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Simple Summary: The in vitro production (IVP) of bovine embryos has increased in popularity
in the past few decades with improvements in our ability to harvest oocytes from genetically elite
heifers and cows, fertilize them in vitro, and successfully culture embryos to the stage where they
can be transferred. One issue with IVP is that the efficiency of embryo production is less than ideal.
One likely reason for the poor development of IVP embryos is the excessive exposure of oocytes and
embryos to reactive oxygen species (ROS). These molecules are produced as a normal by-product of
energy generation; however, excess accumulation of ROS during the IVP of oocyte and embryo culture
will damage nucleic acids, lipids, and proteins in ways that compromise development potential
and post-transfer embryo survival. Molecules that react with and block ROS-induced damage are
commonly referred to as antioxidants. This review explores the use of five common antioxidants to
limit ROS-induced damage and promote the IVP of embryos.

Abstract: The in vitro production (IVP) of bovine embryos has gained popularity worldwide and in
recent years and its use for producing embryos from genetically elite heifers and cows has surpassed
the use of conventional superovulation-based embryo production schemes. There are, however,
several issues with the IVP of embryos that remain unresolved. One limitation of special concern is
the low efficiency of the IVP of embryos. Exposure to reactive oxygen species (ROS) is one reason why
the production of embryos with IVP is diminished. These highly reactive molecules are generated
in small amounts through normal cellular metabolism, but their abundances increase in embryo
culture because of oocyte and embryo exposure to temperature fluctuations, light exposure, pH
changes, atmospheric oxygen tension, suboptimal culture media formulations, and cryopreservation.
When uncontrolled, ROS produce detrimental effects on the structure and function of genomic and
mitochondrial DNA, alter DNA methylation, increase lipid membrane damage, and modify protein
activity. Several intrinsic enzymatic pathways control ROS abundance and damage, and antioxidants
react with and reduce the reactive potential of ROS. This review will focus on exploring the efficiency
of supplementing several of these antioxidant molecules on oocyte maturation, sperm viability,
fertilization, and embryo culture.

Keywords: antioxidants; bovine; in vitro production (IVP); oocyte; embryo; cysteine; cysteamine;
selenium; zinc; hypotaurine

1. Introduction

The in vitro production (IVP) of bovine embryos has gained popularity over the
past several decades in improving the accessibility and trade of valuable dairy and beef
genetics. Over 1.5 million IVP bovine embryos were generated in 2021 [1]. The popularity
of the IVP of embryos is occurring despite lingering concerns with the inefficiency of
IVP, reduced post-transfer pregnancy rates, increased pregnancy loss, and the occasional
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elevated incidences of chromosomal abnormalities and large offspring syndrome [2–5].
These problems likely exist, at least in part, because we are not able to adequately mimic
the oocyte maturation, fertilization, and embryo development processes that occur within
the follicle, oviduct, and uterus.

Substantial research has investigated optimal media formulations for culturing em-
bryos [6–10], but deficiencies in the system remain. We contend that additional culture
supplements must also be considered to improve the developmental potential of the oocyte
and embryo. One class of culture supplements that have been examined are antioxidants.
These molecules manage reactive oxygen species. Reactive oxygen species (ROS) are
normal by-products from oxygen metabolism produced by the electron transport chain.
Cellular stress and/or imbalances of biological chemicals designed to prevent ROS-induced
damage can damage DNA, proteins, and lipid bilayers in ways that compromise oocyte
quality and maturation potential and reduce embryo development. The adverse effects
of ROS are especially relevant during IVP because the repeated exposures to atmospheric
oxygen concentrations, light, temperature, and pH alterations are noted sources of ROS
production. This review will describe how ROS and other reactive molecules are produced,
primarily during IVP, and illustrate how these reactive molecules are normally controlled
within cells. We will also explore the efficacy of supplementing antioxidants to improve the
efficiency of the IVP of embryos.

2. Formation of Reactive Species

The term “reactive species” refers to oxygen (O2) and nitrogen molecules that contain
one or more unpaired electron(s). The term “free radical” refers to molecules that are
highly reactive due to the unbound electron(s) attempting to regain electron stability by
oxidizing with other molecules [11]. Nearly all biomolecules can react with free radicals,
but nucleic acids, lipids, and proteins are the macromolecules most commonly oxidized
by free radicals [12]. Another less commonly discussed category of reactive species are
nonradicals. These molecules are less reactive than free radicals, but they remain important
to discuss because they often serve as intermediates in oxidation and/or reduction reactions
that generate and/or inactivate free radicals.

