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Simple Summary: Blurry scenarios often affect the clarity of fish images, posing significant challenges
to deep learning models in terms of the accurate recognition of fish species. A method based on
deep learning with a diffusion model and an attention mechanism, DiffusionFR, is proposed herein
to improve the accuracy of fish species recognition in blurry scenarios caused by light reflections
and water ripple noise. Using a self-constructed dataset, BlurryFish, extensive experiments were
conducted and the results showed that the proposed two-stage diffusion network model can restore
the clarity of blurry fish images to some extent and the proposed learnable attention module is
effective in improving the accuracy of fish species recognition.

Abstract: Blurry scenarios, such as light reflections and water ripples, often affect the clarity and
signal-to-noise ratio of fish images, posing significant challenges for traditional deep learning models
in accurately recognizing fish species. Firstly, deep learning models rely on a large amount of
labeled data. However, it is often difficult to label data in blurry scenarios. Secondly, existing
deep learning models need to be more effective for the processing of bad, blurry, and otherwise
inadequate images, which is an essential reason for their low recognition rate. A method based
on the diffusion model and attention mechanism for fish image recognition in blurry scenarios,
DiffusionFR, is proposed to solve these problems and improve the performance of species recognition
of fish images in blurry scenarios. This paper presents the selection and application of this correcting
technique. In the method, DiffusionFR, a two-stage diffusion network model, TSD, is designed to
deblur bad, blurry, and otherwise inadequate fish scene pictures to restore clarity, and a learnable
attention module, LAM, is intended to improve the accuracy of fish recognition. In addition, a
new dataset of fish images in blurry scenarios, BlurryFish, was constructed and used to validate
the effectiveness of DiffusionFR, combining bad, blurry, and otherwise inadequate images from the
publicly available dataset Fish4Knowledge. The experimental results demonstrate that DiffusionFR
achieves outstanding performance on various datasets. On the original dataset, DiffusionFR achieved
the highest training accuracy of 97.55%, as well as a Top-1 accuracy test score of 92.02% and a Top-5
accuracy test score of 95.17%. Furthermore, on nine datasets with light reflection noise, the mean
values of training accuracy reached a peak at 96.50%, while the mean values of the Top-1 accuracy
test and Top-5 accuracy test were at their highest at 90.96% and 94.12%, respectively. Similarly, on
three datasets with water ripple noise, the mean values of training accuracy reached a peak at 95.00%,
while the mean values of the Top-1 accuracy test and Top-5 accuracy test were at their highest at
89.54% and 92.73%, respectively. These results demonstrate that the method showcases superior
accuracy and enhanced robustness in handling original datasets and datasets with light reflection
and water ripple noise.
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1. Introduction

Fish are vital for humans as a protein source and for maintaining marine biodiversity [1].
However, they face challenges like overfishing, habitat destruction, and climate change.

Recognition of fish species benefits animal welfare, ecological protection, and wildlife
support. Fish image recognition helps researchers understand fish behavior and improve
habitats. It also aids in accurate population counting and the monitoring [2] of wild fish
populations. Additionally, it enables rapid recognition of fish at customs and in markets,
preventing the illegal trade of endangered species.

In blurry marine scenarios, fish species recognition is challenging, requiring accu-
rate methods [3]. This contributes to surveys, population analyses, and the sustainable
utilization of fish as a biological resource.

Underwater cameras are commonly used for fish surveys [4]. Unlike other methods,
they minimize ecosystem impact and allow continuous recording of fish activity. However,
limitations include a restricted field of view and factors like water turbidity, lighting
conditions, and flow magnitude that affect image quality and recognition accuracy.

Previous research mainly focused on high-resolution fish recognition [5]. However,
practical scenarios often feature blurry images due to water quality [6], relative move-
ment [7] between the shooting device and the fish, water ripples [8], and light reflection [9].
This poses significant challenges for fish recognition in real-life situations.

In order to overcome the challenges mentioned above, a method of fish image recog-
nition in blurry scenarios based on the diffusion model and attention [10–12] mechanism,
DiffusionFR, is proposed herein. DiffusionFR offers a comprehensive set of technical solu-
tions for fish recognition in blurry scenarios. It shows the selection and application of this
correcting technique.

The main contribution list of this paper is summarized as follows:

(1) A two-stage diffusion model for fish recognition in blurry scenarios, TSD, was de-
signed to maximize the removal of bad, blurry, and otherwise inadequate effects in
fish images.

(2) A learnable attention module, LAM, was designed to ensure that the semantic features
learned at the end of the network can distinguish fish for fine-grained recognition.

(3) A method for fish image recognition in blurry scenarios that synthesizes TSD and
LAM, DiffusionFR, was proposed to present a complete solution for fish image recogni-
tion in blurry scenarios, and the selection and application of this correcting technique
are presented herein.

(4) A dataset of fish images in blurry scenarios, BlurryFish, was constructed and used to
validate the effectiveness of DiffusionFR, and integrated the bad, blurry, and otherwise
inadequate images from the publicly available dataset Fish4Knowledge.

The structure of this paper is as follows. In Section 2, we review the relevant works
on fish species recognition. Section 3 provides a detailed explanation of the key concepts
and methodology used in this study. This includes the main ideas behind the method,
DiffusionFR, the two-stage diffusion model (TSD), the learnable attention module (LAM),
the modified ResNet as the recognition network, the dataset, and the experimental design.
Moving on to Section 4, we present the treatment and analysis of the experimental findings.
In Section 5, we thoroughly discuss the implications and significance of the results. Finally,
in Section 6, we summarize the essential findings and draw conclusions based on the
research conducted in this paper.

2. Background

Previous studies on fish species recognition commonly used different deep neural
network architectures or employed layered and phased strategies.

Numerous studies on fish recognition have utilized various deep neural networks,
such as CNN, Tripmix-Net, DAMNet, MobileNetv3, and VGG16. Villon et al. [13] em-
ployed CNN to enhance the accuracy of coral reef fish recognition by using rule-based
techniques. They achieved a model accuracy of 94.9%, surpassing manual accuracy. Simi-
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larly, Villon et al. [14] used a convolutional neural network to analyze images from social
media, providing support in monitoring rare megafauna species. Li et al. [15] proposed
Tripmix-Net, a fish image classification model that incorporates multiscale network fusion.
Qu et al. [16] introduced DAMNet, a deep neural network with a dual-attention mecha-
nism for aquatic biological image classification. However, due to the incorporation of the
dual-attention mechanism, the DAMNet model may exhibit a relatively higher level of
complexity. Meanwhile, Alaba et al. [17] developed a model using the MobileNetv3-large
and VGG16 backbone networks for fish detection. However, their method still encounters
certain challenges, such as dealing with low-light conditions, noise, and the limitations
posed by low-resolution images.

