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Simple Summary: By integrating prior biological information into genomic selection methods using
appropriate models, it is possible to improve prediction accuracy for complex traits. In this context,
we conducted a comparative assessment of two genomic prediction models, namely, genomic best
linear unbiased prediction and genomic feature best linear unbiased prediction. The accuracy of
these models in predicting the growth traits of backfat thickness and loin muscle area was evaluated.
Our results revealed that the genomic feature best linear unbiased prediction model can effectively
integrate prior information into the model, which is superior to the genomic best linear unbiased
prediction model in some cases. These findings provide valuable ideas for enhancing the genomic
prediction accuracy of growth traits in pigs.

Abstract: Enhancing the accuracy of genomic prediction is a key goal in genomic selection (GS)
research. Integrating prior biological information into GS methods using appropriate models can
improve prediction accuracy for complex traits. Genome-wide association study (GWAS) is widely uti-
lized to identify potential candidate loci associated with complex traits in livestock and poultry, offer-
ing essential genomic insights. In this study, a GWAS was conducted on 685 Duroc × Landrace × York-
shire (DLY) pigs to extract significant single-nucleotide polymorphisms (SNPs) as genomic features.
We compared two GS models, genomic best linear unbiased prediction (GBLUP) and genomic feature
BLUP (GFBLUP), by using imputed whole-genome sequencing (WGS) data on 651 Yorkshire pigs.
The results revealed that the GBLUP model achieved prediction accuracies of 0.499 for backfat thick-
ness (BFT) and 0.423 for loin muscle area (LMA). By applying the GFBLUP model with GWAS-based
SNP preselection, the average prediction accuracies for BFT and LMA traits reached 0.491 and 0.440,
respectively. Specifically, the GFBLUP model displayed a 4.8% enhancement in predicting LMA
compared to the GBLUP model. These findings suggest that, in certain scenarios, the GFBLUP model
may offer superior genomic prediction accuracy when compared to the GBLUP model, underscoring
the potential value of incorporating genomic features to refine GS models.
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1. Introduction

Pork accounts for a large share of total global meat production, addressing the in-
creasing demand for high-quality protein. Genetic factors play a predominant role among
the various elements influencing the efficiency of the swine industry. It is essential to
comprehend and optimize the genetic potential of pigs through genomic selection methods
to enhance the efficiency and sustainability of pork production [1]. Genomic selection
(GS), first proposed in 2001, is a statistical method for calculating the genomic estimated
breeding value (GEBV) using high-density single-nucleotide polymorphisms (SNPs) across
the whole genome [2]. This method hypothesizes that quantitative trait loci (QTL) for all
target traits are in linkage disequilibrium (L) with at least one marker in the genome-wide
high-density single-nucleotide polymorphism (SNP), so that the effect of each QTL can be
reflected by the SNP [3]. The GEBV, calculated from individual genome data, outperforms
the traditional estimated breeding value (EBV) based on pedigree records. This enhanced
accuracy stems from GS, which leverages comprehensive genome-wide genetic marker
information to more accurately depict the genetic relatedness among individuals [4]. Since
GEBV can be independent of pedigree and phenotypic records, this facilitates selection
early, which can significantly shorten the generation interval and increase the accuracy
of predicted breeding values [5]. In pig breeding systems, the generation interval of pigs
has been controlled for a short time and it is difficult to scale it down [6]. The GS of
pigs is primarily based on improving the accuracy of GEBV to obtain additional genetic
progression, and its accuracy depends largely on GS approaches.