2.1. Reactive Oxygen Species

Numerous free and nonradical O2 species exist (Figure 1A), but those that are more
commonly associated with cell damage include superoxide anion (O2

•−), hydroxyl radical
(•OH), hydroperoxyl, peroxyl, and alkoxyl radicals [11,13]. Oxygen nonradicals include
hydrogen peroxide (H2O2), hypobromous acid, hypochlorous acid, ozone, singlet oxy-
gen, organic peroxides, nitric oxide (NO•), peroxynitrite (ONOO−), and peroxynitrous
acid [11,13]. Each of these ROS can be generated within various cellular compartments, but
mitochondria are the main source of their production [14]. Mitochondria are necessary for
the generation of adenosine triphosphate (ATP) in aerobic cells via oxidative phosphoryla-
tion events mediated by electron transport. As ATP is being generated, there is a constant
low rate of electron escape from the proton gradient created with electron transport [15],
and these electrons will quickly react with O2 to generate O2

•−. An enzyme, termed
superoxide dismutase (SOD), localized primarily in the matrix or inner membrane of the
mitochondria, will convert this ROS to H2O2 [16]. This nonradical can move across the
mitochondrial membrane through specific aquaporin channels called peroxiporins [17,18].
There are two mitigation pathways to reduce H2O2 into O2 and water (H2O). The first is
the catalase (CAT) enzyme system. The catalase enzyme converts two H2O2 to generate O2
and H2O. The second is the glutathione (GSH) peroxidase (GPx) enzyme system, where
GPx utilizes GSH as an electron donor to convert H2O2 to H2O. These intrinsic mitigation
pathways will be discussed in depth later in this review. Extensive reviews of the chemical
formation of ROS and production from oxidative phosphorylation exist [11,14,15,19].
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proteins and ER stress. Stressed ER will generate H2O2. (B) Nucleic acids, lipids, and proteins are 
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Figure 1. The formation of reduced oxygen species (ROS) and the main types of damage these
molecules produce within cells. (A) The mitochondria are a predominant source for ROS production
when electrons (e−) escape from complexes I, II, and III, and will quickly react with oxygen (O2)
to produce superoxide anion (O2

•−). Superoxide dismutase (SOD) will reduce O2
•− to hydrogen

peroxide (H2O2), where it can enter the cytoplasm through peroxiporins in the mitochondrial mem-
brane. In the cytoplasm, H2O2 can further react with transition metals, such as iron (Fe2+), to produce
the hydroxyl radical (•OH) and hydroxide (OH−). Nitric oxide synthase (NOS) will generate nitric
oxide (NO) in normal amino acid metabolism. However, reactive nitrogen species (RNS) may also
be produced from O2

•− reacting with NO to produce peroxynitrite (ONOO−). The endoplasmic
reticulum (ER) is also responsible for producing ROS from excess protein synthesis that can lead to
misfolded proteins and ER stress. Stressed ER will generate H2O2. (B) Nucleic acids, lipids, and
proteins are primary targets for ROS-induced damage. Nucleic acid damage forms lesions and strand
breaks in DNA and can alter the methylation profile. Lipid peroxidation of the cell, mitochondria, and
nucleus are another target for ROS. Damage occurs when •OH binds to lipids to generate a peroxyl
radical that will react with an additional polyunsaturated fatty acid to form hydroperoxide and
alkyl radicals (ROO•). This feed-forward reaction will compromise membrane fluidity and function.
Additionally, mitochondrial membrane permeability may be altered to change the conductance state
of the mitochondria. Protein damage is also caused by ROS where •OH binds to generate ROO•.
Created with Biorender.com (accessed on 12 January 2023).

The failure of these ROS enzyme systems to quickly react with these ROS molecules
will enable them to generate other, more detrimental ROS (Figure 1A). A prime example
is allowing O2

•− to react with metal ions and iron–sulfur clusters that, in the presence of
H2O2, will generate •OH [20]. Another example is when H2O2 reacts with chlorine ion (Cl−)
to generate the highly reactive hypochlorite molecule or with transition metals, such as Cu
or Fe, in Fenton and Haber–Weiss reactions to generate the highly reactive •OH [21,22].
Damage caused by •OH has received lots of attention because it rapidly damages nucleic
acids, proteins, lipids, and carbohydrates. This damage is especially concerning because, to
date, there are no known enzymatic processes identified to inactivate •OH.

While mitochondria are considered the main producers of cellular ROS, the endo-
plasmic reticulum (ER) is also an important organelle to consider when discussing ROS
(Figure 1A). The ER handles protein structural modifications, including disulfide bond
formation. Stressed ER will generate H2O2 from excessive oxidation that occurs from
enzymes that control disulfide bond formation. There are also detrimental effects that ROS
have on the primary and secondary structures of proteins [23–25]. These will be discussed
later in this review.

2.2. Nitrogen Species

There are two reactive nitrogen species produced in the cytoplasm to highlight: NO•

and ONOO− [26] (Figure 1A). Nitric oxide is a signaling molecule used for controlling
vascular tone as well as for neurotransmission, immunity, and other cell signals [27]. Its
production occurs from the metabolism of L-arginine into L-citrulline and NO• through a
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family of nitric oxide synthase enzymes localized within different tissues of the body [14,28].
In addition, NO• will generate the highly reactive radical, ONOO−, by reacting with O2

•−.
Peroxynitrite reacts quickly with several biological molecules, including electron transport
chain complexes, which leads to their inactivation [29]. This and other reactive nitrogen
species are as damaging as ROS, but less is known about their actions within the oocyte
and embryo. Therefore, we will be focusing namely on ROS-induced damage from this
point forward.