A hierarchical and phased approach to fish target recognition refers to dividing the
recognition process into multiple phases and levels. Liang et al. [18] divided the recognition
process into multiple stages to enhance accuracy and robustness. However, their method
suffers from a high number of parameters and computational complexity, which can make the
training process extremely time-consuming. Similarly, Ben et al. [5] proposed a hierarchical
CNN classification method for automatic fish recognition in underwater environments.

In blurry scenarios [19], intelligent fish image recognition technology aims to improve
image clarity using image processing techniques. These techniques include image denois-
ing, image enhancement, and image alignment. Image denoising [20] reduces noise in
the image using filters. Image enhancement [21] improves clarity through techniques like
histogram equalization. Image alignment [22] addresses image blurring through regis-
tration. Neural heuristic video systems [23] analyze video frames automatically using
heuristic algorithms, extending image analysis to video analysis. The bilinear pooling with
poisoning detection (BPPD) module [24] utilizes bilinear pooling of convolutional neural
networks. This algorithm combines data from two networks through bilinear pooling to
achieve improved classification accuracy. Intelligent fish image recognition technology
utilizes the diffusion model to deblur images. This model enhances image quality, recovers
lost information, and improves feature extraction. As a result, it provides better inputs for
subsequent image recognition tasks, significantly improving the accuracy of fish image
recognition in blurry scenarios [25].

3. Materials and Methods
3.1. Main Ideas

Figure 1 presents the framework of the method based on the diffusion model and atten-
tion mechanism for fish image recognition in blurry scenarios, DiffusionFR. The framework
visually illustrates the selection and application of the correction technique.
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The main ideas behind DiffusionFR can be summarized as follows:

(1) Two-stage diffusion (TSD): This model consists of two stages—the predictive stage
and the reconstructive stage. In the predictive stage, a U-Net structure generates
feature probability maps for the bad, blurry, and otherwise inadequate fish images.
Each pixel in the maps represents the probability of belonging to a specific class of
fish image. In the reconstructive stage, four identical modules comprising a residual
block and an up-sampling block are employed to convert the feature probability maps
into clear fish images.

(2) Learnable attention module (LAM): The attention mechanism in DiffusionFR com-
prises three processes—the computation of channel importance, the learning of chan-
nel weight distribution, and the weighted fusion of features. The computation of
channel importance involves global average pooling and two fully connected layers
with ReLU activation. The learning of channel weight distribution includes SoftMax
and the aggregation of features. Finally, the weighted fusion of features incorporates
the channel weight and performs a weighted fusion of the results.

(3) Modifying ResNet as the recognition network: In DiffusionFR, the ResNet feature
extraction network is modified by adding the LAM between each pair of adjacent stages.
This modification aims to minimize the loss of accuracy, train a more precise recognition
model, and enhance recognition accuracy for fish images in blurry scenarios.

3.2. Two-Stage Diffusion (TSD)

Recently, deep neural network-based diffusion models [26–28] have become popular
for image denoising and super-resolution. These models utilize the capabilities of deep
learning to learn image features and predict image evolution. As a result, they can quickly
and efficiently denoise and enhance images.

The proposed TSD method in this study consists of two stages: a predictive stage and
a reconstructive stage. The predictive stage detects fish image features in blurry images,
while the reconstructive stage analyzes and processes diffusion data to address errors
or deficiencies in the model. This stage significantly enhances the model’s accuracy and
reliability. The entire TSD process is visually depicted in Figure 2.
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The predictive stage of the proposed method takes the fish image as an input and
generates a probability map, which represents the likelihood of each pixel belonging to a
specific fish species category, as an output. This probability map provides valuable insights
into the model’s classification probabilities for different fish species.

To achieve this, the predictive stage utilizes the U-Net architecture [29], as shown
in Figure 3. U-Net consists of symmetrical encoders and decoders. The encoder extracts
image features using convolution and pooling operations, encoding the input image into a
low-dimensional tensor. The decoder then reconstructs the encoder’s output into an image
of the same dimensions as the input, with each pixel containing a probability value for the
target category. To address information loss, U-Net incorporates jump connections that
connect the feature maps of the encoder and decoder. It consists of four 2D convolutional
layers and four maximum pooling layers, enabling the model to handle fish images of
varying sizes and shapes within blurry images.
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The restoration stage is responsible for generating the final restored image. It utilizes
both the output image from the prediction stage and the input image.

The reconstructive stage is composed of four modules. Each module consists of a
Residual Block [30] and Up-Sampling Block [31]. The Residual Block addresses issues
of gradient vanishing and explosion during deep neural network training, as shown in
Figure 4. It includes two convolutional layers and a jump connection, where the input
is added directly to the output to form residuals. This helps the network capture the
mapping relationship between inputs and outputs, improving the model’s performance
and robustness. During model training, special attention is given to the error generated by
the Up-Sampling Block in the network, as shown in Equation (1).

q(xs|xt, x0) = N

(
xs

∣∣∣∣∣ 1
gt0

2

(
fs0gts

2x0 + ftsgs0
2xt

)
,

gs0
2gts

2

gt0
2 I

)
(1)

where q(xs|xt, x0) denotes the conditional probability distribution of xs; given conditions
xt and x0, the mean part of this is a series of linear combination terms including fs0, gts, fts,
and gs0. In addition, fts is a ratio indicating the relative scale that maps the input variable
t to the input variable s, as shown in Equation (2), and gts is computed from the scale
parameters of the input variables t and s and is used to adjust the propagation process of
the error, as shown in Equation (3).

fts =
f(t)
f(s)

(2)

gts =

√
g(t)2 − fts

2g(s)2 (3)
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Equation (4) describes the gradual process of recovering the image from noise, as illustrated.

xt =
√
αtx0 + Zt−1 =

√
αtx0 +

√
1 − αtZ, Z ∼ N(0, I) (4)

where xt denotes the image recovered at moment t, obtained by a linear combination of
the initial image x0 and the previous recovery result Zt−1. This linear combination uses a
scaling factor

√
αt to adjust the contribution of the initial image and the previous recovery

result. Meanwhile, the noise term Z is generated through a Gaussian distribution N(0, I).
Equation (5) represents the inverse diffusion process from the recovered image xt back

to the previously recovered result xt−1.

q(xt−1|xt, x0) = N

(
xt−1;

1√
αt

xt −
βt√

αt(1−αt)
Z,

1 − αt−1

1 − αt
βt

)
, Z ∼ N(0, I) (5)

where the conditional probability distribution q(xt−1|xt, x0) represents the conditional
probability distribution of xt−1; given conditions xt and x0, this conditional probability
distribution is represented by a Gaussian distribution where the mean part contains a linear
combination of xt and the noise term Z.

TSD implements batch normalization techniques and dropout layers to enhance the
stability, convergence, and generalization of the model.

