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Simple Summary: Our study elucidated the specific alterations in rumen microbiota associated
with subacute ruminal acidosis (SARA) triggered by a high-concentrate diet. It demonstrated that
SARA can lead to a decrease in microbial richness and diversity in the rumen of goats. SARA could
potentially hinder the growth of rumen bacterial communities. Within the context of SARA, the
antioxidant capacity of goats diminishes, while inflammatory cytokines increase, potentially raising
the risk of health issues in growing goats. Understanding this is crucial for predicting changes in goat
microbiota and improving the efficiency and well-being of ruminants through nutritional approaches
such as dietary interventions.

Abstract: This study aims to explore the antioxidant, immune, and enzyme metabolism aspects in
goats experiencing subacute ruminal acidosis (SARA). Furthermore, we seek to elucidate the rela-
tionship between the symbiotic microbiota of goats and their metabolic function. Sixteen goats were
equally divided into two groups and fed a normal-concentrate diet (NC, 55% concentrate) or a high-
concentrate diet (HC, 90% concentrate) for five weeks. We found that the HC diet reduced the total
antioxidant capacity (T-AOC) (p = 0.022) and increased interleukin-1β (IL-1β) (p = 0.015), interleukin-4
(IL-4) (p = 0.008) and interleukin-6 (IL-6) (p = 0.002) concentration of goats. Simultaneously, the HC
diet significantly increased the concentrations of alkaline phosphatase (ALP) and amylase (AMY) in
the blood and rumen fluid of goats (p < 0.05). Microbial analysis in the rumen of goats revealed that
the HC diet decreased bacterial richness and diversity, as evidenced by the changed observed species,
Chao 1, PD whole tree and Shannon when compared to the NC diet (p < 0.01). The proportion of
Proteobacteria increased while that of Spirochaetes and Fibrobacteres significantly decreased with
the HC diet (p < 0.05). The Christensenellaceae_R-7_group and Ruminococcaceae_UCG-010 in rumen
was notably decreased when a diet was switched from 55% concentrate diet to 90% concentrate
diet (p < 0.05). Additionally, microbial functional potentials deduced that the HC diet significantly
increased the abundance of the citrate cycle (TCA cycle) (ko00020) associated with carbohydrate
metabolism (p = 0.028). Furthermore, the HC diet significantly increased the glutathione metabolism
(ko00480) associated with the metabolism of other amino acids (p = 0.008). Our findings suggested
that SARA reduced the total antioxidant capacity and increased levels of inflammatory factors in
goats, as well as decreased rumen bacterial species and abundance.

Keywords: goat; high concentrate; SARA; immunity; rumen; microbiota

1. Introduction

In recent years, in pursuit of enhanced production efficiency, intensive farming has
witnessed the widespread adoption of high-concentrate diets, primarily reliant on cereal
starch as the primary energy source. Unfortunately, this extensive use has led to an upsurge
in the prevalence of metabolic diseases. SARA is a prevalent gastrointestinal ailment in
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the field of ruminant farming. It is caused by excessive feeding of highly fermentable
carbohydrates and insufficient dietary crude fiber [1]. A distinctive feature of SARA is
the prolonged period of low rumen pH, with the rate of absorption and metabolism of
rumen VFA serving as a pivotal determinant of rumen pH [2]. During the initial stages
of SARA, typical symptoms are often absent, making diagnosis challenging. The primary
diagnostic criterion for SARA is a rumen fluid pH persisting between 5.2 and 5.6 for
over 3 h [3]. Consequences of SARA encompass reduced feed intake, diminished fiber
digestibility, lower milk fat content, heightened occurrence of diarrhea, hoof inflammation,
liver abscesses, elevated bacterial endotoxin levels, and increased acute phase protein
during inflammation [4]. Owing to the scarcity of high-quality roughage resources in
China, often characterized by subpar quality, producers find themselves compelled to
heavily rely on starch-rich grain concentrates to fulfill the nutritional demands of animals,
all in the pursuit of elevated production performance. Consequently, animals suffer from
inadequate consumption of high-quality fiber, leading to the onset of acidosis, particularly
prevalent in high-yield dairy cows and intensively fattened cattle and sheep. The emergence
of SARA has emerged as a significant impediment to the production of cattle and sheep
in China.