The two major challenges of GS are the accuracy of GEBV and the cost of genotypes.
SNP chip data have largely been the foundation for the adoption of GS throughout the
past ten years. With the improvement of the reference genome sequence of livestock
and the reduction in the cost of sequencing, whole-genome sequencing (WGS) data have
become possible for GS. WGS data would include causal mutations that can find many
QTL closely linked to targeting traits, which can greatly improve the accuracy of genomic
prediction [7,8]. A study used simulation data to compare the accuracy of GEBV with a
GBLUP model under low-density chip data (7.5K SNPs), high-density chip data (17K), and
WGS data (335K), and found that the accuracy of GEBV based on WGS data was 4% higher
than that based on chip data [9]. While the cost of WGS is falling rapidly, sequencing a
large number of animals remains expensive. For most individuals, SNP high-density chips
were used for genotyping, and the genetic variation in the whole genome obtained through
genotype imputation would be cost-effective [10]. Currently, there are many livestock and
poultry that perform GS based on imputed high-density genetic data or imputed sequence
data, such as chickens [11,12], pigs [13], and cattle [14,15].

However, it was previously found that, compared to the GS based on chip data, using
imputed WGS data for the accuracy of genomic prediction produced no advantage [9,15,16].
One of the important reasons for this is that prior information lacks consideration. At
present, there are several ways to use prior biological information for GS. A common one
is the use of QTL information, such as GS using QTL information in Holstein dairy cows,
which improves accuracy by 4% [17]. Genome-wide association study (GWAS) is based
on LD, identifying marker loci closely correlated with phenotypic variation by comparing
the relationship between phenotypic differences in target traits across different individuals
and the polymorphisms at genetic loci. Given the significance of GWAS in identifying can-
didate loci for complex traits in livestock and poultry, the selection of SNPs with significant
effects on target traits based on GWAS results has become one of the most widely applied
genomic-level priors [18,19]. Gebreyesus improved the accuracy of prediction through
integrating prior information from GWAS results by 13~38% compared with the genomic
best linear unbiased prediction (GBLUP) model in the study of milk fatty acid composi-
tion [20]. Subsequent studies also showed that significant SNPs found by GWAS using
imputed WGS data can increase the accuracy of genomic prediction [8,10,21]. The genomic
feature best linear unbiased prediction (GFBLUP) model, proposed by Edwards [22], can
integrate biological prior information and treat markers that significantly impact traits as
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independent random effects within the model. This approach has been shown to enhance
the accuracy of genomic prediction through the integration of prior information.

Duroc × Landrace × Yorkshire (DLY) hybrid pigs are the most widely bred pigs in
the swine industry, as they have the advantages of fast growth and high feed utilization,
providing consumers with the largest source of pork [23]. In this work, we adopt a
research strategy of integrating prior information from GWAS results to evaluate the
genomic prediction accuracy of the GBLUP and GFBLUP models using imputed WGS
data. We collected important growth traits of pigs, backfat thickness (BFT) and loin
muscle area (LMA). The objectives of this study were (i) to perform a GWAS on a total of
685 Duroc × Landrace × Yorkshire (DLY) pigs to extract significant SNPs as genomic prior
information; (ii) to improve the accuracy of genomic prediction by integrating preselected
SNPs from the GWAS into the prediction models using a population of 651 Yorkshire pigs.

2. Materials and Methods
2.1. Ethics Statement

All animals used in this study met the guidelines for the care and use of experimental
animals established by the Ministry of Agriculture of China. The whole study was ap-
proved by the ethics committee of South China Agriculture University (SCAU, Guangzhou,
China). The experimental animals were not anesthetized or euthanized in order to conduct
this study.

2.2. Pig Population

The experimental animals in this study were two populations, the prior discovery
population and the reference/validation population. A total of 685 DLY pigs (338 males
and 347 females) were provided by Wens Foodstuffs Group Co., Ltd. (Yunfu, China)
and served as the prior discovery population, born from May to August 2019. DLY pigs
were bred from Duroc boars, including American Duroc (S21) pigs, Canadian Duroc (S22)
pigs, and Taiwanese Duroc (S23) pigs, crossed with Landrace × Yorkshire sows. In total,
651 Yorkshire pigs provided by Guangdong Guangken Animal Husbandry Group Co.,
Ltd., born between July 2019 and October 2020, were used as the reference and validation
populations. All pigs were raised with the same customized diet in human-controlled farm
conditions and similar management conditions. The customized corn–soybean feed (free
of probiotics and antibiotics) contained 16% crude protein, 3100 kJ of digestible energy,
and 0.78% lysine. Water was available ad libitum. Feeding was completed when the body
weight reached 100 ± 5 kg.

