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Simple Summary: Many studies on parturition detection have been conducted on large ruminants,
but only a few have been conducted on small ruminants. The parturition detection system for Korean
native black goats developed in this study may detect labor pains in goats and assist in the timely
initiation of kid nursing to reduce stunted growth and mortality. However, applying this system to
other Korean Native Black Goats or other breeds of goats will require further research due to different
breed characteristics and specification conditions.

Abstract: Korean Native Black Goats deliver mainly during the cold season. However, in winter,
there is a high risk of stunted growth and mortality for their newborns. Therefore, we conducted
this study to develop a KNBG parturition detection system that detects and provides managers with
early notification of the signs of parturition. The KNBG parturition detection system consists of
triaxial accelerometers, gateways, a server, and parturition detection alarm terminals. Then, two
different data, the labor and non-labor data, were acquired and a Decision Tree algorithm was used
to classify them. After classifying the labor and non-labor states, the sum of the labor status data was
multiplied by the activity count value to enhance the classification accuracy. Finally, the Labor Pain
Index (LPI) was derived. Based on the LPI, the optimal processing time window was determined
to be 10 min, and the threshold value for labor classification was determined to be 14 240.92. The
parturition detection rate was 82.4%, with 14 out of 17 parturitions successfully detected, and the
average parturition detection time was 90.6 min before the actual parturition time of the first kid. The
KNBG parturition detection system is expected to reduce the risk of stunted growth and mortality
due to hypothermia in KNBG kids by detecting parturition 90.6 min before the parturition of the first
kid, with a success rate of 82.4%, enabling parturition nursing.

Keywords: goat kid; management; accelerometer; lying behavior; labor pain

1. Introduction

Korean native black goats (KNBGs) are a seasonal breed that bears its young during
the colder months of fall, winter, and spring [1,2]. In the absence of postpartum care, winter
parturition can result in stunted growth and mortality in newborns [3]. Studies of goats
from other breeds have shown that mortality in newborn goats can be high, ranging from
7.8% [4] to 37.0% [5] during the first 1–3 days of life, and the younger the goat, the higher
the mortality [6]. In sheep, early parturition nursing, colostrum feeding, and lamb drying
increase survival in winter [7]. Thus, parturition nursing increases kid survival and allows
for quick action even when the mother goat is not engaging in maternal behavior.
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Common goat behaviors include standing, feeding, walking, watering, resting, mating,
agonistic behavior, and licking. However, pre-parturient goats exhibit decreased feeding
behavior, slower movement, frequent urination [8], isolation from other goats, increased
lying, and changes in posture [9]. Of these, the most important are posture changes and
increased lying behavior. Lying refers to the behavior of a mother goat lying on her
side with her legs stretched out and constantly moving when she feels labor pains just
before parturition.

Acceleration sensors can be used to detect changes in behavior. Acceleration sensors
observe values due to the acceleration of gravity and inertial acceleration due to movement.
They can observe movement as data values by observing changes in multiple axes depend-
ing on the number of axes of the sensor [10–12]. Sheep are sometimes fitted with triaxial
accelerometer sensors on their ears to collect data. Random Forest machine learning (ML)
has been employed to detect lying behavior, a primary pre-parturition behavior, with up to
83.6% accuracy [13]. Moreover, Support Vector Machine (SVM) algorithms have been uti-
lized to classify grazing, lying, standing, and walking behaviors with 76.9% accuracy [14].
In addition, activity and inactivity can be classified with 98.1% accuracy using a Decision
Tree (DT) [14], and horse colic can be detected by attaching a triaxial acceleration sensor to
their withers to collect data and measure rolling and sternal recumbency [15]. These studies
have shown that it is possible to use various ML techniques to detect labor behaviors by
attaching a triaxial acceleration sensor to the hind leg of a mother goat to measure their
activity and the amount of time spent lying on their side and stretching their legs when
feeling labor pains and to classify labor and non-labor behaviors.

This study assumed the following: (1) KNBGs lie on their side, stretch their legs, and
move when they feel labor pains just before parturition; (2) a triaxial accelerometer can
classify and measure their behaviors, including lying on their side, stretching their legs,
and moving when feeling labor pains just before parturition; (3) a Labor Pain Index (LPI),
which combines the amount of side-lying and leg-extending behavior with the amount of
activity, can classify labor and non-labor behavior; and (4) labor behavior can be detected
using an LPI.