Research has demonstrated that in response to acid stress, microorganisms possess
the ability to mitigate cell damage by modulating the dynamic equilibrium of intracellular
pH (pHi), inducing the expression of stress proteins, and regulating cell membrane mor-
phology and function [5]. Nevertheless, if stress surpasses the self-regulating capacity of
microorganisms, intracellular protons and acid ions accumulate gradually, leading to a
rapid decline in pHi. This, in turn, causes damage to cell membranes and internal macro-
molecular structures, disrupting normal cell growth and metabolism, and, in severe cases,
resulting in microbial mortality [6–8]. The alterations in physical and chemical properties,
reduced proliferation, and potential mortality of rumen microorganisms under acid stress
constitute significant factors influencing rumen fermentation and shifts in microbial flora.
Mertens [9] defined peNDF as: neutral detergent fiber (NDF) in the diet that can promote
rumen liquid and solid phase stratification and affect the chewing of ruminants. Previous
studies have shown that increasing the peNDF content of the diet increased the average
rumen pH and is an effective means of preventing SARA [10,11].

As sequencing technology continues to advance, we have the opportunity to delve
deeper into the influence of dietary changes on the gut microbiome of animals [12–15].
Maintaining relatively high hay feeding and a stable bacterial composition is imperative
for the well-being of ruminants. SARA, on the other hand, leads to significant alterations in
both rumen and intestinal microbiota [16–18]. Currently, research into the gut microbiota
of both animals and humans is advancing, unveiling ever-expanding functions of the
gut microbiota. Simultaneously, there is a continuous emergence of developments in gut
microbiota preparations [19,20]. This experiment aims to construct a subacute rumen
acidosis model in goats and study the changes in antioxidant capacity, immune levels,
and microbial community structure and composition under sub healthy rumen conditions,
enriching the survival and reproduction patterns of rumen bacteria under diseases, and
providing a basis for the development of gut microbiota preparations for ruminants.

2. Materials and Methods
2.1. Animals and Treatment

This study was approved by the Animal Care and Use Committee of Hunan Agri-
cultural University (HAU201408). To conduct this study, we chose sixteen Liuyang black
goats at random. These goats were all six months old and had an average weight of
15.3 ± 1.67 kg. The goats were subsequently separated into two categories and given
either a regular-concentrate meal (NC, with a ratio of 55% concentrate to 45% forage) or
a concentrated diet (HC, with a ratio of 90% concentrate to 10% forage). Before the diets
were formulated, the paddy straw was chopped to approximately 2 cm in length. The dry
matter intake in the two groups was 572 g/d (NC) and 602 g/d (HC), respectively. Table 1
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provided a comprehensive breakdown of the diets’ composition and nutritional value. The
experimental period spanned 35 days, including a 7-day diet adaptation phase. The diets
were evenly distributed to the goats at approximately 08:00 and 18:00 h, respectively. Each
goat was housed in its individual enclosure.

Table 1. Ingredients and nutrient levels of the experimental diets (air-dried basis).

Item NC 1 HC 2

Ingredients composition (%)
Forage

Rice straw 45.0 10.0
Concentrate

Rice with shell 33.2 54.3
Soybean meal 9.60 15.7
Wheat bran 6.00 9.80
Fat powder 3.20 5.20

Calcium carbonate 0.50 0.80
Calcium bicarbonate 1.10 1.80

Sodium chloride 0.60 1.00
Premix 3 1.00 1.40

Nutrient levels 4, % of DM
Crude protein 13.5 17.6

Crude ash 9.34 9.12
Crude fat 4.18 6.01

Neutral detergent fiber 49.8 38.4
Acid detergent fiber 36.5 9.51

Starch 26.57 38.57
1 NC: normal-concentrate diet. 2 HC: high-concentrate diet. 3 Premix composition per kg diet: 68 mg FeSO4·H2O,
44 mg CuSO4·5H2O, 411 µg CoCl2·6H2O, 1.70 mg KIO3, 211 mg MnSO4·H2O, 126 mg ZnSO4·H2O, 56 µg Na2SeO3,
462 mg MgSO4·7H2O, 737 IU vitamin A, 8.29 mg vitamin E, 5.1 g carrier zeolite powder. 4 Nutrient levels were
measured values.

