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Simple Summary: Maximizing ruminant production relies on enhancing rumen fermentation effi-
ciency, necessitating an understanding of the ruminal microbiome and its environmental impacts.
This study aimed to characterize buffalo microbiomes in the eastern Amazon across seasons and
ecosystems. The study included three grazing systems: Baixo Amazonas (BA), Continente do Pará
(CP), Ilha do Marajó (IM), and a confinement system: Tomé-Açu (TA). Seventy-one samples from
male crossbred buffaloes were analyzed for ruminal microbial community structure, along with the
compositions of their diets. Bacterial and Archaeal taxa were identified, with 61 genera recognized.
Taxonomic composition similarities were observed across ecosystems. Twenty-three bacterial genera
significantly differed between the confinement and other ecosystems. Among Archaea, abundances
of Methanomicrobium and Methanosarcina varied between ecosystems. Diet (available or offered)
exerted the most influence on the ruminal microbiota. This research provides insights into buffalo
microbiomes in the Amazon, vital for optimizing ruminant production sustainably.

Abstract: Increasing the efficiency of rumen fermentation is one of the main ways to maximize the
production of ruminants. It is therefore important to understand the ruminal microbiome, as well
as environmental influences on that community. However, there are no studies that describe the
ruminal microbiota in buffaloes in the Amazon. The objective of this study was to characterize
the rumen microbiome of the water buffalo (Bubalus bubalis) in the eastern Amazon in the dry and
rainy seasons in three grazing ecosystems: Baixo Amazonas (BA), Continente do Pará (CP), Ilha do
Marajó (IM), and in a confinement system: Tomé-Açu (TA). Seventy-one crossbred male buffaloes
(Murrah × Mediterranean) were used, aged between 24 and 36 months, with an average weight of
432 kg in the rainy season and 409 kg in the dry season, and fed on native or cultivated pastures. In the
confinement system, the feed consisted of sorghum silage, soybean meal, wet sorghum premix, and
commercial feed. Samples of the diet from each ecosystem were collected for bromatological analysis.
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The collections of ruminal content were carried out in slaughterhouses, with the rumen completely
emptied and homogenized, the solid and liquid fractions separated, and the ruminal pH measured.
DNA was extracted from the rumen samples, then sequenced using Restriction Enzyme Reduced
Representation Sequencing. The taxonomic composition was largely similar between ecosystems. All
61 genera in the reference database were recognized, including members of the domains Bacteria
and Archaea. The abundance of 23 bacterial genera differed significantly (p < 0.01) between the
Tomé-Açu confinement and other ecosystems. Bacillus, Ruminococcus, and Bacteroides had lower
abundance in samples from the Tomé-Açu system. Among the Archaea, the genus Methanomicrobium
was less abundant in Tomé-Açu, while Methanosarcina was more abundant. There was a difference
caused by all evaluated factors, but the diet (available or offered) was what most influenced the
ruminal microbiota.

Keywords: Amazonia; ruminal microorganisms; restriction enzyme-reduced representation sequencing

1. Introduction

Currently, the buffalo population in Brazil is around 1.6 million head, mostly in the
northern region of the country [1]. The eastern Amazon holds 67% of this population and
the largest amount of buffalo farming for milk and meat is in the state of Pará. Buffaloes
arrived in Brazil in 1890, originally from India, and they adapted well to Brazil’s tropical
regions because of the similarity to their original environment [2].

In flooded or very dry areas of the Amazon, buffaloes perform better than cattle.
It is believed that this advantage is due to their digestive performance, as they display
greater degradation of the fibrous fraction and greater retention of nitrogen, especially on
low-protein diets [3]. Ruminal fermentation of plant material allows ruminants to degrade
the lignocellulose present in plants and convert non-protein nitrogen into microbial protein.
This occurs through the action of the ruminal microbiota, and one of the main factors
contributing to the digestion of the ingested substrate is the nature of the diet [4]. The final
products of fermentation are short-chain fatty acids which are absorbed by the rumen and
used as an energy source for the host animal’s maintenance and growth [5].

