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Simple Summary: Monitoring microplastics (MPs) in cetaceans is challenging due to difficulties in
obtaining samples, especially for endangered species. In this study, we characterized MPs ingested
in nine individuals of four cetacean species stranded along the western coast of the Taiwan Strait
including not only small coastal dolphins but also large pelagic and deep-diving cetaceans. A total
intestine length of 123.2 m was analyzed, and the color, shape, size, and polymer types of MPs were
then identified. The mean abundance of MPs was 86.44 ± 12.22 items individual−1, which was slightly
higher compared with the same species from other waters worldwide. Moreover, a strong significant
relationship between MPs abundance and intestine contents mass was identified. Transparent, fibrous
MPs made from PET and PP were found to be predominant in the present study, indicating that the
primary MPs source is from municipal and industrial sewage from clothing production and industry
as well as from fisheries and aquaculture. Our study provides more information about the MPs
pollution of endangered species in the western Taiwan Strait. It highlights the further risk assessment
of MPs consumption in these threatened species.

Abstract: Microplastics (MPs) pollution is of global concern, which poses serious threats to various
marine organisms, including many threatened apex predators. In this study, MPs were investigated
from nine cetaceans of four different species, comprising one common dolphin (Delphinus delphis), two
pygmy sperm whales (Kogia breviceps), one ginkgo-toothed beaked whale (Mesoplodon ginkgodens), and
five Indo-Pacific humpback dolphins (Sousa chinensis) stranded along the western coast of the Taiwan
Strait from the East China Sea based on Fourier transform infrared (FTIR) spectroscopy analysis. Mean
abundances of 778 identified MPs items were 86.44 ± 12.22 items individual−1 and 0.43 ± 0.19 items
g−1 wet weight of intestine contents, which were found predominantly to be transparent, fiber-shaped
polyethylene terephthalate (PET) items usually between 0.5 and 5 mm. The abundance of MPs was
found at a slightly higher level and significantly correlated with intestine contents mass (p = 0.0004*).
The MPs source was mainly likely from synthetic fibers-laden sewage discharged from intense textile
industries. Our report represents the first study of MPs in pelagic and deep-diving cetaceans in
China, which not only adds baseline data on MPs for cetaceans in Asian waters but also highlights
the further risk assessment of MPs consumption in these threatened species.

Keywords: microplastics; cetacean; intestine; Taiwan Strait; East China Sea; apex predators

1. Introduction

Microplastics (MPs) are considered as globally ubiquitous emerging pollutants and
have especially entered into most marine environments, where they occur from coastal [1]
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to pelagic waters [2], from the surface sea [3] to the deep-sea [4], and also in marine
sediments [5]. MPs not only come from biological degradation, photo-oxidative degrada-
tion, physical fragmentation, or chemical deposition of large plastic materials [6,7] but
also include microbeads released from personal care products, cosmetics, pharmaceuticals,
and synthetic fibers released from the production of garment textiles [8,9]. They enter the
marine environment mainly from human activities, especially from aquaculture, fisheries,
industry, and domestic sewage systems in coastal areas [6,10].

MPs are of considerable concern because they are potentially hazardous and widely
distributed in many marine species, from low-trophic level zooplankton, fish, shrimp,
and bivalves to apex predators such as cetaceans [11–16]. MPs can be directly absorbed
from seawater or consumed and affect species by blocking digestive tracts, altering en-
ergy distribution, reducing growth rate, and causing pathological stress [17,18]. As apex
mammal predators in the marine environment, cetaceans are appropriate sentinel species,
who can provide early warning signs of existing or emerging health risks [19,20]. To date,
MPs have been reported from the gastrointestinal tract of both filter-feeding baleen whales
and teuthophagous and piscivorous toothed whales [10,15,21–30]. Although MPs do not
represent a threat to cetaceans via entanglement or blocking like large plastic fragments do,
they can act as carriers of toxic substances, such as heavy metals and persistent organic
pollutants, which, combined with biomagnification and bioaccumulation, negatively affect
health [31].