Therefore, the objectives of this study were to:

1. Classify labor and non-labor behaviors using an ML classification algorithm for
KNBGs;

2. Develop an LPI that combines the amount of labor behaviors and the amount of
activity to indicate the intensity of labor pain;

3. Use the LPI to detect parturition; and
4. Develop a notification system that can provide early warning for labor.

2. Material and Methods
2.1. Animals and Housing

The experiments were conducted at a traditional black goat house (35◦20′62.8′′ N,
128◦13′70.2′′ E) on the livestock farm of Gyeongsang National University, Jinju, Gyeongsangnam-
do, Republic of Korea. The animals were 17 pregnant female KNBGs.

The KNBGs’ house was an open-sided barn with a room size of 2.3 m × 7.7 m, with
passageways both inside (2.3 m × 3.0 m) and outside (2.3 m × 4.7 m).

The KNBGs remained in the same rooms in which they were previously housed to
minimize stress due to rank order within the herd [16] and were managed customarily.

Feed was a combination of concentrates and hay fed at 09:10 and 14:30, and drinking
water was provided in a cylindrical water trough on the outside of the barn with free access
for drinking.

Herd size was determined by placing a maximum of 4 KNBGs per room to reduce
rank battles due to overlarge herd sizes [17].

The stocking density was 4.4275 m2/hd, with at least 3 m2 of space allocated for
pregnant goats to reduce stress [18].
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2.2. Behavioral Observations

The behavior of the animals was recorded by installing a total of eight cameras (DS-
2CD2066G2-I, HIKVISION, China) and two recorders (DS-7204HQHI-K1, HIKVISION,
China) inside and outside the KNBG house.

The RGB cameras used for behavioral observation had a horizontal field of view (FOV)
of 105.1◦, a vertical FOV of 53.4◦, a diagonal FOV of 128.6◦, and a resolution of 6 MP.

All recorded data were backed up once per week during the observation period to
prevent data loss due to the poor environment inside the barn (i.e., the presence of dust,
humidity, and gas).

2.3. Attaching the Triaxial Acceleration Sensor

The triaxial acceleration values were collected using a sensor (iBS03, INGICS TECH-
NOLOGY, Taiwan). The sensor size was 43 mm × 43 mm × 14.8 mm, and the data
communication rate was 1 Hz. The triaxial acceleration sensor was covered with a plastic
housing with dimensions of 85 mm × 75 mm × 25 mm to prevent breakage and for easy
and secure attachment. The triaxial acceleration sensor weight was 25 g and plastic housing
was 100 g.

A triaxial accelerometer was used to analyze various behaviors of the KNBGs kept in
the barn. Acceleration sensors were attached to the hind legs of the goats based on previous
studies that measured the lying behavior of goats [19,20].

The hock is the joint between the tarsal bone and the tibia in a goat’s hind limb.
Anatomically, the tarsal bone below the hock is cylindrical in shape, which makes it easier
for sensors to slip out of place when attached. However, the tibia, located just above the
hock, has muscles called the tibialis caudal and gastrocnemius muscles [21], making this
area relatively flat and enabling a sensor to be affixed easily. Thus, the acceleration sensor
was attached to the tibia using double-sided Velcro. The tibia has also been used to study
goat gait characteristics [22] and to assess gait [23] in goats. Based on these previous studies,
attaching the sensor to the tibia would allow us to assess movement accurately, as shown
in Figure 1.
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Figure 1. Selecting a sensor attachment location.

However, the double-sided Velcro used to attach the sensor could rub against the
flesh of the tibia over time, causing crushing or wounding. Therefore, the area where the
double-sided Velcro and the flesh of the tibia were in direct contact was covered with a soft
cloth to prevent any friction between the Velcro and the flesh from causing wounds.
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The X-axis of the triaxial acceleration sensor was oriented up and down the goat’s
body, the Y-axis was oriented left and right, and the Z-axis was oriented in front and behind
the goat, as shown in Figure 2. Therefore, it was expected that the Z-axis would change
significantly and that continuous movement would occur in instances of the goats’ labor
behavior of lying (lateral recumbency) with their legs stretched out while feeling labor pains
compared to the general behavior of standing or sitting. Thus, it was determined that the
labor behavior could be measured based on the Z-axis acceleration and movement values.
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Figure 2. Dimensions of triaxial acceleration sensor.