2.2. Sample Collection

Upon completion of the 35-day feeding period, plasma samples were collected into
tubes using the methodology described in a prior study [21], and subsequently stored at
−20 ◦C for later analysis. Rumen epithelial samples were extracted and preserved in 10%
neutral formalin to facilitate histomorphology examinations. Six animals were randomly
chosen from each group and humanely euthanized. Rumen fluid was collected, promptly
frozen at −80 ◦C, and later utilized for genomic DNA isolation and the assessment of
enzyme metabolism indicators. The pH values in rumen samples of two groups in SARA
model were the same before feeding in the morning (0 h), but it was declined in the HC
group at 3 h or 6 h after feeding. During the time period from 3 h after the feeding until
the sampling at 6 h, the average ruminal pH was below 5.7 in the HC group and remained
significantly lower in NC goats [22]. Rumen segments from each goat were gathered to
observe the morphology of the rumen epithelium.

2.3. Measurement of Enzyme Metabolism, Antioxidant and Immune Indicators

The T-AOC, NO, IFN-γ, HIS, IL-1β, IL-2, IL-4, and IL-6 in the blood were detected
using a corresponding enzyme-linked immunosorbent assay (ELISA) kit (Jiangsu Yutong
Biological Technology Co., Ltd. Yancheng, China). The blood and rumen fluid metabo-
lites including ALT (alanine aminotransferase), AST (aspartate aminotransferase), ALP
(alkaline phosphatase), and AMY (amylase) were detected with the commercial assay kits
(Roche Diagnostics (Shanghai) Ltd., Shanghai, China; and determined using an Automatic
Biochemistry analyzer (Cobas c 311, Roche, Shanghai, China), and strictly following the
manufacturer’s instructions, respectively.
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2.4. Histological Examination

Morphological observation involved the collection of rumen epithelial segments from
every goat. The rumen epithelial tissues were dehydrated, embedded, and subsequently
sliced into approximately 5 mm-thick sections using a microtome. Afterwards, they were
dyed with hematoxylin and eosin. Images of the rumen epithelium’s structure were
taken using a light microscope (Pannoramic DESK, P-MIDI, P250, 3DHISTECH, Budapest,
Hungary) that had a computer-assisted morphometric system.

2.5. DNA Extraction and PCR Amplification

DNA extraction from rumen fluid was carried out using the E.Z.N.A.® soil DNA Kit
(Omega Bio-Tek, Norcross, GA, USA) and verified through 1% agarose gel electrophore-
sis [23]. The V3–V4 hypervariable regions of the bacterial 16S-rDNA gene were subse-
quently amplified using universal primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). PCR reactions were conducted in a total
volume of 20 µL, comprising 1 × FastPfu Buffer, 250 µM dNTPs, 0.1 µM of each primer,
1 U FastPfu Polymerase (Beijing TransGen Biotech, Beijing, China), and 10 ng of template
DNA. The PCR protocol consisted of an initial denaturation at 95 ◦C for 2 min, followed by
30 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s, elongation at 72 ◦C
for 30 s, and a final extension at 72 ◦C for 5 min. Subsequently, the amplification products
were confirmed using 2% agarose gel electrophoresis. Purified amplicons were equimolarly
pooled and subjected to paired-end sequencing (2 × 300) on an Illumina MiSeq platform
(Allwegene, Beijing, China) following standard protocols [24].

2.6. Bacterial Data Processing and Function Predication

The FASTQ files were processed using QIIME (version 1.17) by demultiplexing and
quality filtering. The following criteria were applied: (i) Reads with a length of 300 bp were
truncated at positions where the average quality score dropped below 20 within a 10 bp
sliding window. Reads shorter than 50 bp after truncation were discarded. (ii) Stringent
processing involved precise barcode matching, allowing for a maximum of two nucleotide
mismatches in primer matching, and excluding reads containing ambiguous characters.
(iii) Assembly of sequences was performed only for those with overlaps longer than
10 bp in their overlapping regions. The unassembled reads were eliminated. OTUs were
clustered using UPARSE (version 7.1) with a 97% similarity cutoff, and chimeric sequences
were identified and removed using UCHIME (https://www.drive5.com/uchime/uchime_
download.html, accessed on 8 January 2024). A rarefaction analysis was performed using
Mothur v.1.21.1 to evaluate diversity indices including observed_species, PD_whole_tree,
and Shannon. Primer 6 software (Primer-E Ltd., London, UK) was used for conducting
hierarchical clustering analysis, and Canoco 4.5 was employed for performing Principal
Component Analysis (PCA). The bioinformatics tool PICRUSt was used to predict the
functional potentials of metagenomes by reconstructing unobserved states through a
phylogenetic investigation of communities, relying on data from the 16S rRNA gene [25].
The OTU table was utilized in PICRUSt to predict functional genes, making use of the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