3.3. Learnable Attention Module (LAM)

In this paper, we propose LAM, which is based on the channel attention mecha-
nism [32] (CAM) and depicted in Figure 5. Unlike CAM, LAM assigns weights to channels
by learning the importance of features.

Animals 2024, 14, x FOR PEER REVIEW 7 of 23 
 

 
Figure 5. The framework structure of the learnable attention module (LAM). 

In DiffusionFR, the LAM consists of three steps. These steps include the computation 
of channel importance, learning of channel weight distribution, and weighted fusion of 
features. These steps are illustrated in Figure 1. 

The first step is the computation [33] of channel importance. First, the global pooling 
values for each channel in the feature map F are extracted by a global average pooling or 
maximum pooling operation to obtain a C -dimensional vector Z . Then, Z  is processed 
using a network architecture containing two fully connected layers and a ReLU activation 
function to generate a C -dimensional weight assignment vector k , which stores the 
weight assignments for each channel, as shown in Equation (6). k = φ C = log Cγ + bγ  (6) 

The second step involves the learning [34] of the channel weight distribution. This 
distribution determines the significance of each feature map channel. To compute the 
channel weights, we use the softmax function to map the values in the weight vector be-
tween 0 and 1. This ensures that the sum of all weights equals 1, representing the weight 
of each channel. To gather global information about the channels, we apply a global aver-
age pooling operation to the features, which is represented by Equation (7). 

y = 1H × W x  a, b  (7) 

In the formula, x  represents the ith feature map of input size H × W, and y repre-
sents the global feature. In the softmax function, each feature vector element is mapped to 
a value between 0 and 1. With this mapping, the model can determine how much each 
channel contributes relative to the overall feature map. 

The third step involves the weighted fusion [35] of features. Each channel in the fea-
ture map is weighted and fused based on their assigned weights. Firstly, weights are as-
signed to each channel and applied to their corresponding features. Then, the features of 
all channels are proportionally weighted and fused to generate a feature map adjusted by 
the attention mechanism. By incorporating the LAM, the network can dynamically adjust 
the contribution of each channel, improving its robustness and generalization ability. This 
attention mechanism enables the network to disregard irrelevant information (weights 
close to 0) and prioritize important features essential for successful task completion. 

3.4. Modifying ResNet as the Recognition Network 
DiffusionFR selected ResNet50 as the base network after comparing ResNet34 [36], 

ResNet50 [37], and ResNet101 [38]. 

Figure 5. The framework structure of the learnable attention module (LAM).

In DiffusionFR, the LAM consists of three steps. These steps include the computation
of channel importance, learning of channel weight distribution, and weighted fusion of
features. These steps are illustrated in Figure 1.

The first step is the computation [33] of channel importance. First, the global pooling
values for each channel in the feature map F are extracted by a global average pooling or
maximum pooling operation to obtain a C-dimensional vector Z. Then, Z is processed
using a network architecture containing two fully connected layers and a ReLU activation
function to generate a C-dimensional weight assignment vector k, which stores the weight
assignments for each channel, as shown in Equation (6).
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k = φ(C) =

∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(6)

The second step involves the learning [34] of the channel weight distribution. This dis-
tribution determines the significance of each feature map channel. To compute the channel
weights, we use the softmax function to map the values in the weight vector between
0 and 1. This ensures that the sum of all weights equals 1, representing the weight of
each channel. To gather global information about the channels, we apply a global average
pooling operation to the features, which is represented by Equation (7).

y =
1

H × W

H

∑
a

W

∑
b

xi(a, b) (7)

In the formula, xi represents the ith feature map of input size H × W, and y represents
the global feature. In the softmax function, each feature vector element is mapped to a value
between 0 and 1. With this mapping, the model can determine how much each channel
contributes relative to the overall feature map.

The third step involves the weighted fusion [35] of features. Each channel in the
feature map is weighted and fused based on their assigned weights. Firstly, weights are
assigned to each channel and applied to their corresponding features. Then, the features
of all channels are proportionally weighted and fused to generate a feature map adjusted
by the attention mechanism. By incorporating the LAM, the network can dynamically
adjust the contribution of each channel, improving its robustness and generalization ability.
This attention mechanism enables the network to disregard irrelevant information (weights
close to 0) and prioritize important features essential for successful task completion.

3.4. Modifying ResNet as the Recognition Network

DiffusionFR selected ResNet50 as the base network after comparing ResNet34 [36],
ResNet50 [37], and ResNet101 [38].

ResNet50 has a layered architecture that enables it to learn hierarchical representations
of input data. Lower layers capture low-level features, while higher layers capture intricate
patterns and relationships. The pooling layer reduces spatial dimensionality, improving
computational efficiency and translation invariance while mitigating overfitting. By lever-
aging ResNet50’s transfer learning, this provides a solid foundation for the probabilistic
graph generation task.

However, in images with complex backgrounds or noise, ResNet50 may unintention-
ally focus on less relevant regions, impacting model performance. To address this, an
attention mechanism is introduced to dynamically adjust feature map weights based on
different parts of the input data. This helps prioritize crucial features, enhancing accuracy
and generalization capabilities. Therefore, the DiffusionFR approach modifies ResNet50 by
incorporating LAM into the network. LAM is added between each pair of adjacent stages,
as shown in Figure 6.

3.5. Dataset

This paper introduces BlurryFish, a fish image dataset created by integrating blurred
images from the publicly available dataset Fish4Knowledge. The construction process
involved the following steps:

(1) Data Collection

The datasets used in this paper are from three sources. The first source is the publicly
available dataset Fish4Knowledge, consisting of realistically shot images. The second source
is a field-photographed dataset that prioritizes challenging scenarios like low-light condi-
tions and inclement weather to ensure representative fish images. The third source is fish
images from Internet, which we organized and classified. The dataset comprises 25 fish
species, and Figure 7 displays these species and example images.
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(2) Data Cleaning

The collected fish images underwent a cleaning process to ensure their quality and
reliability. This involved eliminating invalid samples and duplicate samples.

(3) Dataset Partition

The dataset was divided into three sets for the experiments: the training set, the vali-
dation set, and the test set. This division follows the leave-out method [39] and maintains
an 8:1:1 ratio. The goal was to ensure that all sets included pictures of the same fish species,
as well as similar scenarios and angles.

(4) Data Enhancement

The collected dataset has an interclass balance problem [40] due to the varying number
of pictures for each fish species. This can result in lower recognition accuracy for less com-
mon fish species if the dataset is directly used for training. To address this issue, standard
data enhancement methods were employed, including panning, cropping, rotating, mir-
roring, flipping, and brightness adjustment. These operations generated additional image
samples, enhancing the model’s robustness, generalization ability, and recognition accuracy
for smaller fish species. Table 1 shows that the initial BlurryFish dataset contained 2754 bad,
blurry, and otherwise inadequate fish images. However, after applying data enhancement
techniques, the dataset expanded to 35,802 bad, blurry, and otherwise inadequate fish
images, as shown in Table 2.