The triaxial acceleration sensors were attached to the KNBGs 2–3 weeks before parturi-
tion was expected so that the KNBGs could become accustomed and adapt to them so that
the sensation of a suddenly attached sensor would not distort their parturition behavior.

2.4. Acceleration Data Collection

The KNBG parturition detection system consisted of triaxial acceleration sensors,
gateways, a cloud server, and alarm terminals.

The triaxial acceleration sensor data were transmitted to the gateway (IGSIS, ING-
ICS TECHNOLOGY, Taiwan)(https://www.ingics.com/ (accessed on 12 February 2024))
through Bluetooth communication, and the gateway transmitted the data to the server
through Internet communication.

The cloud server (Wuyang cloud server, Wuyang corporation, Republic of Korea)
stored the following acceleration data: data number, gateway number, time, received
signal strength indicator (RSSI), battery life, activity or inactivity, and X-, Y-, and Z-axis
acceleration values.

The alarm terminal can be used by any device that can use the Internet, and it is
configured to access the cloud server to obtain each value and view it via the Internet or
through an application.

Due to the characteristics of the triaxial acceleration sensor, acceleration data were
collected once a second when there was movement (activity) and once every 10 s when
there was no movement (inactivity). Therefore, depending on the acceleration data during
a particular time period, it would be possible to determine whether there was activity or
inactivity during that time.

The acceleration data related to labor behavior was set to indicate when the animal per-
formed additional behaviors, such as lying (1 recumbency) and stretching its legs during the
behavioral observation or howling while lying (lateral recumbency). A dataset was created

https://www.ingics.com/
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with the sensor values for those particular observation times. In contrast, the data related
to non-labor behavior were set to indicate when the animal performed general behavior
(walking, sitting, feeding, and inactivity) during the behavioral observation time period,
and a dataset was created with the sensor values for those particular observation times.

2.5. ML for Labor Pain Classification

The labor pain dataset was verified by observing the recordings of the 17 KNBGs
engaged in labor behavior. The sensor values at the time of labor behavior obtained
through behavioral observation were extracted from the server to create a dataset based on
3938 labor pain data points. For the non-labor dataset, 3938 non-labor behavioral datasets
containing behaviors other than labor behavior were created for the same 17 KNBGs from
the data 12 h before the parturition time of the first kid. We labeled labor pain data with a
1 and non-labor data with a 0. These labeled data were then used as the final dataset to
classify labor pain and non-labor behaviors in KNBGs.

The ML performance was compared using an SVM, a linear model, and a DT, a non-
linear model. We used 80% of the total dataset as training data and the remaining 20% as
test data to train with both models. We also used data augmentation to mix the data to
prevent overfitting of the model to ensure accuracy.

Considering the results of the scatter plots for the main variables, the model with the
most minor overlap between the linear and non-linear labor behavior classification models
was determined to be the best classification model.

Variable selection is an essential process in ML and is crucial for optimizing a model’s
performance and removing unnecessary information. In complex datasets, every variable
may contain valuable or unnecessary data, and these unnecessary variables can lead to
poor model performance and difficulty in interpretation.

We used Weka software (Version 3, The University of Waikato, New Zealand) for
variable selection. The levels of importance of the X-, Y-, and Z-axis acceleration values
were evaluated using information gain, which assesses how well the data are separated by
the corresponding attributes contained in the dataset, and gain ratio, which normalizes the
information gain to account for the variability of the attributes.

2.6. Calculation of the LPI

Labor pain detection in seconds uses accelerometer data, which are prone to error
because the system detects changes in posture over a short period of time. However, when
the KNBGs felt pain during labor, they stayed in the lying (lateral recumbency) position
longer. Therefore, the time windows collected were 8, 10, 12, and 14 min, and LPIs were
calculated for each of these periods. From these calculations, we constructed a labor pain
dataset, which combined the labor pain dataset from the 17 KNBGs during labor behavior
with the non-labor dataset of those same KNBGs during non-labor.

The standard range for acceleration data is between 0 and 255, but the data in this
dataset occasionally contained values below 0 or above 256, which were determined to be
outliers and were removed. Additionally, to improve the accuracy of the data distribution,
the remaining outliers were removed using quantiles, an outlier removal method. After
sorting the data by value, the data were divided into quartiles according to the size of each
value, and then the outliers were removed using the following Equations (1)–(3).