2.7. Statistical Analysis

All of the experimental data in the tables and figures are presented as the mean ± SD
and the differences between groups were assessed by the independent-samples t test using
SPSS (IBM SPSS 21.0, Chicago, IL, USA). The data of 16S rRNA sequencing were analyzed
on the allwegene platform. Statistical significance was set at p < 0.05 and tendencies at
0.05 ≤ p ≤ 0.10.

https://www.drive5.com/uchime/uchime_download.html
https://www.drive5.com/uchime/uchime_download.html


Animals 2024, 14, 263 5 of 16

3. Results
3.1. Antioxidant and Immune Indicators of Growing Goats Fed Different Diets

As shown in Figure 1A, the T-AOC was decreased dramatically in plasma by feeding
the HC diet to goats compared to the NC diet (p = 0.022). Compared with the NC group, the
data also showed that the NO level of goats was improved notably by the HC diet (p = 0.011)
(Figure 1B). And diets supplemented with the HC diet has no significant effect on the IFN-γ
(Figure 1C), there were no statistical differences between the groups (p = 0.185). The HC diet
raised the HIS concentration of goats remarkably (p = 0.003) (Figure 1D). Results for plasma
IL-1β was significantly boosted for the HC group compared to the NC group (p = 0.015)
(Figure 1E). The level of IL-4 (p = 0.008) and IL-6 (p = 0.002) in plasma increased significantly
when dietary concentrate ratio increased from 55% to 90% (Figure 1G,H). Compared with
the NC group, plasma concentration of IL-2 in the HC group was not significantly different
compared to the NC group (p = 0.110) (Figure 1F).
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Figure 1. The antioxidant and immune indicators of growing goats fed normal-concentrate diet
(NC) and high-concentrate diet (HC). (A) T-AOC, total antioxidant capacity; (B) NO, Nitric Oxide;
(C) IFN-γ, interferon-γ; (D) HIS, Histamine; (E) IL-1β, interleukin-1β; (F) IL-2, interleukin-2; (G) IL-4,
interleukin-4; (H) IL-6, interleukin-6. (*) 0.01 < p < 0.05; (**) p < 0.01.

3.2. The Enzyme Metabolism Indicators of Growing Goats Fed Different Diets

The results shown in Figure 2A demonstrated that the ALT concentration in plasma
was increased by the HC diet (p = 0.025). And the AST concentration in plasma was
also increased by the HC diet compared to the NC diet (p = 0.051) (Figure 2B). The ALP
concentration in plasma was notably increased when a diet administered to steers was
switched from 55% concentrate diet to 90% concentrate diet (p < 0.001) (Figure 2C). Results
for plasma AMY concentration were significantly boosted for the HC group compared to the
NC group (p = 0.015) (Figure 2D), where ALT (p < 0.001) and AST (p = 0.025) concentrations
in rumen were increased in this experimental model by increasing the grain percentage
of the diet to induce SARA (Figure 2E,F). And the HC diet elevated significantly the ALP
(p < 0.001) and AMY (p < 0.001) in rumen compared to the NC diet fed to growing goats
(Figure 2G,H). The rumen epithelium from the NC group showed an intact structure while
the rumen epithelium of the HC group showed an indication of sloughing in the stratum
corneum (Figure 2I–L).
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Figure 2. The enzyme metabolism indicators of growing goats fed normal-concentrate diet (NC) and
high-concentrate diet (HC). (A–D) The enzyme metabolism indicators in plasma. (E–H) The enzyme
metabolism indicators in rumen. The representative original images (I,J) and light micrographs (K,L)
of ruminal epithelium in goats fed the NC and HC diets are shown. (*) 0.01 < p < 0.05; (**) p < 0.01.