2.3. Phenotypic Data

According to the current effective standard, large-scale pig slaughtering experiments
were carried out. Ear tissue was collected as follows: the pig’s ear was first cleaned with
75% alcohol. Then, a clear forfex was used to cut out a small fraction of ear tissue. The
wound was then treated with tincture of iodine. The protocol for ear tissue collection was
approved by the ethics committee of SCAU. The main growth traits of pigs were collected,
that is, back fat thickness (BFT) and loin muscle area (LMA). BFT was collected with vernier
caliper at rib 6–7 thoracic vertebra when pigs weighed 100 ± 5 kg, and the maximum
height and width of the cross-sectional area of the longissimus dorsi muscle at the last rib
were measured. LMA is calculated as follows:

LMA(cm2) = height × width × 0.7

After collecting phenotypic data, the original data underwent a correction process
using the single-trait animal model in the BLUPF90 programs [24]. The model used for
correction included fixed effects such as sex, age, and the first three principal components.
The MVP package in R language was used to analyze the phenotypic distribution of the
reference/validation population. The resulting corrected phenotypic values were used for
all subsequent analyses.
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2.4. Genotype Data

The genomic DNA was isolated and extracted from approximately 15~20 mg of ear
tissue following the traditional phenol/chloroform method. The quality and quantity of
the DNA samples were measured with a NanoDropTM 2000 (Thermo Fisher Scientific,
Waltham, MA, USA) as previously described [25]. In total, 685 DLY pigs were genotyped
using the GeneSeek Porcine 50K SNP Chip (Neogen, Lincoln, NE, USA). The original geno-
type data can be read using the GenomeStudio 2.0.5 software. The genotype quality control
procedures were performed using PLINK v1.9 software [26] with the following criteria:
(1) individual call rate > 90%; (2) SNP call rate > 90%; (3) minor allele frequency > 1%;
(4) Hardy–Weinberg test p-value > 10−6; and (5) SNPs lacking informative data and those
located on the sex chromosomes were removed. After quality control, a final dataset of
33,197 SNPs remained for DLY pigs. Similarly, 651 Yorkshire pigs were genotyped using
the GeneSeek Porcine 80K SNP Chip, and for quality control. Due to the different chip
types and densities used in these two populations, and in order to increase the density of
genetic markers, we performed genotype imputation.

The imputation process of 50K SNP chip data and 80K SNP chip data to WGS geno-
types was performed with the SWIM database. The SWIM pig haplotype reference panel,
based on 2259 animals across 44 breeds, demonstrated robust performance in genotype
imputation, achieving a concordance rate above 96% and an r2 of 0.85 [27]. Subsequently,
the imputed WGS data were quality-controlled using the same standard as above. In the
prior discovery population, 15,743,104 SNPs for DLY pigs remained after quality control.
For the 651 Yorkshire pigs, 14,166,374 SNPs remained after quality control. The imputed
WGS data were used for subsequent analysis.

2.5. Genetic Parameter Estimation

Heritability (h2) was defined as the ratio of the additive genetic variance to phenotypic
variance. Firstly, the genomic relationship matrix (GRM) was constructed to assess kinship
among individuals. Subsequently, variance components were estimated using the restricted
maximum likelihood (REML) algorithm via the GCTA 1.93.2 software [28].