The western Taiwan Strait is affected by the Kuroshio current, Min-Zhe coastal
current [32,33], and many upwellings in the Taiwan Strait [34], which bring nutrient-rich
deeper water to the surface supporting five major fishing grounds with abundant fishery
resources [35]. The frequent fishing activities and the increase in the use of plastic fishing
gear have introduced MPs into the marine environment [36]. Meanwhile, coastal textile,
shoe, and garment industries along the coast here might release MP-rich wastewaters
into the marine environment [37,38]. More than 20 cetacean species were reported in this
region, representing more than half of all cetacean species reported from China’s coastal
waters [39].

Historically, MPs have been reported from the digestive tract of small coastal dolphins
in Indo-Pacific humpback dolphins [26,40] and finless porpoises [24] from China, but
without local studies of MPs in large pelagic and deep-diving cetaceans. We herein report
on MPs from the intestine contents of cetaceans not only including coastal species but also
pelagic and deep-diving species stranded along the western coast of the Taiwan Strait.
The main goals of the present research are as follows: (1) to identify and compare the
presence, frequency, and characteristics of MPs (including shape, color, polymer type, and
size) in different cetacean species; and (2) to discuss the abundance level related factors and
potential sources of MPs for these cetaceans. This investigation adds baseline data of MPs
contamination status in cetaceans and their living marine environments in Asian waters.

2. Materials and Methods
2.1. Sample Collection

Nine stranded cetaceans including one common dolphin (Delphinus delphis), two pygmy
sperm whales (Kogia breviceps), one ginkgo-toothed beaked whale (Mesoplodon ginkgodens) and
five Indo-Pacific humpback dolphins (Sousa chinensis) were recovered mostly from 2019 to
2021, except for one in 2016. The common dolphin was recovered from Lianjiang, the
pygmy sperm whales and ginkgo-toothed beaked whales were from Pingtan Island, and
all five Indo-Pacific humpback dolphins were from Xiamen Bay off the western coast of
Taiwan Strait from East China Sea. The recovery locations are shown in Figure 1. The
carcass status ranged from freshly dead (code 2) to moderately decomposed (code 3) [41].
Carcasses were transported to the laboratory and stored at −20 ◦C. After later defrosting,
prior to necropsy, external morphology was measured. Sex was determined by examination
of reproductive organs. Sample management and dissection were performed in compliance
with the introductory guide for the anatomy of marine mammalian necropsy [42]. For MPs
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analysis, the complete intestines were removed from each of the cetaceans, except for a
2.4 m subsample of intestine that was excised from the ginkgo-toothed beaked whale as
some gut contents were used for other purposes (the 2 ends of the intestines were ligatured
with cotton twine). To prevent contamination, the unopened intestines were subsequently
double wrapped in aluminum foil and placed into separate sealed bags and stored at
−20 ◦C. Necropsy and sampling were approved by the local fishery administration, with
procedures conducted in accordance with all ethical codes and legal requirements in China.
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Figure 1. Cetacean carcass recovery sites along the western coast of the Taiwan Strait.

2.2. MPs Isolation

According to the previous protocol [15] with some modifications, we isolated MPs
from intestine contents in 19.5 m intestinal parts of one common dolphin (pelagic species);
48.7 m intestinal parts of two pygmy sperm whales and 2.4 m intestinal parts of one ginkgo-
toothed beaked whale (deep-diving species); and 52.6 m intestinal parts of five Indo-Pacific
humpback dolphins (coastal species). The weights and lengths of each intestine were
measured after thawing. After rinsing the outer intestinal surfaces with filtered Milli-Q
water repeatedly, the intestines were divided into several shorter segments to facilitate
sample processing and collection. Each segment was dissected open, and the contents
were collected and washed with filtered Milli-Q water through four nested sieves (0.1, 0.5,
1, 5 mm). Sieve residues were collected and rinsed into the clean glass containers using
flowing filtered Milli-Q water. Empty intestines were re-weighed, with the difference in
weight before and after their rinsing representing the wet weight of contents. The filtered
10% KOH solution was added into the glass containers to digest organic matter. Mixtures
were then incubated at 60 ◦C at 120 rpm for 30–48 h until all biological material had
completely dissolved. The digestion solution was transferred to the flotation device.