3.3. Rumen Microflora of Growing Goats Fed Different Diets

The increase in species as the sample size increases was described using species
accumulation curves (Figure 3A). The findings indicated the frequency at which novel
OTUs (novel species) emerge through ongoing sampling. In a specific interval, when the
sample size grows, a steep rise in the curve suggests the presence of numerous species
in the community. Conversely, a flattening curve indicates that the species in this habitat
do not substantially increase as the sample size increases. Our results indicated that
sampling is sufficient for microbiological data analysis. Based on the analysis of hierarchical
clustering, the branch length indicates the distance between samples, and samples with
greater similarity tend to cluster closer together from Figure 3B. Based on the evidence,
it can be verified that the rumen samples from goats that were given regular and high-
concentrate diets were grouped distinctly. The PCoA revealed distinct separation between
rumen samples in the NC group and those in the HC group, as demonstrated in Figure 3C.
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The flower plot represents a sample with each petal, with the core number in the middle
representing the number of OTUs common to all samples, and the number on the petal
representing the unique number of OTUs for that sample. it can be proven that the HC
diet reduces the number of OTUs in the rumen compared to the NC diet fed to growing
goats (Figure 3D). The observed species was markedly lower in the HC group than in the
NC group (p < 0.05) (Figure 3E). In the rumen fluid, the Chao 1, PD whole tree, and the
Shannon index notably decreased (p < 0.01 for Chao 1 and PD whole tree, p < 0.05 for the
Shannon index) when the goats’ diet was changed from 55% concentrate to 90% concentrate
(Figure 3F–H). Hence, the HC diet declined the rumen bacteria richness and diversity.
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Figure 3. Rumen microflora of growing goats fed normal-concentrate diet (NC) and high-concentrate
diet (HC). (A) Species accumulation curves. (B) Hierarchical clustering (NCRU1–NCRU6 and HCRU1–
HCRU6 are rumen samples of goats fed with 55% or 90% concentrate, separately). (C) Principal
component analysis (PCA) of rumen bacterial community. (D) Flower plot. (E–H) Alpha diversity
indices of rumen bacterial community. (**) p < 0.01.

3.4. Rumen Bacterial Community Structure of Growing Goats Fed Different Diets

Bacteroidetes, Proteobacteria and Firmicutes were dominant phyla in the rumen of
goats, accounting for more than 87% of the total rumen bacterial community (Figure 4A).
Bacteroidetes and Proteobacteria accounted for a relative abundance of 45.9% and 21.3%,
respectively, followed by Firmicutes, at 20.7%. When the diet of concentrate proportion
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increased from 55% to 90%, the abundance of Proteobacteria was increased significantly in
the HCRU group than the NCRU group (p < 0.05) (Figure 4B). However, the proportion
of Spirochaetes decreased dramatically in goats when the diet administered to goats was
switched from 55% concentrate diet to 90% concentrate diet (p < 0.01) (Figure 4C). At the
same time, the HC diet significantly dropped the abundance of Fibrobacteres (p < 0.01)
(Figure 4D).
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Within the bacterial population, the top 30 genera were identified across all samples
(Figure 5A)-the genus Succinivibrionaceae_UCG-002 was the most abundant genera, ac-
counting for 15.4%, followed by Prevotella_1, Rikenellaceae_RC9_gut_group, Treponema_2,
and Fibrobacter as the predominant genera of rumen in the NCRU and HCRU groups.
Among the genera, the percentage abundance of Succinivibrionaceae_UCG-002 was greater
in the rumen of the HCRU group when compared to that in the NCRU group (p < 0.05)
(Figure 5B), and Erysipelotrichaceae_UCG-004 tended to be lower by the HC diet (p = 0.056)
(Figure 5G). In contrast, the relative abundance of Rikenellaceae_RC9_gut_group, Tre-
ponema_2 and Fibrobacter was markedly decreased in the rumen of the HCRU group
than in the NCRU group (p < 0.01) (Figure 5C–E), and Ruminococcus_1 tended to de-
crease by the HC diet (p = 0.058) (Figure 5I). The Christensenellaceae_R-7_group and
Ruminococcaceae_UCG-010 in rumen was notably decreased when a diet administered
to steers was switched from 55% concentrate diet to 90% concentrate diet (p < 0.05)
(Figure 5H,K).
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3.5. Function Prediction of Rumen Bacterial Community Using PICRUSt