2.6. Genome-Wide Association Study

For the two traits analyzed, the 685 DLY pigs were used to perform a GWAS and a
genomic relationship matrix (GRM) based on all SNPs, which was constructed to account
for population structure. The mixed linear model-based association analysis (MLMA) in
the package GCTA [29] was used. The GWAS model was as follows:

y = 1µ + Zg + bx + e

where y is the vector of corrected phenotypic value; µ is the overall mean, 1 is a vector of
ones; g is the random effect, i.e., the accumulated effect of all SNPs, following a normal
distribution g ∼ N(0, Gσ2

g), where G is the GRM which is built using imputed WGS data,
captured genetic relatedness, σ2

g is the additive genetic variance, Z is the incidence matrix
for g; b is the fixed effect of the candidate SNP to be tested for association, x is a vector of
the SNPs’ genotype indicator variable coded as 0, 1, or 2; e is a vector of random residuals
with e ∼ N(0, Iσ2

e ), where σ2
e is the residual variance and I is an identity matrix. For ease

of computation, σ2
g is estimated based on the null model and then fixed while testing for

the association between each SNP and the trait.

2.7. SNP Preselection Based on the GWAS Results

After GWAS analysis, SNPs associated with BFT and LMA traits were categorized
into different classes based on their p-values, specifically, those less than 0.05, 0.005, 0.0005,
and 0.00005. Each trait resulted in four distinct sets of prior SNP information. Subse-
quently, these four sets of prior SNP information were individually intersected with the
imputed WGS data of the 651 Yorkshire pigs. The common SNPs that are present in both
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the prior SNP information and the imputed WGS data of 651 Yorkshire pigs served as
genomic features.

2.8. Genomic Prediction Models

The statistical methods used for predicting breeding value in this study included
genomic best linear unbiased prediction (GBLUP) and genomic feature best linear unbiased
prediction (GFBLUP) models. The genotype datasets for the GBLUP and GFBLUP models
are imputed WGS data and preselected imputed WGS SNP data based on GWAS results.
The GBLUP model is used to calculate GEBV as follows:

y = 1µ + Zu + e

where y is the vector of the corrected phenotypic value; 1 is a vector of ones, µ is the overall
mean; u is the vector of additive genetic values, and it is assumed that u ∼ N(0, Gσ2

u),
where G is a relationship matrix built with the HIBLUP 1.1.0 software [30]; σ2

u represents
corresponding additive genetic variance; Z is incidence matrices relating the additive
genetic values to the phenotype value; e is the vector of random residual effect, and it is
assumed that e ∼ N(0, Iσ2

e ), where σ2
e is the residual variance and I is an identity matrix.

The GFBLUP model was an extended BLUP including two random genetic effects:

y = 1µ + Z f + Zr + e

where y, 1, µ, and e are the same as in GBLUP, f is the vector of genetic effects captured
by genomic features of target traits, following a normal distribution f ∼ N(0, G f σ2

f ), r is
the vector of genomic effects captured by the remaining genetic markers in the imputed
WGS data that remove genomic features, following a normal distribution r ∼ N(0, Grσ2

r ),
and Z is an incidence matrix linking ( f and r) to the phenotypic values. The G f and Gr
were constructed using only the genetic marker set defined by the genomic feature and the
remaining set of markers; all of this was accomplished using the GCTA software. Since
the computational resources of using two G matrices are too high, the two G matrices are
combined into one G matrix to predict the GEBV:

Gnew = λG f + (1 − λ)Gr

where λ =
σ2

f

σ2
f +σ2

r
, σ2

f , and σ2
r are the genetic variances explained by G f and Gr for BFT and

LMA traits.

2.9. Prediction Accuracy

Cross-validation is a common method used to evaluate the performance of a model. In
this study, five-fold cross-validation was performed to assess the prediction accuracy of the
model, which was measured by the correlation coefficient between phenotype values and
GEBV. Specifically, 651 Yorkshire individuals were randomly divided into 5 groups, with
4 groups serving as reference groups and the remaining group serving as the validation
group. The genotypes and phenotype values of the reference groups were known and used
to predict the model, while the genotypes of the validation group were known and the
phenotype values were treated as missing values. This process was repeated for each group
tested. The above steps were repeated 5 times, the prediction accuracy was reported as the
average of these 25 results.