(5) Data Annotation

To create valuable training and testing sets from the image dataset, each image in the
fish image dataset was labeled with associated fish species data. We utilized the graphical
interface labeling software, LabelImg (v 1.8.5), to annotate the fish images and generate XML
files. Although DiffusionFR does not impose any restrictions on the resolution and other
parameters of the dataset images, we uniformly converted the dataset to RGB images with a
resolution of 224 × 224. These images were then stored in the PASCAL VOC data format.
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Figure 7. Fish species in the dataset. (a) Dascyllus reticulatus; (b) Neoniphon sammara; (c) Abudef-
duf vaigiensis; (d) Canthigaster valentini; (e) Pomacentrus moluccensis; (f) Zebrasoma scopas;
(g) Hemigymnus melapterus; (h) Lutjanus fulvus; (i) Scolopsis bilineata; (j) Scaridae; (k) Pempheris
vanicolensis; (l) Plectroglyphidodon dickii; (m) Zanclus cornutus; (n) Neoglyphidodon nigroris;
(o) Balistapus undulatus; (p) Siganus fuscescens; (q) Chromis chrysura; (r) Amphiprion clarkii;
(s) Chaetodon lunulatus; (t) Chaetodon trifascialis; (u) Myripristis kuntee; (v) Acanthurus nigrofus-
cus; (w) Hemigymnus fasciatus; (x) Abactochromis labrosus; and (y) Abalistes stellaris.

Table 1. Number of fish images in the BlurryFish dataset before data enhancement.

ID Name of Fish Training Set Validation Set Test Set Total

1 Dascyllus reticulatus 91 12 12 115
2 Neoniphon sammara 84 11 11 106
3 Abudefduf vaigiensis 85 10 10 105
4 Canthigaster valentini 88 11 11 110
5 Pomacentrus moluccensis 94 12 12 118
6 Zebrasoma scopas 85 11 11 107
7 Hemigymnus melapterus 84 10 10 104
8 Lutjanus fulvus 83 10 10 103
9 Scolopsis bilineata 86 11 11 108
10 Scaridae 92 11 11 114



Animals 2024, 14, 499 10 of 22

Table 1. Cont.

ID Name of Fish Training Set Validation Set Test Set Total

11 Pempheris vanicolensis 82 10 10 102
12 Plectroglyphidodon dickii 85 11 11 107
13 Zanclus cornutus 95 12 12 119
14 Neoglyphidodon nigroris 85 10 10 105
15 Balistapus undulatus 89 11 11 111
16 Siganus fuscescens 92 11 11 114
17 Chromis chrysura 92 12 12 116
18 Amphiprion clarkii 84 11 11 106
19 Chaetodon lunulatus 91 12 12 115
20 Chaetodon trifascialis 95 12 12 119
21 Myripristis kuntee 90 11 11 112
22 Acanthurus nigrofuscus 87 11 11 109
23 Hemigymnus fasciatus 82 10 10 102
24 Abactochromis labrosus 89 11 11 111
25 Abalistes stellaris 92 12 12 116

Total 2202 276 276 2754

Table 2. Number of fish images in the BlurryFish dataset after data enhancement.

ID Name of Fish Training Set Validation Set Test Set Total

1 Dascyllus reticulatus 1195 150 150 1495
2 Neoniphon sammara 1102 138 138 1378
3 Abudefduf vaigiensis 1093 136 136 1365
4 Canthigaster valentini 1144 143 143 1430
5 Pomacentrus moluccensis 1228 153 153 1534
6 Zebrasoma scopas 1113 139 139 1391
7 Hemigymnus melapterus 1082 135 135 1352
8 Lutjanus fulvus 1071 134 134 1339
9 Scolopsis bilineata 1124 140 140 1404
10 Scaridae 1186 148 148 1482
11 Pempheris vanicolensis 1060 133 133 1326
12 Plectroglyphidodon dickii 1113 139 139 1391
13 Zanclus cornutus 1237 155 155 1547
14 Neoglyphidodon nigroris 1093 136 136 1365
15 Balistapus undulatus 1155 144 144 1443
16 Siganus fuscescens 1186 148 148 1482
17 Chromis chrysura 1206 151 151 1508
18 Amphiprion clarkia 1102 138 138 1378
19 Chaetodon lunulatus 1195 150 150 1495
20 Chaetodon trifascialis 1237 155 155 1547
21 Myripristis kuntee 1164 146 146 1456
22 Acanthurus nigrofuscus 1133 142 142 1417
23 Hemigymnus fasciatus 1060 133 133 1326
24 Abactochromis labrosus 1155 144 144 1443
25 Abalistes stellaris 1206 151 151 1508

Total 28,640 3581 3581 35,802

3.6. Experimental Design
3.6.1. Experimental Environment Configuration

PyTorch, a deep learning framework, was employed to evaluate DiffusionFR. The spe-
cific experimental software and hardware configurations are detailed in Table 3.

Table 3. Experimental software and hardware configurations.

Item Detail

GPU NVIDIA GeForce RTX 3060
CPU 12th Gen Intel(R) Core(TM) i5-12400 2.50 GHz
RAM 16.0 GB

Operating system Windows 11 64-bit
CUDA CUDA 11.6
Python Python 3.7.15



Animals 2024, 14, 499 11 of 22

3.6.2. Evaluation Indicators

To evaluate the model’s performance in classifying fish images in blurry scenarios,
accuracy and Top-k accuracy were used as evaluation metrics. The experimental data was
processed using Python code and analyzed using Excel software (12.1.0.16250).

(1) Accuracy

Accuracy is a metric that measures the proportion of correctly predicted samples
compared to the total number of instances. It is calculated using Equation (8).

Accuracy =
TN + TP

TN + FP + TP + FN
× 100% (8)

where TN denotes true negative, TP denotes true positive, FP denotes false positive, and
FN denotes false negative.

(2) Top-k Accuracy

The top-k accuracy rate measures the proportion of samples where at least one of the
top-k predictions matches the true label, compared to the total number of samples. In this
study, we use Top-1 accuracy and Top-5 accuracy as model criteria. Equation (9) demonstrates
the calculation of the top-k accuracy.

Top − k Accuracy
= number of samples correctly predicted

/the total number of samples × 100%
(9)

Here, k can be any positive integer, and it is common to have top−1 and top− 5 accuracy
rates, which indicate the accuracy in the highest confidence prediction and the first five highest
confidence predictions, respectively.