Functional potentials of rumen microbiota were predicted using 16S rRNA marker
gene sequences through PICRUSt against KEGG pathways. As showed in Figure 6, within
the 20 most abundant level 2 KEGG pathways, ten, amino acid metabolism, carbohydrate
metabolism, energy metabolism, the metabolism of cofactors and vitamins, nucleotide
metabolism, glycan biosynthesis and metabolism, lipid metabolism, enzyme families, the
metabolism of terpenoids and polyketides, and the metabolism of other amino acids, were
associated with metabolism; and one, membrane transport, was associated with environ-
mental information processing; four, including replication and repair, translation, folding,
sorting and degradation, and transcription were associated with genetic information pro-
cessing; one, cell motility was associated with cellular processes.
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In total, the related amino acid metabolism, carbohydrate metabolism and the
metabolism of other amino acids individual pathways were predicted, and a compari-
son of different pathways (as shown in Table 2) revealed that the HC diet influenced the
functional potentials of rumen microbiota. Specifically, compared to the NC group, the
HC diet tended to decrease the abundance of histidine metabolism (ko00340) (p = 0.081),
and the HC diet significantly decreased the abundance of lysine degradation (ko00310),
tryptophan metabolism (ko00380), valine, leucine and isoleucine degradation (ko00280),
and selenocompound metabolism (ko00450) (p < 0.05). In contrast, the HC diet signifi-
cantly increased the abundance of the citrate cycle (TCA cycle) (ko00020) associated with
carbohydrate metabolism (p = 0.028). Furthermore, the HC diet significantly increased the
glutathione metabolism (ko00480) associated with the metabolism of other amino acids
(p = 0.008).

Table 2. KEGG pathways that showed different abundances between ruminal digesta microbiota of
NC- and HC-diet goats.

Level 2 Level 3 Pathway ID NC 1 HC 2 p-Value

Amino acid metabolism

Histidine metabolism ko00340 0.69 ± 0.03 0.65 ± 0.05 0.081
Lysine degradation ko00310 0.16 ± 0.02 0.13 ± 0.02 0.030

Tryptophan metabolism ko00380 0.19 ± 0.01 0.16 ± 0.02 0.003
Valine, leucine and isoleucine degradation ko00280 0.29 ± 0.02 0.25 ± 0.02 0.006

Carbohydrate metabolism Citrate cycle (TCA cycle) ko00020 0.73 ± 0.05 0.80 ± 0.04 0.028

Metabolism of other amino acids
Glutathione metabolism ko00480 0.17 ± 0.004 0.24 ± 0.05 0.008

Selenocompound metabolism ko00450 0.38 ± 0.01 0.34 ± 0.02 0.002

1 NC: normal-concentrate diet; 2 HC: high-concentrate diet.

4. Discussion

The diet’s formulation and composition can potentially impact the growth perfor-
mance and antioxidant capacity of animals, as stated in references [26–28]. Zhang et al.
showed that SARA elevated systematic oxidative status and enhanced autophagy in the
liver, and suppressed SIRT1 and FOXA2 may mediate enhanced oxidative damage and au-
tophagy in the livers of dairy cows fed a HC diet [29]. Cows with SARA often develop com-
plications or other diseases with physiologic immunosuppression and inflammation [30].
Our current study has verified that the HC diet could diminish the antioxidant capacity
of goats, underscoring the potential adverse consequences of indiscriminately promoting
weight gain in these animals. Dietary patterns can impact not only body weight but also
bone density [31]. In addition to antioxidant capacity, anti-inflammatory and immunomod-
ulatory properties are equally vital for the well-being of the host [32]. Cytokines, produced
and released by immune cells that are activated, constitute a category of biologically ac-
tive substances. Immune cells interact and mutually regulate each other, playing crucial
parts in inflammation, immune responses, tissue healing, and hematopoietic functions.
Promoting the proliferation of immune cells are several noteworthy immune mediators,
namely IL-2, IL-4, IL-6, IL-10, and IL-12 [33–35]. Feeding goats with a high-concentrate
(HC) diet resulted in lower nitric oxide (NO) production compared to the normal group.
Typically, increased NO levels are associated with an enhanced pro-inflammatory response
to lipopolysaccharides (LPS) [36], which correlates with elevated concentrations of various
interleukins. Prior research has demonstrated that elevated IL-6 levels may enhance the
permeability of the rumen epithelium and diminish its barrier function [37]. Furthermore,
our research validated that the nitric oxide (NO) [38] mediated the control of IL-2 and IL-6
production in these goats through a negative feedback mechanism. These findings suggest
that feeding goats with a high-concentrate (HC) diet during a state of subacute rumen
acidosis (SARA) results in elevated plasma NO levels, which subsequently suppresses the
production of cytokines, notably IL-6.