3. Results
3.1. Descriptive Statistics of Phenotypes and Heritability

Phenotypic statistics of BFT and LMA were performed in two populations. As Table 1
shows, the mean and standard deviation of BFT and LMA traits in DLY pigs were 11.49 ± 3.27
and 40.44 ± 7.39, and the coefficient of variation was 28.45% and 18.28%. It is implied that
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these two phenotypic variations are relatively stable in this population. Furthermore, the
values (standard error) of the heritability estimates were 0.35 ± 0.08 and 0.34 ± 0.08 for
BFT and LMA traits, both of which were medium heritability traits. Similarly, as shown in
Table 2, the mean and standard deviation of BFT and LMA traits in Yorkshire pigs were
11.85 ± 2.43 and 40.34 ± 4.93, and the coefficient of variation was 20.54% and 12.21%. Data
from Table 2 can be compared with the data in Table 1 which show that Yorkshire pigs’
heritability of BFT and LMA traits is 0.45, which is slightly higher than the heritability
of BFT (0.35) and LMA (0.34) traits of DLY pigs. After phenotypic correction, BFT and
LMA were roughly in line with normal distribution in the Yorkshire population (Figure S1),
which could be used for GS.

Table 1. Descriptive statistics and heritability of BFT and LMA traits in DLY pigs.

Trait Unit Mean (±SD) 3 Min 4 Max 5 C.V./% 6 h2 (±SE) 7

BFT 1 mm 11.49 ± 3.27 5.50 25.58 25.48 0.35 ± 0.08
LMA 2 cm2 40.44 ± 7.39 20.25 64.63 18.28 0.34 ± 0.08

1 Back fat thickness (BFT). 2 Loin muscle area (LMA). 3 Standard deviations (SD). 4 Minimum (Min). 5 Maximum
(Max). 6 Coefficient of variation (C.V.). 7 Heritability (standard error) value (h2 (±SE)).

Table 2. Descriptive statistics and heritability of BFT and LMA traits in Yorkshire pigs.

Trait Unit Mean (±SD) 3 Min 4 Max 5 C.V./% 6 h2 (±SE) 7

BFT 1 mm 11.85 ± 2.43 5.93 23.23 20.54 0.45 ± 0.06
LMA 2 cm2 40.34 ± 4.93 24.25 54.67 12.21 0.45 ± 0.07

1 Back fat thickness (BFT). 2 Loin muscle area (LMA). 3 Standard deviations (SD). 4 Minimum (Min). 5 Maximum
(Max). 6 Coefficient of variation (C.V.). 7 Heritability (standard error) value (h2 (±SE)).

3.2. SNP Preselection Based on the GWAS Results

The number of SNPs varies in GWAS results using imputed WGS data based on
different levels of p-value (0.05, 0.005, 0.0005, 0.00005); see Table 3 for details. Based on
the GWAS results, about 517.1K, 47.9K, 2.8K, and 171 significant SNPs were preselected
according to different p-values for BFT traits in 651 Yorkshire pigs. In LMA traits, about
515.5K, 57.7K, 6.3K, and 341 significant SNPs were preselected according to different
p-values as genomic features.

Table 3. Number of SNPs preselected based on the GWAS results with different p-value cutoffs.

p-Value BFT LMA

Number of SNPs in
GWAS 1

Number of SNPs in
Gf 2

Number of SNPs in
GWAS 1

Number of SNPs in
Gf 2

<0.05 731,061 517,173 720,230 515,502
<0.005 66,867 47,987 81,028 57,767

<0.0005 4399 2819 8020 6357
<0.00005 262 171 478 341

1 The number of SNPs divided according to p-value based on the GWAS results of DLY pigs (number of SNPs in
GWAS). 2 The number of SNPs extracted as genomic features in Yorkshire pigs (number of SNPs in Gf).