IQR = Quartile3 − Quartile1 (1)

where IQR = interquartile; Quartile3 = third quartile; Quartile1 = first quartile.

CUO = Quartile3 + 1.5 × IQR (2)

where CUO = criteria for upper outliers.

CLO = Quartile1 − 1.5 × IQR (3)
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where CLO = criteria for lower outliers.
Goats lie on their side, stretch their legs, and keep moving when they feel labor pains

just before parturition. The triaxial acceleration values of the goats showed an increased
number of activities according to their frequent movements caused by labor pains just
before parturition, and the number of classifications of labor behavior increased according
to their behavior of lying (lateral recumbency) on their side and stretching their legs.
Therefore, to classify labor behavior and non-labor behavior using these criteria, the LPI
was calculated as shown in Equation (4).

LPI = TA × TLP (4)

where LPI = Labor Pain Index; TA = total number of activities during the time period; TLP
= total number of behaviors classified as labor pains by DT during the time period.

Example: LPI (16,000) =TA (400) × TLP (40)

2.7. Selection of the Optimal Time Window

Parturition LPIs were obtained from the highest-value LPIs on the day of parturition
for the 17 mother KNBGs. Non-parturition LPIs were calculated by taking the 110 highest-
value LPIs from the same goats’ non-parturition behaviors prior to parturition, and the
means and standard deviations of these groups were averaged. The central range value
(CRV) was calculated using Equations (5)–(7) to classify the parturition and non-parturition
LPIs according to the time windows of 8, 10, 12, and 14 min.

MSL = MLPIL − SDLPIL (5)

where MSL = mean minus standard deviation of LPIs during labor pain; MLPIL = mean of
LPIs during labor pain; SDLPIL = standard deviation of LPIs during labor pain.

MSNL = MLPINL + SDLPINL (6)

where MSNL = mean plus standard deviation of LPIs during non-labor; MLPINL = mean
of LPIs during non-labor; SDLPINL = standard deviation of LPIs during non-labor.

CRV = MSL − MSNL (7)

where CRV = Central range value.
Among the CRVs obtained using Equation (7), we determined that the time window

containing the largest value was the optimal processing time window.
Secondary validation of the difference in LPIs between the day of parturition and the

day before parturition was performed to determine whether LPIs could be used to classify
parturition versus non-parturition. We calculated the LPIs using data from the 17 KNBGs
on the day of parturition and used the highest value as the data for parturition and also
calculated the LPIs using data from those same 17 KNBGs one day before parturition and
used the highest value as the data for non-parturition. The data were tested for normality
using the Kolmogorov–Smirnov test and the difference between the mean values of the LPIs
during parturition and non-parturition was verified using an independent T-test. Both tests
were performed in SPSS 27 (Released 2020 Version 27.0, Armonk, NY, USA, IBM Corp.).

2.8. Calculation of the LPI Threshold for Classifying Parturition

According to the three-sigma method, a value greater than the mean value of a group
plus three times the standard deviation can be considered an outlier. Values more significant
than the LPI mean value of the non-parturition group plus three times the LPI standard
deviation were considered outliers and could be considered included in the parturition
group. The threshold value of the LPI was calculated using Equation (8).

TCKG = MLPINL + 3 × SDLPINL (8)
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where TCKG = threshold for classifying the parturition of goats.
Predicting the parturition time requires the difference between each individual’s par-

turition detection time, the first birth time, and the average of these differences. Therefore,
the difference values and the average of these differences were calculated. The predicted
parturition time was calculated using Equation (9).

PPT = DPT + MDV (9)

where PPT = predicted parturition time; DPT = detected parturition time; MDV = mean of
the difference in values between the detected parturition time and the first birth time.

3. Results
3.1. Selection of the Main Variables

The gain ratio of the X-axis acceleration value was 0.3233, and the gain ratio of the
Z-axis acceleration value was 0.3248, which were both relatively high. Therefore, the X-
and Z-axis acceleration values were selected as the main variables, as shown in Figure 3.
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3.2. Development of the Labor Behavior Classification Model

According to the scatterplot with the main variables, the X- and Z-axis acceleration
values, there was an overlap between the labor behavior dataset and the non-labor behavior
dataset. Therefore, we decided to use a non-linear classification model because we thought
that a linear model could not adequately separate the datasets.