The activity of animal digestive enzymes [39] can be significantly influenced by the
composition of the diet. The digestive enzymes produced by rumen microorganisms in
ruminants help to break down and utilize the natural polymers found in their feed [40]. The
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high-carbohydrate diet resulted in an increase in AMY activity, in line with previous studies
suggesting that higher intake of starch leads to elevated AMY activity in the contents of
the pancreas and small intestine [41,42]. ALT and AST activity are reliable markers of liver
function, released into the bloodstream when the liver is compromised. Typically, serum
AST activity remains low under normal conditions but significantly elevates in the presence
of cell damage. Increased AST and ALT values are indicative of varying degrees of liver
impairment [43]. The HC group displayed elevated AST and ALT values in contrast to the
NC group, implying that the HC diet may lead to liver damage in goats. ALP is an enzyme
widely distributed in tissues and organs, including the liver, bones, and small intestine.
It facilitates the hydrolysis of phosphate into phosphoric acid under alkaline conditions.
Various forms of ALP, including small intestine ALP and bone-type ALP, contribute to the
regulation of intestinal function, as well as calcium and phosphorus metabolism [44,45].
DiLorenzo and McCarthy, among others, have provided evidence suggesting that AMY
may potentially accelerate the rate of ruminal carbohydrate degradation [46,47]. Dietary
nutrients have the capacity to impact the morphology of small intestinal tissue and the
digestive function of animals [48]. An imbalance in the interplay between gut microbiota
and other factors can disrupt the homeostasis of the intestinal mucosa [49]. The intestinal
epithelial barrier, acting as the first line of defense between the luminal environment and
the host, can result in severe inflammation or other intestinal diseases if compromised [50].
This study additionally furnishes evidence that diets can impact the morphology of the
rumen epithelium. Elevated enzyme levels (ALT, AST, and ALP) indicate potential damage
or alterations in membrane permeability [51]. As a result, feeding goats an HC diet may
have detrimental effects on their intestinal epithelium.

For this research, we employed 16S rRNA sequencing to investigate the bacteria
present in rumen fluid. Our focus was on observing the changes in the composition
and structure of rumen flora as goats progressed from a state of good health to one of
acidosis. Our goal was to explore the reproduction patterns of rumen bacteria during
disease and enhance the understanding of rumen microecology. Species accumulation
curves are useful instruments for analyzing the species makeup of samples and forecasting
species abundance. In biodiversity and community surveys, they are extensively used
to assess the adequacy of sample size and estimate the diversity of species [52]. Thus,
species accumulation curves not only assess sample size sufficiency but also predict species
richness when the sample size is adequate. Utilizing the beta diversity distance matrix for
hierarchical clustering analysis [53], the tree structure was constructed using the UPGMA
algorithm, which helped with visual analysis. Our research validates the appropriateness of
sequencing rumen samples from goats subjected to the NC and HC diets, revealing distinct
clustering patterns for the two treatment groups. Rumen environmental imbalances often
result in shifts in rumen flora. For example, Kim et al. induced subacute rumen acidosis
(SARA) through a high-grain diet, which led to decreased rumen flora diversity and a
reduction in the relative abundance of Prevotella [54]. Our study reveals that goats fed
a HC diet display lower bacterial richness and diversity compared to those fed the NC
diet, as evident from reductions in observed species, Shannon, Chao 1, and PD whole tree
indices. This observation highlights the notably detrimental effect of the HC diet on the
biodiversity of the goat rumen ecosystem.