2.3. Detrimental Effects

As mentioned previously, the three main targets of ROS-induced damage are nu-
cleic acids, lipids, and proteins (Figure 1B). The primary type of damage is DNA lesions,
where alterations in the base structure occur [30]. This results in single-strand breaks
(SSB) or, the more severe, double-strand breaks. The most common DNA modification
from oxidative damage is the •OH reaction with deoxyguanosine at the C8 position to
form 8-oxodeoxyguanosine (8-oxo-dG) [31]. Hydroxyl radicals also react with imida-
zole ring-opened products and specifically the C5-C6 double bond of pyrimidines and
C8-C5 bonds of purines [32]. The repair of ROS-induced damage is controlled by vari-
ous base excision repair, nucleotide excision repair, and nucleotide incision repair path-
ways [32,33]. Mitochondrial DNA (mtDNA) is keenly susceptible to oxidative damage
given its close proximity to ROS production and the lack of histones, which play a pro-
tective role in ROS-induced damage [34]. Oocytes are particularly susceptible as they
contain over 100,000 mitochondria compared to other cells within the body that contain
1000–2500 mitochondria [35].

The DNA methylome is another target for ROS-induced damage. An overall hy-
pomethylation phenomenon occurs with ROS-induced damage, primarily because the
pre-described ROS-mediated creation of 8oxy-dG will prevent cytosines within CpG is-
lands from being methylated [36,37]. The indirect route of ROS-induced damage occurs
because ROS target S-adenosyl methionine (SAM), a commonly used methyl donor, thus
reducing the methylation potential. Other indirect actions of ROS include targeting the
enzymes that control demethylation and remethylation DNA methyltransferases (DNMTs)
and ten-eleven translocation (TETs) [37]. These aspects are extremely important during
early embryogenesis as the mammalian embryo undergoes massive epigenetic reprogram-
ming prior to implantation. Demethylation is rapid in the paternal chromatin (before
first cleavage) and slower in the maternal chromatin (first few cleavages), and then a de
novo re-methylation process must take place before the embryo forms a blastocyst [38].
Blastocyst formation also requires reconstruction of the methylation landscape within the
inner cell mass (ICM) and trophectoderm (TE) [38]. These methylation events are sensitive
to external environmental disturbances, including ROS-induced damage.

Another major target molecule for ROS are the lipid bilayers of the cell, mitochondria,
nucleus, and other organelles. The primary ROS involved with this damage is •OH, where
a peroxidation reaction occurs within lipid methylene groups [39]. This lipid peroxidation
compromises membrane fluidity, damages its functional integrity, and limits the ability
of membrane-bound proteins (e.g., receptors, ion channels) to function properly. Another
source of lipid-targeted ROS-induced damage occurs when various ROS react with O2.
This generates a peroxyl radical, which will react with polyunsaturated fatty acids to form
hydroperoxide (HOO−) and alkyl radicals [40]. This type of damage is very concerning
because the resulting production of HOO− and alkyl radicals causes a feed-forward reac-
tion, where these radicals will react with nearby fatty acids to generate more radicals [41].
Additionally, excessive production of ROS will compromise mitochondrial permeability
transition (mPT) pores. This alters the conductance state of the mitochondria. Low con-
ductance is reversible, but high conductance produces an accumulation of calcium that
causes irreversible transmembrane potential that leads to apoptosis due to the release of
cytochrome-c that activates the caspase pathway [42].
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Protein damage by ROS occurs in several ways. Protein oxidation begins with the
reaction of •OH to generate an alkyl radical. The alkyl radical reacts with O2 to generate a
peroxide radical. Further reaction with an adjacent protein forms a HOO− and alkyl radical
that can further generate an alkoxy radical [40]. Oxidative stress and production of •OH can
cause protein modification and loss of conformation through the oxidation of amino acid
side chains, protein cross linkage, and protein fragmentation [40,43,44]. Conformational
changes in proteins can lead to aggregation, fragmentation, distortion of secondary and
tertiary structure, and diminution of normal function [44]. Loss of enzymatic activity can
happen as a result of conformational change [40]. These factors contribute to the formation
of disease states (Figure 1B).

2.4. Accumulation of Reactive Species with In Vitro Production

Oxidative phosphorylation is the primary source of energy used in embryo develop-
ment between the 1-cell and morula stages [45]. Embryos that are more metabolically active
early in development generate more ROS [46]. Although these embryos may develop at
a similar or even greater rate than other embryos, they often may not have the ability to
generate pregnancies at the same efficiency as embryos that will develop properly with
less energy demands. These embryos with reduced metabolism are coined as “quiet” em-
bryos [46]. A presumptive reason why these “quiet embryos” contain greater competency
for generating pregnancy is because they have undergone less oxidative damage, thanks
to their low metabolic rate [30]. In recent years, the quiet embryo hypothesis has been
re-evaluated and is now more often referred to as the “Goldilocks Hypothesis” because
the “ideal” embryos are those that do not require too much or too little energy during
the early stages of development [47]. Another intriguing feature of IVP systems is that
most IVP embryos have greater glycolytic activity than embryos developing in utero [48].
This is from increased exposure to atmospheric O2 that increases consumption of pyruvate
and subsequently increases ROS production [49]. Overall, the metabolic activity is used to
indicate pregnancy success from IVP embryo [50].