3.3. Genomic Prediction

The prediction accuracy values of both GBLUP and GFBLUP models are shown in
Table 4. The GBLUP model was run using the complete imputed WGS data, and the
prediction accuracy values were 0.499 for the BFT trait and 0.423 for the LMA trait. Using
SNP preselection based on the GWAS results with different p-value cutoffs, the prediction
accuracy values of GFBLUP were 0.488, 0.487, 0.487, and 0.491 for the BFT trait and 0.440,
0.420, 0.417, and 0.423 for the LMA trait. The results showed that, for preselected SNPs
from the GWAS results with the optimal p-value cutoffs (p < 0.05), the highest accuracy of
the GFBLUP model was 0.440 for the LMA trait. This prediction accuracy value was still
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higher than that of the GBLUP model with the imputed WGS data. Using preselected SNPs
from the GWAS results with the optimal p-value cutoffs, the accuracy of the GFBLUP model
was lower than that of the GBLUP model for the BFT trait. Overall, the average prediction
accuracy of BFT and LMA traits of the GFBLUP model reached the highest values at 0.491
and 0.440, respectively. The prediction accuracy of the GBLUP and GFBLUP models for
BFT and LMA traits was visually compared, as depicted in Figure 1. In terms of BFT traits,
there was no obvious trend for the accuracy of the GFBLUP model using different p-value
cutoffs to preselect SNPs. However, for the LMA trait, the GFBLUP model improved
prediction accuracy by 4.8% compared to the GBLUP model. In general, using the SNPs
preselected from imputed WGS data based on GWAS results led to greater accuracy of
genomic prediction for the LMA trait.

Table 4. Prediction accuracies of the GBLUP model and the GFBLUP model with SNP preselection
based on GWAS results.

Model p-Value Accuracy (Mean ± SE 4)

BFT LMA

GBLUP 1 All 3 0.499 ± 0.016 0.423 ± 0.010
GFBLUP 2 <0.05 0.488 ± 0.017 0.440 ± 0.011

<0.005 0.487 ± 0.017 0.420 ± 0.011
<0.0005 0.487 ± 0.016 0.417 ± 0.010

<0.00005 0.491 ± 0.016 0.423 ± 0.010
1 Genomic best linear unbiased prediction (GBLUP). 2 Genomic feature best linear unbiased prediction (GFBLUP).
3 All SNPs of imputed WGS data (All). 4 Standard error (SE).

Animals 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 
Figure 1. Accuracy of genomic predictions using GBLUP and GFBLUP models for BFT and LMA 
traits. 

4. Discussion 
In this study, an independent prior discovery population was specifically designed 

for GWAS analysis to select prior information. During the initial phases of GS research 
that integrated prior biological information, the availability of such prior information was 
relatively limited, often leading to a reliance on reference populations. Nevertheless, bias 
can be amplified when the prior discovery population and the reference population are 
the same or when GS relies solely on prior information [15,31,32]. For instance, in cattle 
research, utilizing the same prior discovery population for a GWAS as the reference pop-
ulation has been demonstrated to result in significant biases in GS [18]. In our research, in 
total, 685 DLY pigs were used as the prior discovery population for GWAS analysis, inte-
grating completely independent GWAS results, and preselected significant SNPs were 
based on an independent population. In addition, a separate group of 651 Yorkshire pigs 
was used as the reference and validation populations to evaluate the prediction accuracy 
of the GS model. These two populations were relatively independent of each other (Figure 
S2). 

Based on the GWAS results for BFT and LMA traits, significant SNPs were prese-
lected for each trait and incorporated into the imputed WGS data for GS of the respective 
trait. Consequently, the number and specific sites of significant SNPs differed for each 
trait. The notable advantage of this study lies in the uniqueness of significant SNPs for 
each trait, potentially resulting in heightened prediction accuracy. However, it is worth 
noting that this study relies on prior GWAS information specific to individual traits. 
Therefore, in situations where a particular trait is not measured within the population or 
is challenging to obtain, the approach may not be universally applicable. Nonetheless, it 
is essential to acknowledge that this study relies on prior GWAS information tailored to 
individual traits. Thus, in cases where a specific trait is unmeasured within the prior dis-
covery population or is challenging to acquire, the approach may not be universally ap-
plicable. 