The NaI solution (1.8 g cm−3) was added with an equal volume for density separation [43],
and the funnel was covered with aluminum foil to prevent MPs pollution from the air. The
latex tube was squeezed several times in succession to make the solution evenly mixed
and then standing still. After 12 h flotation, the supernatant of dissolved mixture contents
was then filtered through a GF/A Whatman filter (diameter = 47 mm, pore size = 1.6 µm)
under a vacuum filter pump (Jin Teng GM-0.33A), which was then placed into a clean glass
Petri dish with a lid and dried at room temperature.
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The process of identification and analysis of MPs was the same as our published
paper [44]. All suspected MPs on filters were observed under a stereomicroscope (Leica
M205 C) and photographed for color, shape identification, and measured size using NIS el-
ement imaging software (version 5.20.00, Nikon Corporation, Tokyo, Japan). All suspected
MPs were transferred by tweezer to a clean aluminum-coated microscope slide (Thermo
Fisher Scientific Waltham, MA, USA) and identified for polymer type by the Fourier trans-
form infrared microscope (Micro-FTIR, Nicolet iN10, Thermo Fisher Scientific, Waltham,
MA, USA) with a spectrum range set at 4000–400 cm−1, a collection time of 3 s, and with
16 scans made for each measurement under reflection mode. By comparing the standard
spectra of polymers with the Bruker FTIR spectrum database using OPUS (Version 7.5), the
composition of the microplastic polymer was accepted if the spectra matching degree was
≥ 70% [45].

2.3. Contamination Controls and Procedural Blanks

To reduce possible contamination, all work-bench surfaces were cleaned, and intestines
were washed in a fume hood. The glassware was baked overnight (at 400 ◦C). All the tools
and apparatus were pre-washed with filtered Milli-Q water three times. All containers
were covered with aluminum foil when not in use. All experimental reagents were filtered
through a 1.6 µm membrane filter prior to use. Any operator was required to wear a
100% cotton laboratory coat and blue nitrile gloves during sampling. For every batch of
experiments, three replicate clean Petri dishes and filter papers were placed on the bench
close to the area of work to monitor any possible air contamination when taking out and
thawing the intestine samples for FTIR analysis. In addition to these “air blanks”, procedure
blanks were processed to monitor the potential contamination of reagents and/or glassware.
All the sieves were rinsed with filtered Milli-Q water into a clean glass container as its
corresponding sample. Then, it was processed synchronously with cetacean samples in
subsequent experiments. If MPs found within the procedural blanks or air blanks matched
the particle shape, color, and composition of any particle found within the corresponding
sample, these particles would then be removed from final counts to correct the data.

2.4. Data Analysis

The abundance of MPs for each individual was reported by the number of plastic parti-
cles per individual and per gram of intestine contents (wet weight, ww). MPs composition,
color, shape, and size were determined. Spearman rank correlation tests were performed to
examine possible relationships between total MPs abundance and cetacean body length and
relationships between total MPs abundance and intestinal content mass. Mann–Whitney
U tests were used to determine whether the abundance of MPs differed according to the
sex of the cetacean, and the ecological groups (deep-diving species vs. coastal species, but
not including pelagic species, for which the sample size is not up to 3). Statistical analyses
were performed using SPSS 25 software (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Abundance of MPs

Cetacean recovery site, time, and biological parameters (body length, gender, intestinal
length, mass of intestinal contents) and MPs abundance are detailed in Table 1. Due to
the large number of intestine samples, we finished all the MPs isolation and identification
work with five batches of experiments. We did not find contamination in any procedure
blank. However, for the total 15 air contamination monitoring filters, we found two, one,
and one MP item in 3 filters from two batch experiments. Therefore, MPs of the same shape
and polymer type to those found in the samples were subtracted. Of 1425 suspected MPs
particles sorted visually from all intestinal samples examined by Micro-FTIR individually,
55.1% were confirmed to be MPs. Finally, MPs were found in all nine specimens, with
a total of 778 MPs items identified in all the intestines excluding the MPs for the blank
(0.27 ± 0.60 items filter−1). The mean abundances were 86.44 ± 12.22 items individual−1
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(i.e., 0.426 ± 0.188 items g−1 ww) for all samples (n = 9), ranging from 39 to 144 items
individual−1 (i.e., 0.041 to 1.866 items g−1 ww). Though the highest abundance of MPs
items were found in one pygmy sperm whale (K.bre2) calculated by individual (144 items
individual−1), it was at the lowest level (0.041 items g−1 ww) calculated by intestine
contents mass (Figure 2). There was a significant positive correlation between the number
of MPs and intestine contents mass (Spearman’s r = 0.95, p = 0.0004 *), but there was
no correlation between MPs abundance and cetacean body length (p = 0.23) (Figure 3).
There were no apparent differences in MP counts between male and female specimens
(Mann–Whitney U test, p = 0.064) or between deep-diving species and coastal species
(Mann–Whitney U test, p = 0.071).