Various external environmental factors contribute to the excess accumulation of ROS
during IVP, and these factors undoubtedly contribute to the suboptimal development
of these embryos. Some of the best studied factors include exposure to atmospheric
O2 conditions, ultraviolet (UV) light, and alterations in temperature and pH. Oxygen
conditions vary between 2 and 9% within the reproductive tract in mammalian species [51].
One of the major hurdles in overcoming limitations with the IVP of embryos occurred by
culturing embryos in 5–6% O2 rather than in atmospheric O2 (21%). A summary of findings
from four studies where embryos were placed in 5% or 20% O2 conditions (Figure 2)
illustrates just how profound the improvement in the IVP of bovine blastocyst development
can be when embryos are maintained in low O2 conditions [7,52–55].
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Figure 2. Elevated oxygen concentration during culture has detrimental effects on blastocyst devel-
opment. These studies evaluated bovine embryonic development cultured in either 5% (individual
studies represented as a dot) or 20% oxygen concentration (individual studies represented as a square)
for the entirety of the culture period [7,52,54,55].
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Most IVP protocols employ atmospheric O2 during in vitro maturation (IVM) and
in vitro fertilization (IVF) as low O2 conditions will generally reduce embryo production
efficiency [56–58]. However, there is evidence suggesting that lower O2 tension is at least
as proficient and, in some instances, may be preferred to culturing oocytes in high O2. At
least two reports have found that oocyte competency can be restored in oocytes cultured in
low O2 by modifying glucose concentrations in the maturation medium [56,57]. A recent
abstract also indicated that reducing O2 concentrations during IVM and IVF improves
the cryosurvivability of embryos produced with IVP [59]. These findings indicate that
further investigation into the merits of using low O2 conditions during IVM and IVF may
be warranted, especially if we consider endpoints other than embryo development.

Embryos are also suspectable to light damage. Fluorescent lighting contains UV
rays, and as little as 3 min of exposure to UV light decreased development of hamster
embryos [60]. There is a direct link between UV radiation and DNA damage, where
photosensitizers will stimulate ROS production and lead to oxidative DNA damage [61].
When light strength was reduced, blastocyst yield was increased compared to greater
intensities and lower ROS production occurred [62,63]. Additionally, altered light exposure
may reduce the stress caused by light [64].

Adequate pH balance and proper temperature are key for optimizing IVP success.
Media utilized for IVP have been equilibrated under CO2 gas to maintain a pH to support
embryonic growth. In mammalian cells, intracellular pH is regulated by HCO3

−/Cl−

exchangers and Na+/H+ exchangers [65]. This is especially important in the oocyte and
early developing embryo. One study determined that denuded oocytes lack the ability to
maintain an internal pH of 7.1 compared to blastocysts [66]. Therefore, removal of IVP
plates to manipulate, apply treatment, or undergo a necessary procedure (e.g., fertilization)
for oocytes and embryos can influence pH and embryo developmental potential. Covering
media with mineral oil not only limits media evaporation but it also can assist with main-
taining the pH [67,68]. Without the utilization of mineral oil, the pH can increase within the
first 1–2 min of plates being exposed to a non-gassed atmosphere and take 30–35 min to re-
equilibrate [69]. Using mineral oil increases the allotted time before media begin to increase
in pH level, where small increases are seen to start after 10 min of atmospheric exposure
when oil is not used [67,70]. Another important consideration to keep in mind is that ROS
production within embryos can alter the pH gradient within the mitochondria as changes
in electron transport and, ultimately, the establishment of the H+ gradient will be altered
when ROS production is elevated [71,72]. Temperatures for IVP culture systems occur close
to rectal temperatures in cattle (37–39 ◦C), even though cultures at lower temperatures
do impact embryonic development [73]. However, fluctuations in culture temperatures
contribute to detrimental embryonic development [74]. During IVM, mouse and human
oocytes are more susceptible to temperature fluctuations that can result in disruption of
meiotic spindle assembly [75,76]. An important note to include is that temperature fluc-
tuations may alter metabolic activity. In one study, bovine blastocysts cultured at lower
temperatures (37 ◦C) had reduced amino acid consumption and production [77]. Addi-
tionally, GPx activity was reduced in lower culture temperatures (36.5 ◦C vs. 38.5 ◦C) [78].
Therefore, it can be deduced that altered/elevated temperatures subsequently increase
ROS production (e.g., alterations in mitochondria) and that stable/lowered temperatures
reduce ROS accumulation as metabolic demands are lowered. Regardless, both pH and
temperature are external environmental factors that can be controlled to improve IVP.

Cryopreservation is another source for ROS accumulation within embryos. This pro-
cedure clearly has substantial benefits, including preservation of genetic material, ease
with transport around the world, and as a convenience for completing ET. However, cryop-
reserved bovine embryos are less successful at generating a pregnancy than non-frozen
embryos produced by IVP [4]. The oxidative stresses produced include the accumulation
of H2O2, NO, and O2

•− [79]. As discussed previously, these and other ROS are linked to
proteomic, epigenetic, transcriptomic, and genomic changes in bovine embryos [80,81]. On
a related topic, ROS accumulation also occurs in cryopreserved semen and subsequent
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damage caused by ROS includes alterations in calcium fluxes and membrane fluidity,
integrity, and permeability [82].