We explored the influence of different p-value cutoffs on preselected SNPs in genomic 
prediction, finding that the optimal p-value threshold significantly impacted prediction 
accuracy, though no definitive trend emerged across all cases. The preselected SNPs from 
the GWAS results were categorized based on different levels of p-values (0.05, 0.005, 
0.0005, 0.00005). Similar categorization of preselected SNPs has also been utilized in 

Figure 1. Accuracy of genomic predictions using GBLUP and GFBLUP models for BFT and
LMA traits.

4. Discussion

In this study, an independent prior discovery population was specifically designed
for GWAS analysis to select prior information. During the initial phases of GS research
that integrated prior biological information, the availability of such prior information
was relatively limited, often leading to a reliance on reference populations. Nevertheless,
bias can be amplified when the prior discovery population and the reference population
are the same or when GS relies solely on prior information [15,31,32]. For instance, in
cattle research, utilizing the same prior discovery population for a GWAS as the reference
population has been demonstrated to result in significant biases in GS [18]. In our research,
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in total, 685 DLY pigs were used as the prior discovery population for GWAS analysis,
integrating completely independent GWAS results, and preselected significant SNPs were
based on an independent population. In addition, a separate group of 651 Yorkshire pigs
was used as the reference and validation populations to evaluate the prediction accuracy of
the GS model. These two populations were relatively independent of each other (Figure S2).

Based on the GWAS results for BFT and LMA traits, significant SNPs were preselected
for each trait and incorporated into the imputed WGS data for GS of the respective trait.
Consequently, the number and specific sites of significant SNPs differed for each trait. The
notable advantage of this study lies in the uniqueness of significant SNPs for each trait,
potentially resulting in heightened prediction accuracy. However, it is worth noting that
this study relies on prior GWAS information specific to individual traits. Therefore, in
situations where a particular trait is not measured within the population or is challenging
to obtain, the approach may not be universally applicable. Nonetheless, it is essential to
acknowledge that this study relies on prior GWAS information tailored to individual traits.
Thus, in cases where a specific trait is unmeasured within the prior discovery population
or is challenging to acquire, the approach may not be universally applicable.

We explored the influence of different p-value cutoffs on preselected SNPs in genomic
prediction, finding that the optimal p-value threshold significantly impacted prediction
accuracy, though no definitive trend emerged across all cases. The preselected SNPs from
the GWAS results were categorized based on different levels of p-values (0.05, 0.005, 0.0005,
0.00005). Similar categorization of preselected SNPs has also been utilized in previous
studies [33]. While the categorization method may involve subjectivity, it is important
to note that there is currently no strict standard in place. When the p-value is less than
0.05, the majority of potential genetic variants were selected. As the selection criteria
become increasingly stringent, such as p < 0.00005, only a few hundred genetic variants
remain as prior information. The outcomes of this study demonstrated that when using
preselected SNPs from the GWAS results with the optimal p-value cutoffs (p < 0.05), the
highest accuracy of GFBLUP was 0.440 for the LMA trait (Table 4). On the other hand,
using preselected SNPs from the GWAS results with a p-value less than 0.00005 resulted in
an accuracy of 0.491 for the BFT trait. It is worth noting that a study has speculated that as
the number of preselected SNPs increases, the prediction accuracy of GS should first rise
and then decline [15]. However, there was no distinct trend in the accuracy of GFBLUP
using various p-value cutoffs for preselecting SNPs.