Table 1. Stranding location, time, biological parameters, and MPs abundances of the cetaceans.

Id Species Stranding
Location

Stranding
Date Gender

Body
Length

(cm)

Collected
Contents
Mass (g)

Collected
Intestinal

Length (m)

MPs Items/
Individual

MPs
Items/Wet
Weight (g)

Decomposition
State

D.del Delphinus
delphis

119.89◦ E
26.38◦ N 7 Jan 2019 Male 197.3 1449.0 19.5 108 0.075 II

K.bre1 Kogia breviceps 119.67◦ E
25.62◦ N 27 Jun 2019 Female 273.2 1948.4 20.3 130 0.067 II

K.bre2 Kogia breviceps 119.76◦ E
25.36◦ N 3 Apr 2019 Female 289.0 3489.4 28.4 144 0.041 III

M.gin Mesoplodon
ginkgodens

119.89◦ E
25.51◦ N 9 Jul 2019 Female 400.0 203.2 2.4 61 0.300 II

SC1 Sousa Chinesis 118.45◦ E
24.61◦ N 15 Mar 2016 Female 245.0 538.4 9.3 95 0.176 II

SC2 Sousa Chinesis 118.16◦ E
24.60◦ N 5 Mar 2019 Male 216.0 162.4 7.9 76 0.468 II

SC3 Sousa Chinesis 118.05◦ E
24.47◦ N 15 Apr 2020 Male 265.0 188.6 15.5 83 0.440 II

SC4 Sousa Chinesis 118.21◦ E
24.47◦ N 13 Jul 2021 Male 118.0 20.9 7.3 39 1.866 III

SC5 Sousa Chinesis 118.15◦ E
24.42◦ N 8 Oct 2021 Male 200.0 105.8 12.6 42 0.397 III

MPs items/individual: The abundance of MPs was reported by the number of plastic particles per individual; MPs
items/wet weight (g): The abundance of MPs was reported by per gram of intestine contents (wet weight, ww).
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3.2. Characteristics of MPs

MPs were analyzed based on shape, color, polymer type, and size (Figure 4a). Five
MPs shapes were present: fiber, film, foam, fragment, and pellet (Figure 4b). Of these, fibers
were most common, accounting for an average of >75% of the total abundance of MPs,
ranging 23.7–96.9% of MPs among individuals. The foam items were the second most. The
foam-shaped MPs were found in those polystyrene (PS)-predominant individuals (M.gin,
SC1, SC2) (Figure 4c), which is because the majority of PS foams were found in them.

Most identified polymer types (Figure 4c) were polyethylene terephthalate (PET,
39.5%), polypropylene (PP, 17%), polystyrene (PS, 14.5%), polyamide (PA, 8%), rayon
(6.7%), and polyethylene (PE, 3%) and comprised 88.6% of all MP types. Of them, PET, PP,
and rayon occurred in each specimen. Though PS was a predominant MP type, PS foams
occurred only in some individuals.

Different colored MPs (Figure 4d) included transparent (48.6%), white (15.6%), black
(14.4%), yellow (8.5%), blue (7.1%), red (3.5%), and green (2.6%). Transparent MPs were
prevalent and found in each individual, ranging 8.4–71.3%, except for in two humpback
dolphins in which white items (>50% PS foams) were predominant.

MPs occurred in all sieve fractions (Figure 4e), with 13.8% of items being smaller than
0.5 mm, 34.4% between 0.5 mm and 1 mm, and 51.8% between 1 mm and 5 mm. MPs
between 0.5 mm and 5 mm comprised 86.2% of all MPs.
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4. Discussion

Monitoring uptake of MPs by marine organisms is necessary to evaluate the risk they
pose in the marine environment [46]. While MPs have been identified from filter-feeding
baleen whales and teuthophagous and piscivorous toothed whales, these cetaceans can
also be classified into the ecological groups of coastal, pelagic, and deep-diving species
(Table 2) [10]. Using this latter classification, we reported MPs from the intestinal contents
of pelagic and deep-diving cetaceans from Chinese waters for the first time.
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Table 2. Comparison of the MPs abundance in cetaceans from different regions around the world.