3. Intrinsic ROS Mitigation Systems

There are three key enzymes that reduce ROS accumulation within cells (Figure 3A).
The first is SOD. It reduces O2

•− to O2 and H2O2. Three isoforms exist: SOD1 (Cu/Zn-
SOD; cytoplasm and nucleus localization), SOD2 (Mn-SOD; mitochondria localization),
and SOD3 (EC-Cu/Zn-SOD, extracellular) [83]. Copper (Cu2+) is used as cofactor for
SOD1 and SOD3 in a 2-step process where Cu2+ is reduced to Cu1+ to oxidize an O2

•−

molecule to O2, and then Cu1+ is oxidized to Cu2+ by reducing a second O2
•− molecule into

H2O2 [84]. Iron is used as a cofactor by SOD2 to achieve the same result [85]. The second
ROS mitigating enzyme system is the catalase (CAT) system. Its function is to further
reduce H2O2 generated by SOD and convert it to H2O and O2 [12]. The third set of ROS
mitigating enzymes are those enzymes that utilize GSH. This is tripeptide thiol antioxidant
that is generated by most cells through two ATP-dependent reactions: one that involves
the formation of glutamate cyclase and a second that adds glycine and γ-glutamylcysteine.
The formation of GSH is controlled by substrate availability, with cysteine availability
usually being the rate-limiting substrate [86,87]. The renewal of GSH occurs through the
γ-glutamyl cycle. This process works through enzymatic control by glutathione peroxidase
(GPx) that oxidizes GSH to remove H2O2 and generate H2O molecules. The oxidized form
of GSH, GSH disulfide (GSSG), is enzymatically reduced by GSH reductase to GSH [88].
Eight GPx family members exist in mammals [15].
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(Cu/Zn-SOD) present in the cytoplasm and nucleus, SOD2 (Mn-SOD) present in the mitochondrial
matrix, and SOD3 (Extracellular-Cu/Zn-SOD) located extracellularly. These manage ROS by reducing
O2

•− to H2O2. There are two methods to reduce H2O2. The first method is by catalase enzyme (CAT),
which acts in a two-step reaction to remove two H2O2 and produce two water and one oxygen. The
second method is glutathione and glutathione peroxidase (GPx). The reduced form of glutathione
(GSH) is activated by GPx to convert two water molecules from H2O2. The oxidized form of GSH
(GSSG) is replenished by glutathione reductase to remove future ROS. (B) Five antioxidant pathways
are reviewed herein for their ability to assist in removing ROS. Cysteine is produced in the cytoplasm
after cystine is transported through a cystine/glutamate antiporter (XCT). Cysteine contributes to
the formation of γ-glutamylcysteine (GGC) after reacting with glutamate (Glu) produced by the
mitochondria. Finally, GGC reacts with glycine (Gly) to form GSH. Cysteamine is important as it
assists in the conversion of cystine to cysteine. Both cysteine and cysteamine feed into the production
of hypotaurine. Hypotaurine reduces H2O2 to form water and taurine. However, hypotaurine may
also produce H2O2 and peroxytaurine from O2

•− and hydrogen. Zinc enters the cell through zinc
transporters (ZnT) and contributes to the formation of SOD1 (Cu/Zn-SOD). Selenite is commonly
included in cultures produced by IVP where it can enter the cell and produce selenide. Selenium is a
cofactor for GPx. Created with Biorender.com.

Biorender.com


Animals 2024, 14, 330 8 of 20

These GSH-based enzyme systems are essential for supporting oocyte and early
embryonic development. Stores for GSH begin to rise during germinal vesicle breakdown,
peak during metaphase II, and decline during zygote formation. Cytoplasmic GSH is at
its lowest during the 2 to 8-cell stages and increases thereafter [89,90]. Elevated stores of
GSH are necessary during maturation, fertilization, and early development as they are
essential for forming, maintaining, and protecting meiotic spindles, reducing the disulfide
bonds of the male pronucleus after fertilization, and supporting development past the
2-cell stage [91–95]. As mentioned, de novo synthesis of GSH can occur in most cells. The
oocyte accumulates GSH until it matures to the MII phase. Afterwards, no new GSH is
produced until after implantation in the mouse [96]. Transport of GSH components and
extracellular GSH is facilitated by the transport from blood plasma to the follicles and
uptake by cumulus cells and transport through gap junctions to the oocyte. Removal of
cumulus cells debilitates the oocytes’ capabilities to synthesize GSH [97,98].

4. Antioxidants Examined in Bovine Embryos

The first calf produced by IVP was born in 1981, and since then a substantial amount
of emphasis has been placed on improving efficiency rates and success in developing
embryos produced by IVP. Many putative, as well as well-established, antioxidants have
been characterized for their ability to improve bovine IVP systems. We have identified five
antioxidants that have been heavily highlighted for their antioxidant potential in bovine
IVP systems (Figure 3B). The section will provide a brief overview of the biological and
antioxidant activities of each molecule and a final section will present findings from using
these antioxidants during bovine IVP. Several additional antioxidants could have very
easily been included in the following discussion. Melatonin and Resveratrol are excellent
examples of other antioxidants studied extensively during IVM. Reviews of these molecules
already exist [99–102], so we decided to focus our discussions away from these antioxidants.