Incorporating prior biological information into GS has been shown to enhance the
prediction accuracy for complex traits [34]. Presently, GS integrating prior biological
information is widespread in the research focusing on important economic traits in cattle.
In milk fatty acid-related traits, the prediction accuracy of GFBLUP integrated with GWAS
results increased by an average of 23% in the Danish dairy cattle population and 13% in
the Chinese population [20]. Regarding carcass traits in Hanwoo beef cattle, it was found
that compared with the prediction accuracy using a 50K benchmark chip, using preselected
SNPs from GWAS improved accuracy of prediction by 2.0% to 5.0% [32]. In a sheep study,
the accuracy of GS for six meat traits and two wool traits was improved by integrating
prior information based on GWAS with the foundation of the 50K chip [35]. A fundamental
question revolves around the utilization of this prior information, especially in relation
to selecting an appropriate GS model. In this study, we employed the GFBLUP model
to integrate preselected significant SNPs. The widely used GBLUP model assumes that
the influence of each genomic locus on the trait is uniform, thereby limiting its ability to
integrate biological prior information. In contrast, the GFBLUP model overcomes this
limitation by fitting two G matrices to assign different genetic weights to different classes
of SNPs. Furthermore, the GFBLUP model allows for the fitting of more G matrices and
further weighting of G matrices, by weighting multiple G matrices into a single G matrix
to reduce computational resources, which can reduce computation time and memory.
Consequently, this approach not only eases the memory demands for datasets featuring
large sample sizes in the study but also enables the seamless integration of biological prior
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information into the modeling process. Overall, in terms of application scenarios, the
GFBLUP model is more suitable for integrating prior information or other multi-omics data
for prediction, as it can incorporate two or more random effects.

A comparison of the prediction accuracy of BFT and LMA traits by the GBLUP and
GFBLUP models is depicted in Figure 1. For the GFBLUP model using preselected SNPs
from the GWAS results with the different p-value cutoffs, the highest accuracy was 0.440
for the LMA trait and 0.491 for the BFT trait. The GBLUP model with complete imputed
WGS data yielded accuracies of 0.423 for the LMA trait and 0.499 for the BFT trait. In the
context of predicting the LMA trait in pigs, the GFBLUP model resulted in a notable 4.8%
enhancement in genomic prediction accuracy compared to the GBLUP model. Previous
research has also indicated that the GFBLUP model yielded a 38% enhancement in genomic
prediction accuracy for bovine fatty acid traits [20]. Unfortunately, the prediction accuracy
of the GFBLUP model did not meet expectations in predicting the BFT trait. This could
be because the proportion of QTL in preselected genomic feature markers was very low,
and using preselected SNPs would not be advantageous [36]. Similar results were also
found in the Drosophila research [33] in terms of the starvation resistance trait. In a study
of aquaculture species, it was observed that, compared with the prediction accuracy of
the GBLUP model, the accuracy of the GFBLUP model integrating the GWAS results was
reduced by an average of 6.2% in the prediction of disease resistance and growth traits [37].
If the proportion of QTL in preselected genomic feature markers was large, the GFBLUP
model further increases its prediction accuracy compared to GBLUP with the complete
WGS data [22]. With the same method, the differences in accuracy of genomic prediction
between different traits may be due to the underlying genetic architecture [38]. Our future
efforts will focus on using multi-omics data to select feature markers, ultimately improving
genomic prediction accuracy.

5. Conclusions

Based on the GWAS results of 685 DLY pigs as prior information, we compared the
GBLUP and GFBLUP models for accuracy of genomic prediction of two traits (BFT and
LMA) by using the imputed WGS data of 651 Yorkshire pigs. Our results revealed that the
average genomic prediction accuracy of the GFBLUP model for LMA trait was 4.8% higher
than that of the GBLUP model. However, when predicting the BFT trait, both models
exhibited comparable levels of prediction accuracy. This suggests that the GFBLUP model
can effectively integrate prior information into the model, which is superior to the GBLUP
model in some cases. Our findings provide valuable ideas for improving the genomic
prediction accuracy of growth traits in pigs.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ani13243871/s1. Figure S1: Corrected phenotypic distribution of
651 Yorkshire pigs. (a) Phenotypic distribution of backfat thickness (BFT) trait and (b) Phenotypic
distribution of loin muscle area (LMA) trait; Figure S2: Genetic structure of two populations (DLY
and Yorkshire pigs), scatter plots of the first two principal components of genotype matrix for SNPs.
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