Species Organ Sample
Number

Body
Length (cm)

MPs Items
/Individual

Range
MPs/Animal

Size Range
(mm)

Confirmation
Method (%
Analyzed)

Habitat Location (References)

Indo-Pacific
humpback dolphin

(Sousa chinensis)
intestine 5 209 ± 57 67 ± 25 39–95 0.1–5 FTIR (100%) Coastal Western coast of the Taiwan

Strait (this study)

Indo-Pacific
humpback dolphin

(Sousa chinensis)
stomach 12 241.2 53 ± 35.2 11–145 <5 FTIR (100%) Coastal Pearl River Estuary,

China ([25])

Indo-Pacific
humpback dolphin

(Sousa chinensis)
intestine a 3 213.5 37.5 ± 7.5 2–45 0.1–4.8 FTIR (100%) Coastal Beibu Gulf, China ([26])

East Asian finless
porpoise (Neophocaena
asiaeorientalis sunameri)

intestine 7 143 ± 40 19.1 ± 7.2 10–32 0.125–5 Raman (100%) Coastal Yellow Sea and Bohai Sea,
China ([24])

Harbor porpoise
(Phocoena phocoena) GIT 21 128 ± 18 5.24 ± 2.53 2–11 0.1–5 FTIR (not 100%) Coastal British coast ([47])

Common dolphin
(Delphinus delphis) intestine 1 197.3 108 108 0.1–5 FTIR (100%) Pelagic Western coast of the Taiwan

Strait (this study)
Common dolphin
(Delphinus delphis) stomach 35 None reported 12 ± 8 3–41 0.29–5 None reported Pelagic Galician coast ([22])

Common dolphin
(Delphinus delphis) GIT 16 191 ± 21 5.69 ± 3.34 1–12 0.1–5 FTIR (not 100%) Pelagic British coast ([47])

Common dolphin
(Delphinus delphis) stomach 15 184 ± 29 7.8 ± 1.4 1–21 0.04–10 FTIR (100%) Pelagic New Zealand waters ([30])

Striped dolphin
(Stenella coeruleoalba) intestine 43 160.31 ± 66.38 14.9 ± 22.3 1–82 0.1–5 FTIR (not 100%) Pelagic Western Mediterranean

Sea ([34])
Pygmy sperm whale

(Kogia breviceps) intestine 2 281 ± 11 137 ± 10 130–144 0.1–5 FTIR (100%) Deep-diving Western coast of the Taiwan
Strait (this study)

Pygmy sperm whale
(Kogia breviceps) entire GIT 1 164 59.08 ± 40.52 * None reported 0.2–5 Raman (not 100%) Deep-diving Eastern North Atlantic ([28])

Pygmy sperm whale
(Kogia breviceps) GIT 1 211 4 4 0.1–5 FTIR (not 100%) Deep-diving British coast ([47])

True’s beaked whale
(Mesoplodon mirusa) GIT 3 500 88 88 0.3–5 FTIR (not 100%) Deep-diving Ireland coast ([15])

GIT: stomach and intestines; entire GIT: from oesophagus to anus; a: MPs abundance analyzed by a subsample; * average MPs abundance within study including multiple species.
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Different feeding habits and different statistical analytical methods made it difficult to
compare exposing risk levels of MPs from all different species. We tried to find published
MPs data (usually 0.1–5 mm) from the same cetacean species or species with similar habits
from waters worldwide (Table 2) and made a rough comparison of the MPs abundance
(MPs usually calculated by individual in the published data). For the coastal species
Indo-Pacific humpback dolphins, we showed that the abundance of MPs (67 ± 25 items
individual−1) from Xiamen Bay in this study was a bit higher than previously reported
data for this species from the Pearl River Estuary (53 ± 35.2 items individual−1) [25] and
Beibu Gulf (37.5 ± 7.5 items individual−1) [26] and also higher than in finless porpoises
(19.1 ± 7.2 items individual−1) from Yellow Sea and Bohai Sea, China [24], and much
higher than harbor porpoises (5.24 ± 2.53 items individual−1) from the British coast [47].
The abundance of 108 items individual−1 that we reported for the common dolphin in
this study far exceeded the MPs abundance reported for this species from other waters,
including the Galician coast (3–41 items individual−1) [22], the British coast (3 -12 items
individual−1) [47], and New Zealand waters (1–21 items individual−1) [30]. For two pygmy
sperm whales, the abundance of 137 ± 10 items individual−1 was also higher than this
species from the British coast (4 items individual−1) [47] and the eastern North Atlantic
(59.08 ± 40.52 items individual−1) [28]. According to the previous studies, the western
Pacific Ocean presenting a high concentration of plastic debris [2] might contribute the high
MPs abundance in marine species in this area. However, it should be noted that beyond
the physical conditions of the animals (e.g., age, body size, and the cause of death), the
different MP extraction methods (such as target MPs size range), sampling organs (entire
GIT or only a section), and suspected MPs verification percents (if 100% suspected MPs
have been confirmed) may also affect MPs abundance.