4.1. Cysteine

Cysteine is the rate-limiting amino acid in GSH production. It is an unstable molecule
outside of the cell which undergoes auto-oxidation to form cystine [103]. However, cystine
can be reduced back to cysteine within the cell by reacting with β-mercaptoethanol or cys-
teamine [87,104]. One common way to provide supplemental cysteine is by supplementing
N-acetyl cysteine (NAC). Within the cell, NAC is deacetylated to from cysteine. A direct
action of NAC also exists, and the presence of a thiol group permits NAC to serve as an
electron donor for reactions with •OH, H2O2, and other ROS [105]. Transport of NAC into
the cell occurs without the facilitation of a carrier protein [105,106]. It is important to note
that NAC is unable to maintain sufficient levels of cysteine to maintain adequate stores
of GSH.

4.2. Cysteamine

Cysteamine is another component of GSH, so it is not surprising that, like cysteine,
it has been explored as an antioxidant in bovine oocytes and embryos. One of its main
functions is to facilitate cysteine availability in two ways: by reducing cystine to cysteine
within cells and promoting cysteine uptake by cells [90,107,108].

4.3. Selenium

Selenium (Se) is a trace mineral that acts as a cofactor for several enzymes. Its con-
sideration as a molecule with antioxidant potential is proposed because it is a cofactor for
GPx1/2/3/4 [109]. As previously discussed, GPx regulates H2O2 concentrations [110,111].
Selenium deficiencies are associated with infertility in humans [112,113]. Consumption of
Se, when not provided in a supplement, is dependent on soil content and absorption into
crops and animals [112]. If not provided, Se deficiencies can alter hormonal profiles and
decrease pregnancy success rates [114]. Selenium is provided in the form of an inorganic
compound (e.g., sodium selenite) or as organic compounds (Se yeast, selenomethionine, se-
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lenocysteine) [115–117]. Organic Se has easier absorption and higher bioavailability, while
inorganic Se is more cost effective [118]. For both organic and inorganic Se, the common
intermediate is selenide. Inorganic selenite is easily reduced to selenide by red blood cells.
Selenide produced from red blood cells will be excreted into the bloodstream and bound to
albumin for further processing within the liver [117]. Unlike selenite, inorganic selenate is
not readily reduced to selenide. Instead, selenate is transferred directly to the liver. Both
selenide that is derived from inorganic selenite and selenate are utilized by the liver for the
synthesis of selenoproteins and cellular GPx [117].

4.4. Hypotaurine

Hypotaurine (HTU) functions as an antioxidant outside of the scope of SOD, CAT, and
GSH. It is a nonessential amino acid generated from cysteine degradation and pantothenate
synthesis [119,120]. Hypotaurine is the precursor for taurine production, and this dehy-
drogenase reaction requires H2O2 as a substrate [119]. This HTU to taurine reaction will
occurs by using O2•− and hydrogen ions as substrates, and the peroxytaurine intermediate
is rapidly converted to taurine and H2O2. Hypotaurine also acts through a nonenzymatic
pathway to directly react and inactivate •OH [121]. The presence of HTU synthesis in
gametes and embryos and its presence within the reproductive tract are primary reasons as
to why it has been tested for is antioxidant activity in bovine IVP systems [122].

4.5. Zinc

Zinc (Zn) is an essential trace mineral involved in numerous cellular functions, in-
cluding as an enzyme cofactor for DNA methylation, DNA repair, and apoptosis [109,123].
Chronic deprivation of Zn leads to increased oxidative-mediated cell damage [124]. To
offset dietary deficiencies, Zn has become a common feed ingredient without inducing Zn
toxicity and is provided as organic or inorganic supplements [125]. Bulls supplemented
with Zn had improved sperm motility compared to non-supplemented males [126]. Ade-
quate Zn in diets is needed in cattle to limit placental retention after calving [127,128]. As
mentioned, Zn is a main cofactor for SOD1 and SOD3. It does not act as an electron donor
but rather is required to provide the proper tertiary structure for SOD1/3. An adverse
oxidative reaction occurs if the tertiary structure is disrupted where Cu becomes unbound
in SOD1/3. Copper then reacts through a Fenton-like reaction, enabling it to generate
•OH that is heavily reactive towards biomolecules [129,130]. While the Fenton reaction can
induce ROS production from excess Cu, deficiencies in Cu are also attributed to inefficient
oxidant removal as it is a cofactor for SOD1/3 [131,132]. Therefore, sufficient levels of Zn
are necessary to maintain SOD1/3.

5. Antioxidant Potential to Improve Bovine IVP Systems
5.1. IVM

Trace minerals are present in IVM media formulations that contain serum. Also,
conventional media formulations (e.g., M199) usually contain HTU, cystine, cysteine,
and GSH. However, the premise for testing these and other antioxidants during IVM is
warranted because these conventional media were not originally designed as oocyte culture
media. With that said, some antioxidants have not been examined in detail. Hypotaurine,
for example, failed to alter oocyte GSH concentrations when provided during individual
oocytes per culture drop during IVM [133], and outcomes like this have undoubtedly
reduced enthusiasm for studying this antioxidant during IVM.