Modifying dietary formulations can lead to shifts in the microbial composition of the
animal gut and impact digestive function [55,56]. Zhao et al. indicated the importance
of bacterial sphingolipids in maintaining hindgut symbiosis and homeostasis. Dietary
supplementation with citrus flavonoid extract can decrease systemic inflammation by main-
taining hindgut microbiota homeostasis and regulating sphingolipid metabolism in dairy
cows fed a high-starch diet [57]. Environmental acid stress has a substantial impact on the
growth and reproduction of microorganisms during microbial fermentation [58,59]. Previ-
ous studies have reported that Bacteroides is a major anaerobic genus in the rumen [60],
and high-concentrate diets have been associated with a decrease in Bacteroides popula-
tions [61,62]. Prevotella, a member of the Bacteroides genus, is the predominant genus of
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rumen bacteria [63]. Prevotella is known for its high activity in protein degradation and
its ability to utilize starch and pectin [60]. Surprisingly, our findings revealed no notable
alteration in the prevalence of Prevotella in the rumen prior to and following SARA, which
contradicts earlier research. Considering our experimental design, it is hypothesized that
Prevotella may rapidly multiply when provided with ample starch substrates in a short
timeframe, maintaining a stable relative abundance. The health and function of the rumen
greatly depend on the diversity of microorganisms. During our investigation, we noticed a
decrease in the ratios of the Rikenellaceae RC9 intestinal cluster, Treponema 2, Fibrobacter,
and Christensenellaceae R-7 cluster when exposed to high-calorie feeding circumstances. It
is worth mentioning that Treponema and Fibrobacter are acknowledged for their role in
breaking down fibers [64,65]. Numerous studies on SARA have extensively documented
the abundance of bacteria that break down starch and the decrease in bacteria that break
down fiber [66,67]. Our current research aligns with these findings, confirming disruptions
in rumen digestion and metabolic capabilities in the HC-fed goats. Succinivibrionaceae
UCG-002 is a member of the Succinivibrionaceae family and has been associated with rumi-
nal fatty acid metabolism [68]. As for the Rikenellaceae RC9 gut cluster, the Rikenellaceae
family is a fairly recent taxonomic categorization, and there is a significant requirement
for additional information regarding its metabolic role, despite the research conducted by
Su et al.suggested a single isolate that produces acetate from the Rikenellaceae family [69].
Rikenellaceae RC9 was able to alter the digestibility of dietary NDF and ADF as well as
the VFA concentration, as shown by Zhao et al. [70]. The Christensenellaceae R-7 cluster is
most closely associated with Christensenella minuta [71], a species capable of generating
acetate and butyrate through glucose [72]. In summary, these findings indicated that the
HC goats may have impaired rumen digestion and metabolic capabilities.

Rumen bacteria play a crucial role in maintaining ruminant health [73–75]. In our
study, we used PICRUSt to assess the potential functions of bacteria associated with
digestion in the rumen. The clear disparities in anticipated functional pathways between
the NC and HC groups suggest that alterations in bacterial populations can influence
the functional potential of the rumen bacterial community. Within the HC group, we
noticed a decline in pathways associated with the metabolism of amino acids, such as
histidine, lysine, tryptophan, valine, leucine, and isoleucine breakdown. This indicates
possible detrimental impacts on the metabolism of amino acids in the host resulting from
prolonged consumption of an HC diet. Additionally, we noted a relative increase in
pathways associated with the tricarboxylic acid (TCA) cycle and carbohydrate metabolism
in the HC group, suggesting that the rumen microbiomes of HC-fed goats may have an
enhanced capacity for energy extraction. Overall, these predicted findings suggest that long-
term HC diet feeding may impact the bacterial function of the rumen microbiome in goats.
However, it is important to note that while PICRUSt is a well-validated predictive tool, true
metagenomic shotgun sequencing is necessary for a more comprehensive examination of
the effects of HC diets on rumen-associated bacteria in goats.

5. Conclusions

In summary, SARA could alter the total antioxidant capacity and inflammatory factors
levels of goats, and affect enzyme metabolism in their blood and rumen. Through our
research, we have gained a deeper comprehension of the microorganisms present in the
rumen, the presence of SARA reduced the number and variety of bacteria in the rumen
and may affect the development and performance of bacteria in the rumen.
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