3.6.3. Parameters of Experiments

In this section, we conduct comparative experiments for each module of DiffusionFR.
During training, the model parameters of DiffusionFR were continuously adjusted to
minimize prediction errors. This was achieved using optimization algorithms and loss
functions. After several iterations, the hyperparameters of the DiffusionFR model were
determined based on commonly used empirical values. The finalized hyperparameters can
be found in Table 4.

Table 4. Optimal hyperparameters.

Input Shape Lr Activation Function Batch Size Classifier Optimizer Epoch

224 × 224 0.002 ReLU 32 Softmax Adam 100

3.6.4. Schemes of Experiments

(1) Comparison of Backbone Networks

DiffusionFR’s backbone network was assessed using the original dataset. The analysis
included various backbone networks such as ResNet50, VGG16, MobileNetv3, Tripmix-
Net, ResNeXt, DAMNet, ResNet34, ResNet101, EfficientNet [41], neuro-heuristic, bilinear
pooling with poisoning detection (BPPD), and CNN(r1, r2).

(2) Comparison of Attention Mechanisms

Comparative experiments were conducted to assess the impact of attention mecha-
nisms on the algorithm. The evaluated attention mechanisms included LAM, CBAM [42],
CCA [43], and SE [44].

(3) Comparison of Diffusion Models

To assess the impact of the diffusion model proposed in this paper on the final recog-
nition performance, we conducted a comparative experiment. This experiment involved
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two deblurring methods: the diffusion module proposed in this paper and the Gaussian
denoising module.

(4) Effect of Light Reflection Noise on Recognition Performance

The datasets were labeled according to the light reflection noise added. For instance,
D0E0 signifies the original dataset without any added noise, while D0.6E100 represents the
dataset with light reflection noise, where the light diameter is 0.6 cm and the light intensity
is 100 Lux, added to D0E0. This naming convention is used for other datasets as well.

Nine datasets were created by categorizing the light reflection noise based on different
light diameters and intensities. These datasets are named as D0.6E100, D0.6E250, D0.6E400,
D0.8E100, D0.8E250, D0.8E400, D1.0E100, D1.0E250, and D1.0E400. Table 5 provides an overview
of the data volume for the fish image dataset with added light reflection noise. An example
of this dataset is shown in Figure 8.

Table 5. Fish Dataset with Added Light Reflection Noise.

ID Name of Fish D0.6E100 D0.6E250 D0.6E400 D0.8E100 D0.8E250 D0.8E400 D1.0E100 D1.0E250 D1.0E400 Total

1 Dascyllus reticulatus 115 115 115 115 115 115 115 115 115 1035
2 Neoniphon sammara 106 106 106 106 106 106 106 106 106 954
3 Abudefduf vaigiensis 105 105 105 105 105 105 105 105 105 945
4 Canthigaster valentini 110 110 110 110 110 110 110 110 110 990
5 Pomacentrus moluccensis 118 118 118 118 118 118 118 118 118 1062
6 Zebrasoma scopas 107 107 107 107 107 107 107 107 107 963
7 Hemigymnus melapterus 104 104 104 104 104 104 104 104 104 936
8 Lutjanus fulvus 103 103 103 103 103 103 103 103 103 927
9 Scolopsis bilineata 108 108 108 108 108 108 108 108 108 972

10 Scaridae 114 114 114 114 114 114 114 114 114 1026
11 Pempheris vanicolensis 102 102 102 102 102 102 102 102 102 918
12 Plectroglyphidodon dickii 107 107 107 107 107 107 107 107 107 963
13 Zanclus cornutus 119 119 119 119 119 119 119 119 119 1071
14 Neoglyphidodon nigroris 105 105 105 105 105 105 105 105 105 945
15 Balistapus undulatus 111 111 111 111 111 111 111 111 111 999
16 Siganus fuscescens 114 114 114 114 114 114 114 114 114 1026
17 Chromis chrysura 116 116 116 116 116 116 116 116 116 1044
18 Amphiprion clarkii 106 106 106 106 106 106 106 106 106 954
19 Chaetodon lunulatus 115 115 115 115 115 115 115 115 115 1035
20 Chaetodon trifascialis 119 119 119 119 119 119 119 119 119 1071
21 Myripristis kuntee 112 112 112 112 112 112 112 112 112 1008
22 Acanthurus nigrofuscus 109 109 109 109 109 109 109 109 109 981
23 Hemigymnus fasciatus 102 102 102 102 102 102 102 102 102 918
24 Abactochromis labrosus 111 111 111 111 111 111 111 111 111 999
25 Abalistes stellaris 116 116 116 116 116 116 116 116 116 1044

Total 2754 2754 2754 2754 2754 2754 2754 2754 2754 24,786
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We conducted a comparative analysis on datasets with light reflection noise to assess
the effectiveness of using corrected fish images for species-specific fish recognition.

(5) Effect of Water Ripple Noise on Recognition Performance

To add water ripple noise to the dataset and generate the water ripple effect, the
following steps and Equations were used. First, an empty array X of the same size as
the original image was created to store the generated water ripple effect. Next, offsets
(including offset_x and offset_y) were calculated for each pixel based on the amplitude
(A) and frequency (F) by iterating through each pixel in a loop. Then, the pixel values
corresponding to these offsets were assigned to each pixel of the empty array X, generating
the water ripple effect. Finally, the resulting water ripple effect was overlaid onto the
original image, creating the final image with water ripples. Equations involved are shown
in (10)–(14).

The offset was calculated using Equations (10) and (11).

offset_x = A ∗ sin(2 ∗ π ∗ yi ∗ F) (10)

offset_y = A ∗ cos(2 ∗ π ∗ xi ∗ F) (11)

where (xi, yi) denotes the coordinates of a pixel point in the image, F is the frequency of
the water ripple, and A is the amplitude of the water ripple.

The pixel assignment of array X is calculated using Equations (12) and (13).

X[xi] = (xi + offset_x)%width (12)

X[yi] = (yi + offset_y)%height (13)

where width and height are the width and height of the image, respectively.
The final image generation is calculated using Equation (14).

img_with_ripples = img + X (14)

where img denotes the original image, and img_with_ripples denotes the final image with
water ripples.

The datasets were labeled according to the water ripple noise added. For instance,
F0A0 signifies the original dataset without any added noise, while F0.04A2 indicates the
dataset with water ripple noise having a frequency of 0.04 and an amplitude of 2 added to
F0A0. This naming convention is used for other datasets as well.

Water ripple noise can be classified based on the frequency and amplitude of the water
ripples. Increasing the frequency and amplitude results in a higher offset and greater oscilla-
tion in the generated water waves. In this study, the water ripple noise was categorized into
three groups: F0.04A2, F0.06A6, and F0.08A10, primarily based on their frequency and amplitude.
Table 6 provides an overview of the data volume of the fish image dataset with the addition
of water ripple noise, while Figure 9 offers an illustrative example.