Cysteine and cysteamine have been widely researched because of their need for
generating GSH within the cell. Supplementation of cysteine during IVM improved
oocyte development by increasing the percentage of oocytes that reached metaphase
II [92,134–137]. This supplementation scheme, however, does not always improve bovine
blastocyst yield [135,138,139]. Positive effects of cysteine on blastocyst formation are ob-
served more often in stressed environments, such as heat-stressed culture systems [79].
When supplemented during maturation, the cysteine analog, NAC, also improved embryo
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cleavage and blastocyst development comparable to cysteine [139,140]. Cysteamine ap-
pears to be very important for controlling GSH concentrations within the bovine oocyte.
Sovernigo et al. (2017) reported that using cysteamine during IVM decreased ROS concen-
trations and increased GSH concentrations in bovine oocytes [141]. Other studies deter-
mined that cysteamine supplementation improved oocyte competency and maturation,
increased blastocyst development, improved cryosurvivability, and reduced the adverse
effects of prolonged exposure to elevated oxygen tension [9,90,103,135,138,142–145].

There are only a few studies that explored Se supplementation during IVM. One of
these studies combined Se with other trace minerals (Cu, manganese, Zn) [146]. Cleavage
rates were not impacted by this cocktail, but improvements in blastocyst formation, cell
number, and reduced ROS concentrations were detected on day 8 blastocysts [146]. Another
study where Se was the only supplement used had improved blastocyst development
with a concentration of 10 ng/mL [147]. When Se was provided at 10 ng/mL during
IVM, improvements in cumulus cell viability were observed when compared with lower
concentrations, although this treatment group had greater lipid peroxidation compared
to lower concentrations. Additionally, oocytes cultured with 10 ng/mL had the greatest
intracellular GSH compared to any other treatment [147]. Another study evaluated Se at
10 ng/mL under heat-stressed conditions. Selenium supplementation improved nuclear
oocyte maturation compared to the heat-stressed control, with a greater number of oocytes
reaching the MII stage [148]. During this study, GPx4, SOD, and CAT had upregulated
transcription levels that reduced ROS accumulation [148].

The supplementation of Zn during IVM benefits subsequent IVF and in vitro culture
(IVC) success. One study found that Zn supplementation at the time of IVM increased sub-
sequent cleavage rates and blastocyst formation [149]. This work also identified increases
in blastocyst cell numbers in Zn-treated cumulus oocyte complexes [149]. Interestingly, no
differences in intracellular GSH concentrations were detected with Se supplementation, but
there was less damage observed in cumulus cells cultured with Zn [149]. A related work
identified that Zn supplementation during IVM reduced apoptosis and increased SOD
activity in cumulus cells [150,151]. In buffalos, Zn supplementation during IVM supports
both oocyte maturation and subsequent blastocyst formation [152].

5.2. IVF

Selenium, HTU, and Zn have been examined for their abilities to improve IVF success.
The studies focusing on Se and Zn actions were primarily focused on examining how
they influence sperm viability and binding to the zona pellucida. Indeed, one study
evaluated Cu, Mn, Se, Zn, and a cocktail containing all of these trace minerals [153]. The
cocktail mixture did not improve sperm viability, membrane integrity, acrosomal status, or
zona pellucida binding [153]. Interestingly, individual supplementation of Cu, Se, or Zn
improved sperm binding [153]. While this study did not evaluate pairings of antioxidants,
it would be interesting to investigate Cu and Zn supplementation together as they are
cofactors for SOD1. Nonetheless, further work seems warranted to explore whether these
same outcomes can be obtained in laboratories that may use slightly or substantially
different IVF protocols.

Hypotaurine seems like a favorite antioxidant of choice during IVF, and sperm vi-
ability is the primary target of its actions. Most laboratories use cryopreserved bovine
semen, and adding HTU to the sperm cryopreservation mix improves post-thaw surviv-
ability, improves the onset and completion of capacitation, reduces premature chromatin
decondensation, limits DNA fragmentation, and reduces the presence of nuclear vacuoliza-
tion [154]. Supplementation of HTU is also used after sperm is thawed. Its inclusion during
IVF improves survivability and reduces chromatin decondensation, DNA fragmentation,
and nuclear vacuolization [154]. However, its presence during IVF may produce adverse
outcomes. One study supplementing HTU during IVF contained a reduced fertilization rate
and increased incidence of polyspermy [133]. Despite this, the promise of HTU as a benefi-
cial antioxidant during IVF is why it is included in the penicillamine, HTU, epinephrine
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(PHE) cocktail that is used by many laboratories. Penicillamine improves bovine sperm
viability and epinephrine facilitates sperm motility [155,156]. Researchers reported mixed
results as to whether sperm motility is affected by PHE treatment, but PHE was still able to
improve early embryonic development [157–159].

Hypotaurine is not the only antioxidant studied for its ability to function during
sperm cryopreservation. For example, GSH supplementation improved sperm motility,
progressive sperm motility, average velocity, and progressive linear velocity [160]. This
GSH supplementation did not, however, improve cleavage or blastocyst rates [160], sug-
gesting that GSH may provide more of a benefit when cryopreserved semen is thawed and
inseminated into cattle rather than used for IVF.