Some previous studies tried to examine the possible relationships of MPs abundance
with length or size of the dolphins. While no correlation has been reported between dolphin
size and the number of MPs within stomachs [22,40], but a positive correlation has been
reported between MPs abundance and the mass of contents within intestinal samples of
stranded bottlenose dolphins [48]. In this study, we also found that there was a strong
significant relationship between MPs abundance and intestine contents mass (p < 0.01) in
the nine cetaceans (Figure 3). In addition, the abundance level of MPs in cetacean samples
presented by individuals was probably different from calculated by intestine contents
mass (Figure 2). Therefore, we suggest that intestine contents mass should be reported
in addition to cetacean size in future MPs studies. MPs databases for stranded cetaceans
with more detailed physical information will enable a more comprehensive and effective
spatio-temporal MPs pollution comparison for cetaceans, rather than only comparing MPs
abundance by individuals. In addition, different intestinal parts with special structure
might impact the MPs accumulation [24]. However, we did not analyze the MPs in the
different intestinal parts due to the limited intestinal structure information of these species
in this study. We will pay more attention to the number of MPs per intestinal part in the
future studies.

Determining the exact origin of the MPs was relatively difficult because of the com-
plexity of their migration, transport, and transformation in the marine environment [49].
However, polymer type, shape and color, and the spatial distribution of MPs can be used
to infer MPs origin [50,51]. Fibers were the most (more than 75% of all MPs items) abun-
dant shape in cetacean intestine contents, consistent with previous accounts of MPs in
marine mammals [15,22,26]. MPs have been reported from both cetacean gastrointesti-
nal tracts and their feces [10,15,23], indicating that a few MPs were passing through the
GIT and egested [47]. And the retention of fibrous MPs might be related to the wrinkled
structure of the intestinal walls of the cetacean, wherein fibers might become more eas-
ily trapped [24]. Fibers were reported as the main type of MPs pollution in waters and
sediments [52]. The widespread occurrence of fibrous MPs in the marine environment may
explain their dominance in both cetaceans [44,47] and fishes [45,53]. As fibers are widely
used primary raw materials in the textile industry, many fibrous MPs came from textile



Animals 2024, 14, 641 10 of 14

laundry wastewater [51,54]. In addition, both fishing nets and ropes were further possible
sources [55].

Most (79%) of the polymers that we identified were composed of polyethylene tereph-
thalate (PET, 39.5%), polypropylene (PP, 17%), polystyrene (PS, 14.5%), and polyamide
(PA, 8%). Differences in MPs polymer type may be related to the survey area [23]. The
prevalence of PET and PP accounting for more than 55% in this study was consistent
with the main polymer types recently reported in seawater from this region [44,56]. As
teuthophagous and piscivorous predators, the toothed whales mainly ingest MPs through
trophic transfer from prey [15]. The polymer PET was also usually found dominated in
fishes from different Chinese waters, such as two major cities in Fujian Province from the
western coast of the Taiwan Strait [13], Hangzhou Bay and the Yangtze Estuary [57], and
the Pearl River Estuary [58]. As a form of polyester, more than 80% PET from 42 × 106 t of
synthetic fibers has been estimated to be produced in textiles annually [38,59,60]. Therefore,
the widespread distribution of PET fibers might be because Fujian province along the
western coast of the Taiwan Strait had a large textile industry, where shoe and garment
industries caused the discharge of PET-rich wastewaters into the marine environment [37].
PP was the second most common polymer found in our study, and it also has been reported
for other cetacean species in China, such as finless porpoises in the Yellow and Bohai
Seas [24], and humpback dolphins in the Pearl River Estuary [25]. PP was widely used in
industrial, residential, and fishing activities, such as for some automotive parts, in textiles
and for plastic bags, and for fishing ropes and nets [61]. The PP MPs in this study may
also have originated from either textile industries or fishery activities in and around the
Taiwan Strait.

