demonstrates a notable accuracy
in speed detection, it is imperative to continually refine the model, considering the myr-
iad of variables that can influence the speed and behavior of chickens. Future iterations
of the model might benefit from additional training data, encompassing a wider range
of scenarios and conditions, to further enhance its predictive accuracy and reliability in
diverse poultry house environments. Table 3 summarizes the velocity changes among
dyed and undyed chickens. Figure 5 displays a visualization of speed and track detected
by TAM-speed.

Table 3. Comparative analysis of velocity for dyed and undyed chickens.

Algorithm Condition RMSE (m/s) Velocity Range (m/s)

TAM-speed Dyed 0.02 0.00–0.21
TAM-speed Undyed 0.025 0.00–0.21
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4. Discussion
4.1. Chicken Segmentation Approaches

In the present exploration, TAM has notably eclipsed both YOLOv5 and YOLOv8
in a variety of tracking tasks, particularly those involving chickens in dyed condition.
Specifically, TAM’s integrated mode, which amalgamates tracking and speed measurement,
has showcased unparalleled precision across diverse tracking scenarios. This exemplary
performance can be attributed to several pivotal factors. Firstly, TAM utilizes a specialized
tracking mechanism that adeptly captures intricate movement patterns and complex trajec-
tories, enabling it to focus on pertinent features and trajectories, thereby facilitating more
accurate tracking. Moreover, it is worth noting that TAM surpassed other models without
necessitating additional training or extensive fine-tuning. This implies that the architecture
and design of TAM inherently possess robust tracking capabilities, negating the need for
exhaustive model adjustments or specialized training datasets. This inherent proficiency
not only underscores TAM as a more practical and effective option for tracking applications
but also highlights its potential to be applied in various poultry tracking scenarios without
the need for exhaustive model adjustments or specialized training datasets. In addition, the
segmentation of dyed chickens consistently exhibited superior performance across all algo-
rithms when compared to undyed chickens. This can be attributed to the distinct colors of
the dyed chickens, which provide a more discernible feature for the model to track, thereby
reducing identity switches and enhancing tracking accuracy [32]. This nuanced capability
of TAM to adeptly manage variations in object features further solidifies its position as
a versatile and reliable model for chicken tracking applications. Comparing the tracking
of whole chickens, it was observed that tracking dyed chickens demonstrated superior
performance across all metrics. This is because tracking dyed chickens may provide addi-
tional distinctive features for the model to latch onto, thereby facilitating improved tracking
results. The tracking of a dyed chicken provides a more comprehensive understanding of
the object by capturing its overall shape and structure, which facilitates improved tracking
results. Table 4 presents a comparative analysis of TAM with various research studies in the
domain of chicken tracking using computer vision. For instance, EfficientNet-B0 achieved
a mIoU of 89.34% in a study involving the segmentation of meat carcasses using a dataset
of 108,296 images [6]. Similarly, MSAnet secured a mIoU of 87.7% for segmenting caged
poultry across a 300-image dataset [2], while Mask R-CNN recorded a mIoU between 83.6%
and 88.8% for segmenting hens in a 1700-image dataset [33]. Contrarily, TAM demonstrated
a mIoU of 93.12% for poultry tracking, potentially outperforming other methods even
without a specialized target dataset. This highlights TAM’s ability to accurately trace
chicken movements within images and underscores its efficacy and potential applicability
in broader computer vision tasks related to chicken tracking.

Table 4. Comparison of different methods on segmentation accuracy.

Methods
Dataset (Constructed by Authors)

mIoU (%)
Number Type

EfficientNet-B0 108,296 meat carcasses 89.34
MSAnet 300 caged chickens 87.7

mask R-CNN 1700 hens 83.6–88.7
TAM (this study) / / 93.12

4.2. The Precision of Velocity Measurement in Poultry Tracking

In the realm of poultry tracking, the implementation of speed detection, particularly
through computer vision, remains a relatively unexplored territory. The TAM-speed model,
however, has emerged as a pioneering approach in this domain, offering a novel perspec-
tive in estimating the velocity of broiler and layers. This model, while primarily focused
on tracking, also encapsulates the capability to measure speed, providing a dual func-
tionality that is both innovative and crucial for comprehensive poultry behavior analysis.
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In contrast, the field of vehicle speed detection has witnessed substantial advancements,
with numerous methodologies being developed and refined over the years. A common
approach within this domain involves the utilization of a perspective transformer, which
aids in estimating the speed of vehicles by analyzing the change in position of a vehicle
over consecutive frames, considering the camera’s perspective [26,34]. This method, while
effective for vehicles, presents unique challenges when applied to poultry due to the erratic
and non-linear movement patterns exhibited by chickens. Comparatively, other methods of
speed detection in poultry have traditionally relied on wearable equipment or radio speed
detection techniques. Wearable devices, while providing accurate data, may influence the
natural behavior and movement of the chickens due to the physical burden and potential
stress induced by the equipment [35,36]. On the other hand, radio speed detection, which
typically involves tracking the radio frequency identification (RFID) tags attached to the
chickens, may offer valuable data but is often constrained by its dependency on the prox-
imity and orientation of the RFID tags, potentially limiting the accuracy and consistency
of the data collected [37–39]. TAM-speed, in this context, offers a non-intrusive, consistent,
and technologically advanced method of not only tracking but also estimating the speed of
chickens without the need for physical contact or proximity-based technology. It leverages
computer vision to analyze movement and estimate speed, providing a wealth of data
that are both accurate and comprehensive, without influencing the natural behaviors of
the poultry.

4.3. Limitations and Future Works

TAM and its derivative, TAM-speed, exhibit a notable limitation in their substantial
computational and memory demands, especially when applied to scenarios involving the
tracking of numerous entities over extended durations. In specific test cases, even when
utilizing the robust NVIDIA A100 GPU, which is equipped with a substantial 96 GB of
memory and is renowned for its computational prowess, the models encountered diffi-
culties in sustaining tracking for periods exceeding 2 min, particularly when tasked with
simultaneously tracking more than 20 individual chickens. This computational demand
not only restricts the duration and scale of tracking but also poses significant barriers to its
application in real-world, large-scale poultry farms where continuous monitoring of larger
flocks is imperative for effective management and research.

In future endeavors, leveraging distributed computing can mitigate TAM’s computa-
tional demands, enabling the analysis of larger poultry populations and extended tracking
durations. Additionally, incorporating edge computing strategies, where initial data pro-
cessing occurs on local devices, could alleviate the computational load on the central
model, ensuring efficient and timely poultry behavior analysis. Furthermore, implement-
ing adaptive sampling techniques, which dynamically adjust the TAM model’s sampling
rate based on scene complexity, could optimize computational resource allocation, ensuring
detailed analyses during complex behaviors while conserving resources during simpler
scenarios [40].

5. Conclusions

The track anything model and its adaptation, TAM-speed, have emerged as potent
tools for analyzing chicken locomotion and behavior, demonstrating superior performance
in tracking and segmenting dyed chickens compared to other models like YOLOv5 and
YOLOv8. TAM achieved a mean Intersection over Union (mIoU) of up to 95.13%, showcas-
ing its architectural robustness and effective pre-trained model. Furthermore, TAM-speed
exhibited commendable speed detection capabilities, with an RMSE of 0.02 m/s for dyed
chickens, providing valuable insights into poultry behavior and potential health indicators.
This research underscores TAM’s potential as a multifaceted tool for comprehensive poultry
behavior analysis without requiring extensive training or fine-tuning, paving the way for
advanced applications in precision livestock farming.
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