Zinc deficiency impairs sperm motility, morphology, and viability in the reproductive
system [128,161]. This provides ample justification for supplementing Zn during IVF, al-
though it is unclear whether Zn benefits or hinders IVF success. Stephenson and Brackett
reported that supplementing 1 µg/mL of Zn chloride inhibited fertilization success by
interfering with calcium oscillations [162]. This may be caused by the interference of Zn
efflux that is important for regulating intracellular pH and calcium entry. Also, supplement-
ing Zn during IVF may compromise Zn flow. Zinc efflux during fertilization is referred
to as the Zn spark and is required to assist in the resumption of meiosis II and assist in
blocking polyspermy [163,164]. However, at least one recent report has not observed a
detrimental effect of Zn supplementation, with sperm viability and progressive motility
staying elevated at 0.8 µg/mL 6 h after thawing and increased zona pellucida binding [128].
That same study did not observe any positive effects on embryonic development when Zn
was supplemented in IVF [128]. Based on these findings, it seems ill-advised to supple-
ment Zn during IVF. There are other examples where antioxidants may produce harmful
outcomes during IVF. Cysteamine supplementation, for example, hinders sperm quality,
compromises pronuclear formation, and ultimately reduces blastocyst development [165].

5.3. IVC

It is interesting that only a limited number of studies have explored antioxidant supple-
mentation during IVC. Antioxidants have been explored during IVC for their ability to limit
and/or correct adverse cellular damage caused by heat stress (see [166] for review), but
their inclusion is otherwise rare. The rare cysteine and cysteamine supplementation studies
have resulted from their inability to manipulate intracellular GSH concentrations during
early embryo development [103,139]. At least one study observed reduced blastocyst
development after cysteine supplementation [103].

There have been efforts to explore Se and Zn for their abilities to improve IVC success.
Studies evaluating Se have used it in conjunction with a serum substitute mix containing
insulin/transferrin/Se (ITS). Several studies found that ITS improves blastocyst devel-
opment [167–173]. Our laboratory recently identified that Zn supplementation did not
impact blastocyst yield but improved blastocyst ICM, trophectoderm, and total cell number
compared to control [174]. Further work is needed to verify whether Zn supplementation is
useful in different IVC culture conditions, but perhaps more importantly, this work shows
that measurements of embryo quality (e.g., cell number and ICM/TE distribution) require
more attention as we and others pursue antioxidant activities in bovine IVP systems.

There has been some work involved in supplementing SOD or CAT during IVP, but
no benefits of these supplements have been observed [139]. There have, however, been
a few studies that have identified positive outcomes from supplementing GSH during
IVC. In one study, GSH supplementation did not improve cleavage rates or blastocyst
development but improvements in the total cell number and ICM numbers were detected
in GSH-supplemented blastocysts [175]. Another study did observe increases in cleavage
and blastocyst rates when using a heavy isotope-labeled GSH (GSX) [176]. It is intriguing to
consider that antioxidant treatments that only function outside of the cell may be beneficial
to in vitro embryo development. More work is needed to explore this in greater detail.
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6. Conclusions

This review provides ample evidence supporting the contention that oxidative stress
hinders bovine IVP outcomes (Figure 4). Stresses likely include temperature fluctuations,
exposure to atmospheric O2, UV light, pH changes, and cryopreservation-induced cell
damage. These and other factors contribute to the generation of ROS. If left uncontrolled,
these reactive molecules can damage nucleic acids, lipids, and proteins. If controlled,
however, the degree of damage can be limited and quickly corrected. There are several
enzyme systems within all cells, including the oocyte and embryo, which mitigate ROS-
induced damage.
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Figure 4. During IVP, bovine oocytes and embryos are assaulted by several external factors that in-
clude temperature fluctuations, exposure to atmospheric oxygen, pH changes and light exposure and
potentially undergo cryopreservation. These stimuli increase ROS and RNS. When left uncontrolled,
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This review highlighted how five antioxidants may be used within bovine IVP systems
to mitigate ROS-induced damage. Studying antioxidant supplementation during IVM
has been complicated by the presence of several antioxidants within commonly utilized
media formulations. Those media formulations contain trace minerals, again making it
difficult to determine if supplementing additional trace minerals is beneficial. However,
even with these complications, there is good evidence suggesting that supplementing
cysteine, cysteamine, Se, or Zn may have the ability to mature oocytes to be fertilized,
cleave, and produce blastocysts. There also is good evidence to support the contention that
supplementing Se and/or HTU will improve sperm activity, thereby improving IVF success.
It is less clear if Zn supplementation during IVF is beneficial or detrimental. There are
numerous studies exploring antioxidant use for mitigating ROS-induced damage during
IVC when bovine embryos are exposed to stressors, namely heat stress, but much less
work has been completed when examining IVC events in the absence of intense stressors.
Sufficient evidence exists to propose that supplementing Se as part of the ITS serum substi-
tute mix during IVC improves blastocyst development. It is unclear, however, specifically
which ingredient in the ITS cocktail is responsible for this improved development. There is
also some evidence suggesting that Zn supplementation during IVC may improve bovine
blastocyst cell numbers and that GSH supplementation may be acting outside of the cell
through some undefined means to promote bovine embryo development.

To conclude, it is difficult to make any firm recommendations for supplementing any
one or a specific set of antioxidants in bovine IVP systems. The work we have presented
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here indicates that opportunities exist to promote bovine IVP success using antioxidant
supplementation strategies; but, what may work in one bovine IVP system may not work
in other systems. Most bovine IVP systems have been tailored to work within specific
laboratory conditions, and each laboratory likely will need to undergo empirical testing to
identify the specific antioxidant combination that works best for their system.
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