Table 6. Fish Dataset with Added Water Ripple Noise.

ID Name of Fish F0.04A2 F0.06A6 F0.08A10 Total

1 Dascyllus reticulatus 115 115 115 345
2 Neoniphon sammara 106 106 106 318
3 Abudefduf vaigiensis 105 105 105 315
4 Canthigaster valentini 110 110 110 330
5 Pomacentrus moluccensis 118 118 118 354
6 Zebrasoma scopas 107 107 107 321
7 Hemigymnus melapterus 104 104 104 312
8 Lutjanus fulvus 103 103 103 309
9 Scolopsis bilineata 108 108 108 324
10 Scaridae 114 114 114 342
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Table 6. Cont.

ID Name of Fish F0.04A2 F0.06A6 F0.08A10 Total

11 Pempheris vanicolensis 102 102 102 306
12 Plectroglyphidodon dickii 107 107 107 321
13 Zanclus cornutus 119 119 119 357
14 Neoglyphidodon nigroris 105 105 105 315
15 Balistapus undulatus 111 111 111 333
16 Siganus fuscescens 114 114 114 342
17 Chromis chrysura 116 116 116 348
18 Amphiprion clarkii 106 106 106 318
19 Chaetodon lunulatus 115 115 115 345
20 Chaetodon trifascialis 119 119 119 357
21 Myripristis kuntee 112 112 112 336
22 Acanthurus nigrofuscus 109 109 109 327
23 Hemigymnus fasciatus 102 102 102 306
24 Abactochromis labrosus 111 111 111 333
25 Abalistes stellaris 116 116 116 348

Total 2754 2754 2754 8262
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Figure 9. Example of fish pictures with added water ripple noise. (a) F0A0; (b) F0.04A2; (c) F0.06A6;
and (d) F0.08A10.

We conducted a comparative analysis of datasets with water ripple noise to assess the
effectiveness of using corrected fish images for species-specific fish recognition.

We conducted Experiments 1 through 5 to assess the impact of different backbone
networks, attention mechanisms, diffusion models, as well as light reflection noise and
water ripple noise on recognition performance. These experiments were evaluated using
three metrics: training accuracy, the Top-1 accuracy test, and the Top-5 accuracy test.
The objective was to comprehensively evaluate their recognition performance and analyze
the results.

4. Results

In this study, the BlurryFish dataset was used to perform comparative experiments on
the key innovations of the proposed methodology.

4.1. Comparison of Backbone Networks

This study compared and analyzed the backbone network of DiffusionFR. For example,
DiffusionFR_VGG16 refers to using VGG16 instead of ResNet50 as the backbone network
in DiffusionFR. Similar comparisons were made with other backbone networks. The results
of these comparisons can be found in Table 7.

Table 7. Accuracies of Different Feature Extraction Networks.

Model Training (%) Top-1 Test (%) Top-5 Test (%)

DiffusionFR 97.55 92.02 95.17
DiffusionFR_VGG16 91.78 86.38 89.48

DiffusionFR_MobileNetv3 93.05 87.55 90.60
DiffusionFR_Tripmix-Net 93.43 88.07 91.21

DiffusionFR_ResNeXt 94.32 88.90 91.98
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Table 7. Cont.

Model Training (%) Top-1 Test (%) Top-5 Test (%)

DiffusionFR_DAMNet 93.80 88.26 91.38
DiffusionFR_ResNet34 96.22 90.80 93.85

DiffusionFR_ResNet101 94.35 88.92 91.72
DiffusionFR_EfficientNet 96.10 90.48 93.38

DiffusionFR_neuro-heuristic 96.82 91.25 94.27
DiffusionFR_BPPD 97.02 91.49 94.63

DiffusionFR_CNN(r1, r2) 97.33 91.69 94.80

Table 7 displays the performance metrics of DiffusionFR on the original dataset.
The training accuracy is 97.55%. The corresponding Top-1 accuracy test score was 92.02%,
and the Top-5 accuracy test score was 95.17%. These values indicate that DiffusionFR
outperforms other methods in terms of accuracy. These values also demonstrate that
DiffusionFR, with ResNet50 as the chosen backbone network, has a higher potential for
achieving superior recognition performance.

4.2. Comparison of Attention Mechanisms

To evaluate the impact of the attention mechanism on the algorithm, a comparative
experiment was conducted, as shown in Table 8. The experiment compared the perfor-
mance of DiffusionFR with DiffusionFR without any attention mechanism, referred to as
DiffusionFR_noA. Furthermore, classical attention methods were used as substitutes for
LAM. For example, DiffusionFR_CBAM incorporated CBAM as the attentional method in
DiffusionFR. The results of these comparisons are presented in Table 8.

Table 8. Accuracies of Different Attention Mechanisms for LAMs.

Model Training (%) Top-1 Test (%) Top-5 Test (%)

DiffusionFR 97.55 92.02 95.17
DiffusionFR_noA 95.31 89.98 93.06

DiffusionFR_CBAM 96.50 91.10 94.22
DiffusionFR_CCA 97.03 91.52 94.57

DiffusionFR_SE 96.05 90.59 93.70

Table 8 shows that the training accuracy of DiffusionFR on the original dataset was
97.55%. The corresponding Top-1 accuracy test score was 92.02%, and the Top-5 accuracy
test score was 95.17%. It is important to note that all these metrics outperform the per-
formance of other methods. This establishes DiffusionFR as the method with the most
effective recognition capability.

4.3. Comparison of Diffusion Models

The final recognition results for the diffusion model proposed in this paper were
obtained through experiments, as presented in Table 9. This table includes the performance
of DiffusionFR, DiffusionFR_noTSD, and DiffusionFR_Gaussian. DiffusionFR_noTSD
refers to the method where the TSD was removed from the proposed method, and Diffu-
sionFR_Gaussian involves using Gaussian denoising [45] instead of the TSD. The results of
these methods are compared in Table 9.

Table 9. Accuracies of Different Diffusion Models.

Model Training (%) Top-1 Test (%) Top-5 Test (%)

DiffusionFR 97.55 92.02 95.17
DiffusionFR_noTSD 92.41 89.51 91.96

DiffusionFR_Gaussian 97.20 91.76 93.98
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Table 9 presents the performance metrics of DiffusionFR on the original dataset.
The training accuracy of DiffusionFR is recorded as 97.55%. The corresponding Top-1
accuracy test and Top-5 accuracy test scores are reported as 92.02% and 95.17%, respectively.
It is important to note that all these metrics outperform the performance of other methods.
This establishes DiffusionFR as the method with the most effective recognition capability.