The colors of MPs varied by region and species. Consistent with many previous
studies, transparent, white, and black colors were commonly found in this study [45,62], in
which transparent items were dominated (48.58%). The commonality of clear plastics in
fishing lines and nets, packaging, clothing [63,64], and the whitening and yellowing effect
caused by environmental physicochemical processes, including aging and photolysis [25]
and discoloration by alkalinity [48,63], may increase the proportion of colorless items.

In the present study, MPs occurred in all sieve fractions, and most MPs were identified
in the size ranges of 1–5 mm (51.8%) and 0.5–1 mm (34.4%), similar to those in cetaceans
reported in previous studies [21,22,25,26]. Usually, plastic fragments in the marine envi-
ronment are gradually broken into smaller particles by wave action, photo-oxidation, and
biodegradation [65]. The higher percentage of large size MPs in humpback dolphins in this
study might be due to the relatively short transport distance for plastic wastes from the
city sewage treatment plants in Xiamen Bay [25]. Moreover, mounts of large-size fibers
were also found in the other pelagic and deep-diving cetaceans in this study. Because
we have adapted washing protocols using different size range nested sieves to collect
intestine contents previously used for many other cetacean taxa [10,15,22,24,44,48], the
smallest size of MPs found was 0.102 mm, just above the smallest sieve size. Similar to our
results, the smallest size of MPs reported in many published papers about cetaceans was
usually above 0.1mm [15,26,28,47]. However, there were still some smaller MPs items that
might pass through the smallest size mesh. In future studies, we will focus more on those
smaller items. Although MPs would not cause physical obstacles to cetaceans through
entanglement or swallowing like large plastic fragments, they could embed within tissues
and induce local gastrointestinal tract damage [23]. Additionally, MPs remaining in the
intestines of cetaceans could also act as carriers of toxic substances, such as heavy metals
and persistent organic pollutants, which were bioaccumulated in top predators [66,67] and
could be deleterious to health [68,69].

In this study, we have taken extensive measures to minimize the risk of contamination
of samples by airborne MPs or from use of equipment. We have also used “air blanks” to
monitor the air contamination and procedure blanks to monitor potential contamination of
reagents and/or glassware during the gut content extraction, MPs isolation, and analysis
process. However, there were still potential contamination risks while dissecting the
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cetacean carcasses and taking out the intestines. Otherwise, the aluminum foil wrapping
the intestines and the sealed bags might be other potential contamination sources. Although
we have rinsed the intestines from the outside with filtered Milli-Q water before opening
them, the contamination risks from the postmortem examination and the intestine collection
step cannot be ruled out. In future studies, we should rinse or pre-burn the aluminum foil
to avoid contamination and place blanks during the whole process from the postmortem
examination to finish analyzing MPs with FTIR.

5. Conclusions

MPs marine pollution is ubiquitous, and MPs are now commonly identified in apex
marine predators such as cetaceans. Monitoring MPs in cetaceans is challenging because of
difficulties in obtaining samples, especially for endangered species. Therefore, we investi-
gated MPs in nine individuals of four cetacean species stranded along the western Taiwan
Strait. It provided the first report of MPs from pelagic and deep-diving cetaceans in China
and the first report anywhere of MPs from ginkgo-toothed beaked whale. Transparent,
fibrous MPs made from PET and PP were found to be predominant in this study. Synthetic
fibers might be the primary MPs source, discharged into the marine environment and
transferred to cetaceans via municipal and industrial sewage from clothing production and
industry along the western coast of the Taiwan Strait and from fisheries and aquaculture.
The presence of MPs in ecologically important indicator species such as cetaceans high-
lights the need to better understand their sources and impacts throughout food chains and
harmful effects on apex predators.
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