The training results with the non-linear models, SVM and DT, are shown in Tables 1
and 2. The precision and recall of SVM were 0.99 and 0.93 for the non-labor behavior data
and 0.93 and 0.99 for the labor behavior data, respectively, and the precision and recall
of DT were 0.96 and 0.97 for the non-labor behavior data and 0.97 and 0.96 for the labor
behavior data, respectively. Among them, the accuracy of 0.97 (97.0%) for DT was higher
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than the accuracy of 0.93 (93.0%) for SVM. As a result, DT was selected as the ML model
for labor behavior classification.

Table 1. Accuracy of Support Vector Machine.

Precision Recall F-1 Score Support

Non-labor (0) 0.99 0.93 0.96 782

Labor (1) 0.93 0.99 0.96 794

Accuracy 0.96 1576

Macro average 0.96 0.96 0.96 1576

Weighted
average 0.96 0.96 0.96 1576

Precision: true positive ÷ (true positive + false positive). Recall: true positive ÷ (true positive + false negative).
F-1 score: 2 × (precision × recall) ÷ (precision + recall). Support: number of the quantities. Macro average:
sum(F1 scores) ÷ number of classes. Weighted average: ∑(weights × quantities) ÷ ∑Weights.

Table 2. Accuracy of Decision Tree.

Precision Recall F-1 Score Support

Non-labor (0) 0.96 0.97 0.96 782

Labor (1) 0.97 0.96 0.96 794

Accuracy 0.96 1576

Macro average 0.96 0.96 0.96 1576

Weighted
average 0.96 0.96 0.96 1576

Precision: true positive ÷ (true positive + false positive). Recall: true positive ÷ (true positive + false negative).
F-1 score: 2 × (precision × recall) ÷ (precision + recall). Support: number of the quantities. Macro average:
sum(F1 scores) ÷ number of classes. Weighted average: ∑(weights × quantities) ÷ ∑weights.

3.3. Selection of the Optimal Processing Time Window

The results of the CRV calculations are shown in Table 3. The greatest difference was
1690.49 for the 10 min processing time window. In addition, the results of the normality
test and the difference between the mean values of the LPIs during labor and non-labor
behaviors showed that normality was satisfied (p > 0.05), and there was a significant
difference between the mean values (p < 0.001). Therefore, we concluded that a 10 min
processing time window could best classify labor and non-labor behaviors, and we decided
to use this time window as the optimal time interval.

Table 3. Means and standard deviations of LPIs during labor and non-labor periods for KNBGs.

Time
Window

(min)

Labor Non-Labor

A–B Significance
Mean Standard

Deviation

Mean −
Standard
Deviation

(A)

Mean Standard
Deviation

Mean +
Standard
Deviation

(B)

8 69,359.59 66,253.97 3105.62 3550.65 1781.54 5332.18 −2226.57 p < 0.001

10 77,780.06 68,137.81 9642.25 4807.18 3144.58 7951.75 1690.49 p < 0.001

12 102,674.63 99,319.32 3355.31 6248.59 3222.90 9471.49 −6116.18 p < 0.001

14 107,822.07 102,600.46 5221.60 7547.88 4149.09 11.696.97 −6475.37 p < 0.001

3.4. Determination of the Threshold for Parturition Classification

The threshold value for parturition was calculated by adding the mean (4807.18) to
three times the standard deviation (3144.58) of the 110 highest LPI values of the 10 min
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processing time window for the 24 h preceding parturition for the 17 KNBGs evaluated,
and the result was 14,240.92. Therefore, the threshold value for parturition classification
was determined to be 14,240.92.

3.5. Calculation of the Parturition Detection Rate

Examples of the results of detecting versus not detecting parturition using the par-
turition classification threshold are shown in Figures 4 and 5. In Figure 4, all LPIs for
non-parturition were below the parturition classification threshold; in contrast, some LPIs
for parturition were above the parturition classification threshold and thus could be classi-
fied as parturition. However, in Figure 5, all LPIs for non-parturition and parturition were
below the parturition classification threshold and could not be classified as parturition.

Out of the 17 KNBGs that underwent parturition, 14 were detected successfully, repre-
senting a parturition detection rate of 82.4%; however, 3 were not detected, representing a
failure rate of 17.6%. This 82.4% parturition detection rate was very high. In the case of
non-parturition, 17 out of 17 goats were successfully detected.