4.4. Effect of Light Reflection Noise on Recognition

We performed a comparative analysis using DiffusionFR’s backbone network on
datasets with light reflection noise to evaluate the usability of corrected fish images for
species-specific fish recognition. The results of this analysis are presented in Table 10. TSD’s
effectiveness in processing fish images with light reflection noise is visually demonstrated
in Figure 10. The presence of TSD reduces the noise before deblurring, thereby preserving
critical features for accurate recognition. Additionally, TSD performs better in handling
light reflection noise compared to water ripple noise.

Table 10. Accuracies for Data with Different Light Reflection Noise Effects.

Model Indicator D0E0 D0.6E100 D0.6E250 D0.6E400 D0.8E100 D0.8E250 D0.8E400 D1.0E100 D1.0E250 D1.0E400

DiffusionFR
Training (%) 97.55 97.28 97.13 96.91 96.66 96.52 96.28 96.08 95.87 95.74

Top-1 Test (%) 92.02 91.78 91.58 91.34 91.14 90.95 90.75 90.56 90.37 90.19
Top-5 Test (%) 95.17 94.90 94.70 94.54 94.31 94.11 93.96 93.70 93.54 93.30

DiffusionFR_VGG16
Training (%) 91.78 91.54 91.33 91.17 90.94 90.72 90.53 90.29 90.16 89.89

Top-1 Test (%) 86.38 86.13 85.96 85.74 85.49 85.36 85.12 84.94 84.70 84.55
Top-5 Test (%) 89.48 89.20 89.02 88.82 88.67 88.40 88.20 88.06 87.86 87.64

DiffusionFR_MobileNetv3
Training (%) 93.05 92.82 92.56 92.40 92.18 91.96 91.83 91.63 91.41 91.18

Top-1 Test (%) 87.55 87.33 87.06 86.90 86.68 86.52 86.30 86.10 85.91 85.74
Top-5 Test (%) 90.60 90.37 90.15 89.93 89.75 89.56 89.36 89.12 88.93 88.72

DiffusionFR_Tripmix-Net
Training (%) 93.43 93.15 92.97 92.74 92.55 92.41 92.15 91.98 91.76 91.59

Top-1 Test (%) 88.07 87.81 87.64 87.45 87.25 87.02 86.84 86.58 86.46 86.25
Top-5 Test (%) 91.21 90.92 90.71 90.52 90.37 90.11 89.92 89.78 89.52 89.35

DiffusionFR_ResNeXt
Training (%) 94.32 94.12 93.89 93.65 93.51 93.27 93.08 92.91 92.63 92.50

Top-1 Test (%) 88.90 88.69 88.42 88.29 88.07 87.89 87.60 87.49 87.24 87.10
Top-5 Test (%) 91.98 91.68 91.57 91.38 91.18 90.89 90.76 90.48 90.28 90.13

DiffusionFR_DAMNet
Training (%) 93.80 93.51 93.33 93.18 92.97 92.73 92.60 92.32 92.17 91.90

Top-1 Test (%) 88.26 88.06 87.86 87.56 87.36 87.26 87.06 86.81 86.62 86.37
Top-5 Test (%) 91.38 91.14 90.94 90.72 90.51 90.31 90.11 89.91 89.72 89.51

DiffusionFR_ResNet34
Training (%) 96.22 95.98 95.76 95.55 95.36 95.13 94.96 94.76 94.57 94.40

Top-1 Test (%) 90.80 90.54 90.35 90.17 89.99 89.74 89.59 89.39 89.12 88.95
Top-5 Test (%) 93.85 93.63 93.44 93.20 93.02 92.81 92.61 92.36 92.24 91.98

DiffusionFR_ResNet101
Training (%) 94.35 94.07 93.86 93.66 93.46 93.33 93.07 92.87 92.66 92.46

Top-1 Test (%) 88.92 88.65 88.50 88.24 88.04 87.87 87.65 87.48 87.25 87.11
Top-5 Test (%) 91.72 91.47 91.25 91.11 90.85 90.64 90.49 90.22 90.08 89.89

DiffusionFR_EfficientNet
Training (%) 96.10 95.86 95.61 95.37 95.25 94.94 94.80 94.63 94.43 94.23

Top-1 Test (%) 90.48 90.43 90.20 89.99 89.87 89.57 89.40 89.26 88.96 88.81
Top-5 Test (%) 93.38 93.52 93.32 93.03 92.87 92.63 92.48 92.20 92.10 91.87

DiffusionFR_neuro-heuristic
Training (%) 96.82 96.33 96.16 95.93 95.74 95.61 95.35 95.12 94.93 94.75

Top-1 Test (%) 91.25 90.88 90.58 90.42 90.20 89.99 89.82 89.65 89.39 89.24
Top-5 Test (%) 94.27 93.98 93.71 93.57 93.31 93.21 93.05 92.77 92.59 92.31

DiffusionFR_BPPD
Training (%) 97.02 96.63 96.48 96.28 96.11 96.01 95.77 95.57 95.40 95.25

Top-1 Test (%) 91.49 91.40 91.13 90.99 90.80 90.61 90.47 90.32 90.09 89.56
Top-5 Test (%) 94.63 94.33 94.08 93.97 93.73 93.66 93.52 93.27 93.11 92.86

DiffusionFR_CNN(r1, r2)
Training (%) 97.33 96.89 96.86 96.62 96.41 96.18 96.07 95.76 95.56 95.37

Top-1 Test (%) 91.69 91.54 91.28 91.01 90.76 90.72 90.40 90.28 90.15 89.83
Top-5 Test (%) 94.80 94.64 94.33 94.23 93.97 93.88 93.57 93.34 93.28 92.95
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Figure 10. Comparison of images before and after TSD deblurring of light reflection noise. (a) D0.6E100;
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In Table 10, the mean value of the training accuracy of DiffusionFR on the nine datasets
(D0.6E100, D0.6E250, D0.6E400, D0.8E100, D0.8E250, D0.8E400, D1.0E100, D1.0E250, and D1.0E400)
with added light reflection noise was 86.85%. The mean value of the Top-1 accuracy test
was 81.87%, and the mean value of the Top-5 accuracy test was 84.71%. These values
indicate that DiffusionFR outperforms other methods in terms of accuracy. These values
also demonstrate that DiffusionFR, with ResNet50 as the chosen backbone network, has a
higher potential for achieving superior recognition performance.

4.5. Effect of Water Ripple Noise on Recognition

We conducted a comparative analysis using DiffusionFR’s backbone network on
datasets with water ripple noise to evaluate the usability of corrected fish images for
species-specific fish recognition. The results of this analysis can be found in Table 11.
Figure 11 provides a visual representation of TSD’s ability to process fish images containing
water ripple noise. TSD effectively reduces the frequency and intensity of water ripple
noise in the images before deblurring, mitigating its impact on the critical feature extraction
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capability of the DiffusionFR model. This ensures that the fish image before deblurring can
accurately show ID characters.

Table 11. Accuracies for Data with Different Water Ripple Noise Effects.

Model Indicator F0A0 F0.04A2 F0.06A6 F0.08A10

DiffusionFR
Training (%) 97.55 95.45 95.00 94.56

Top-1 Test (%) 92.02 89.96 89.55 89.10
Top-5 Test (%) 95.17 93.12 92.75 92.33

DiffusionFR_VGG16
Training (%) 91.78 89.64 89.19 88.93

Top-1 Test (%) 86.38 84.35 83.94 83.43
Top-5 Test (%) 89.48 87.32 86.96 86.58

DiffusionFR_MobileNetv3
Training (%) 93.05 91.05 90.54 90.24

Top-1 Test (%) 87.55 85.44 85.10 84.58
Top-5 Test (%) 90.60 88.53 88.11 87.77

DiffusionFR_Tripmix-Net
Training (%) 93.43 91.30 90.86 90.57

Top-1 Test (%) 88.07 85.88 85.49 85.14
Top-5 Test (%) 91.21 89.19 88.73 88.39

DiffusionFR_ResNeXt
Training (%) 94.32 92.15 91.91 91.38

Top-1 Test (%) 88.90 86.75 86.36 86.02
Top-5 Test (%) 91.98 89.90 89.52 89.02

DiffusionFR_DAMNet
Training (%) 93.80 91.76 91.37 90.91

Top-1 Test (%) 88.26 86.14 85.76 85.39
Top-5 Test (%) 91.38 89.20 88.82 88.47

DiffusionFR_ResNet34
Training (%) 96.22 94.10 93.79 93.30

Top-1 Test (%) 90.80 88.62 88.32 87.95
Top-5 Test (%) 93.85 91.75 91.33 90.88

DiffusionFR_ResNet101
Training (%) 94.35 92.28 91.79 91.54

Top-1 Test (%) 88.92 86.77 86.51 86.04
Top-5 Test (%) 91.72 89.71 89.13 88.77

DiffusionFR_EfficientNet
Training (%) 96.10 94.03 93.77 93.21

Top-1 Test (%) 90.48 88.61 88.27 87.87
Top-5 Test (%) 93.38 91.72 91.27 90.84

DiffusionFR_neuro-heuristic
Training (%) 96.82 93.61 93.34 92.76

Top-1 Test (%) 91.25 88.14 87.78 87.36
Top-5 Test (%) 94.27 91.19 90.72 90.26

DiffusionFR_BPPD
Training (%) 97.02 94.94 94.43 94.07

Top-1 Test (%) 91.49 89.46 89.02 88.58
Top-5 Test (%) 94.63 92.58 92.28 91.81

DiffusionFR_CNN(r1, r2)
Training (%) 97.33 95.23 94.71 94.22

Top-1 Test (%) 91.69 89.64 89.28 88.85
Top-5 Test (%) 94.80 92.74 92.40 92.10
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In Table 11, the mean value of the training accuracy of DiffusionFR on the three
datasets (F0.04A2, F0.06A6, and F0.08A10) with added water ripple noise is 95.00%. The mean
value of the Top-1 accuracy test was 89.54%, and the mean value of the Top-5 accuracy test
was 92.73%. These values indicate that DiffusionFR outperforms other methods in terms of
accuracy. These values also demonstrate that DiffusionFR, with ResNet50 as the chosen
backbone network, has a higher potential for achieving superior recognition performance.

5. Discussion

Based on the analysis of Tables 7–11, we have drawn several significant conclusions.
Firstly, ResNet50 performs better than other backbone networks when selected as the
backbone network for DiffusionFR. Compared to ResNet34 and ResNet101, the deeper net-
work structure of ResNet50 enables a more effective capture of intricate image features and
mitigates the risk of gradient vanishing or explosion [46]. Additionally, ResNet50’s effective
integration of the attention mechanism and the residual network approach contribute to its
superior performance in propagating the model gradient.

Furthermore, a comparison between DiffusionFR and DiffusionFR_noA reveals that
DiffusionFR outperforms DiffusionFR_noA in terms of training accuracy and accuracy
on the test set. This indicates that DiffusionFR is capable of capturing crucial features
and achieving more accurate classification and prediction. DiffusionFR also demonstrates
superior performance compared to other standard attention methods, further validating
the effectiveness of the incorporated LAM.

Moreover, DiffusionFR exhibits remarkable results among the compared methods, achiev-
ing superior performance in terms of training accuracy and accuracy on the test set. The pro-
posed TSD approach for fish recognition in blurry scenarios proves to be highly effective.
DiffusionFR’s end-to-end integrated framework [47] for denoising and recognition surpasses
a two-stage scheme by leveraging the interrelationships between these tasks. It enhances
accuracy and stability by efficiently handling noise [48] and blur [49] information.

Additionally, the impact of light reflection noise and water ripple noise on recognition
performance is evident from the analysis. Increasing light amplitude, light diameter,
frequency, and amplitude of water ripples in the datasets leads to a decreasing trend in
the training accuracy, Top-1 test accuracy, and Top-5 test accuracy of the same backbone
network method. This highlights the significant role of light reflection and water ripples in
recognition performance and reinforces the usability of corrected fish images for species-
specific recognition even in the presence of these noise scenarios.

In comparing the neuro-heuristic analysis of video and bilinear pooling with poisoning
detection (BPPD) to the DiffusionFR method, it becomes clear that DiffusionFR outperforms
these approaches. While recent advancements in the neural network field have shown
progress, DiffusionFR exhibits superior performance, even when compared to CNN(r1, r2).

6. Conclusions

In this study, we propose a method called DiffusionFR, which combines the diffusion
model and attention mechanism to address the challenge of fish image recognition in blurry
scenarios. The approach involves deblurring fish scene pictures using a two-stage diffusion
network model, TSD, to restore clarity. Furthermore, a learnable attention module, LAM,
was incorporated to enhance the accuracy of fish recognition.

DiffusionFR achieves the highest mean values of training accuracy, Top-1 test accuracy,
and Top-5 test accuracy, at 94.91% on the original dataset. It also maintains the highest
mean values of accuracy at 94.65% on the datasets with added light reflection noise and
92.84% on the datasets with added water ripple noise.

The effectiveness of DiffusionFR is evident from its superior performance compared to
other approaches that use different backbone networks, attention mechanisms, and Gaus-
sian denoising. DiffusionFR proves to be more accurate and robust, making it applicable in
various underwater applications such as underwater photography, underwater detection,
and underwater robotics.
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Although this study successfully improves fish image recognition in blurry scenarios,
there is still room for improvement due to the complex and uncertain nature of the marine
environment. Additionally, the recognition of overlapping and occluded regions in natural
fish scenarios needs further exploration. It is essential to construct relevant datasets, refine
the network model, and conduct comprehensive studies to contribute effectively to fish
conservation and related industries in the future.
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