3.6. Determination of the Parturition Prediction Time

We calculated the time difference between the time of first birth and the time of
the detection of parturition for each individual. We determined the mean and standard
deviation of these values; the mean was 90.6 min, and the standard deviation was 99.12 min.
Therefore, when detecting parturition, we decided to alert that the first birth would be
delivered in an average of 90.6 min based on the time of the detection of parturition. As
shown as Figure 6.
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4. Discussion

The behavioral changes in mother goats in the days before and on the day of labor
showed an increase in standing behavior and a decrease in feeding and lying down behavior
on the day of giving birth [24]. However, a total of 87% of mother goats exhibit labor pain
behaviors such as lying down with their legs stretched out and moving them just before
parturition [25]. These results suggest that as labor approaches, the goat becomes less
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restless and generally exhibits fewer lying behaviors but still exhibits lying behaviors
during labor.

The gain ratio of the X- and Z-axis acceleration values measured with the triaxial
acceleration sensor was high: the Z-axis acceleration value increased when the goats were
lying (lateral recumbency) with their legs stretched out, and the X-axis acceleration value
increased with frequent leg movements. These results suggest that the X- and Z-axis
acceleration values can be used to measure labor behavior.

In this study, when DT trained a dataset that combined datasets of labor pain and
non-labor behaviors, including lying (lateral recumbency) behavior unrelated to labor pain,
which were created with X- and Z-axis acceleration values, a classification accuracy of 97%
was achieved. Maurmann et al. [20] measured lying behavior in goats not exhibiting labor
behavior with a triaxial accelerometer attached to their hind legs and achieved 99.62–99.93%
accuracy with video data. These results suggest that triaxial accelerometers attached to
the hind limbs of goats can accurately measure lying (lateral recumbency) behavior and
distinguish between normal lying behavior (non-labor behavior) and labor behavior.

Goats are also affected by circadian rhythms. Most goats often lie down and get up
between 12 p.m. and 2 p.m. and lie down and sleep for a long time between 2 a.m. and
4 a.m. [26]. Therefore, if there is a significant amount of time spent lying during hours
usually associated with low levels of lying behavior when measured using either our
method or the method of Maurmann et al. [20], we can conclude that certain events, such
as illness and parturition, may be occurring. We can also conclude that lying behavior is
a marker of rest, thus providing a more accurate indication of welfare. Lying behavior
has already been used to assess welfare in cattle [27], sheep [28,29], and goats [30,31]. In
particular, lying behavior has been used in dairy goat species as one of the 25 welfare
indicators, with abnormal lying posture indicating that the animal may be in pain [32].

The LPI can be measured with a 10 min time window to detect labor behavior and
to predict the time of the first parturition. Although the LPIs measured in this study
resulted in a high parturition detection rate of 82.4% in KNBGs, the parturition detection
rate was calculated from a small number of 17 animals. Therefore, we plan to re-evaluate
the parturition detection rate through further studies on KNBG farms.

In this study, of the three (17.6%) goats in which parturition could not be detected, one
(5.9%) did not exhibit any lying behavior at all, and the remaining two (11.8%) exhibited
brief lying behaviors of less than 1–2 min each. Based on Lickliter [25], 87% of mother goats
lie down during labor pains. The slight differences in the proportions of lying behavior
during labor pains may be due to differences in breed and management methods.

The parturition prediction time was 90.6 ± 99.12 min before the birth time of the first
kid. Thus, the alarm can be noticing the manager to prepare the parturition. Our study
did not consider the number of kids delivered as an essential factor. Therefore, we did not
detect a correlation between the number of kids delivered and the intensity of labor pain.
This potential relationship needs to be investigated in the future.

Future research is also needed to analyze the data from the three goats in which
parturition could not be detected to improve the detection rate using variables other than
LPI-related variables. In addition, integrated monitoring systems that utilize various
sensors and data other than acceleration sensors should be evaluated for their potential
utility in this application.

5. Conclusions

In this study, we developed a new index LPI based on the labor behavior and activity
frequency of KNBGs and a system that classifies labor pain when the LPI is above a
threshold and non-labor when the LPI is below. This is a proof-of-concept study, and we
will develop an improved version in future studies. The LPI for predicting labor in KNBGs
can be applied to labor detection systems for other small ruminants. However, the accuracy
of the other species may vary depending on the frequency of the targeted labor behavior.
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