A great diversity of microorganisms, such as bacteria, archaea, protozoa, fungi, and
viruses, make up the ruminal ecosystem. However, bacteria are the largest and most
important group, due to their greater participation in the degradation of fibers and protein
sources, ten times more efficient than other microbes found in the rumen [6]. Studies on
the classification of this microbiota are relatively recent, but the advancement of applied
technologies, such as gene sequencing and metagenomic analysis, has allowed greater
knowledge and characterization of the ruminal ecosystem [7].

Genetic sequencing makes it possible to identify portions of genes or the entire genome,
which facilitated mapping and genetic cloning, in addition to contributing to the beginning
of biodiversity studies [8]. Next-generation sequencing (NGS) has provided numerous
benefits over previous methods, such as being faster, yielding more data, not requiring
DNA cloning, and reducing costs [9]. One way to reduce genome complexity is Re-
striction Enzyme Reduced Representation Sequencing (RE-RRS) [10,11]. This process
involves restriction enzyme digestion of genomic DNA (for example, by PstI with cut site
CTGCA | G), followed by a size selection step and fragment sequencing [10]. The specific
fraction to be sequenced is able to capture useful information about microbial composition
and diversity at a reduced cost compared to metagenomic sequencing when applied to
animal selection [10,11].

The study of the ruminal microbiome is still in its early stages in Brazil, and there
has been no research to characterize the microbial communities in the rumen of buffaloes.
Most studies have focused on feed efficiency with different diets. The hypothesis in this
study was that there is a difference in the ruminal microbiota of buffaloes raised in different
ecosystems in the eastern Amazon. Knowledge of environmental variability is important
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if RE-RRS is to be used for selection purposes, to determine improved feed utilization or
reduced environmental impacts. Our objective was to identify the ruminal microbiome of
buffaloes in three different grazing ecosystems (Baixo Amazonas (BA), Continente do Pará
(CP), Ilha do Marajó (IM) and in feedlots at Tomé-Açu (TA) and compare these microbial
profiles between locations, seasons (dry or rainy), and ruminal content fraction (solid
or liquid).

2. Materials and Methods
2.1. Ethical Aspects

The experimental procedures used in this study were approved by the Animal Ethics
Committee of the Federal Rural University of the Amazon (CEUA/UFRA N◦ 4542190820).

2.2. Ecosystems

In this study, RE-RRS microbial profiles were generated from 138 samples of rumen
contents from buffaloes kept in natural grazing environments or a confinement system in
the eastern Amazon. We considered four diverse ecosystems in our study, as described
below. The geographic locations of the collection sites are described in Table 1.

Table 1. Location and climate information for the ecosystems in our study.

Ecosystem Lattitude Longitude Altitude
(m)

Köppen
Classification

Rainfall
(mm)

Av. Temp.
(◦C)

Av Humidity
(%)

IM 0◦39′27.89′′ S 48◦42′35.01′′ W 7 Am 2500 27 85

BA 02◦41′48.83′′ S 54◦38′35.43′′ W 108 Am 2000 26 86

CP 01◦12′52.63′′ S 47◦24′30.94′′ W 53 Am 2467 26 86

TA 02◦17′28.32′′ S 48◦05′56.11′′ W Am

2.2.1. Ilha do Marajó (IM)

The IM location is a rural farm on the Ilha do Marajó (Island of Marajó) with native
pastures of dryland/wetland in the municipality of Soure, Pará. Its climate is rainy tropical,
and the period of greatest precipitation occurs between January and June, when the intensity
of the rains is so great that an extensive part of the island is flooded. The driest period is
between September and November [12]. The livestock system is extensive, traditionally in
open fields. Grasses native to these flooded areas are Panicum elephantipes, Leersia hexandra,
and Hymenachne amplexicaulis, where few pastures are formed.

2.2.2. Baixo Amazonas (BA)

Th BA location is a farm in Santarém, a municipality in the of Baixo Amazonas
Mesoregion. Its climate is hot and humid, typical of tropical forests. The months of
December to June are the rainiest, while July to November are the least rainy [12]. The
farming system is extensive, with native pastures typical of flooded lands. Some of the
grasses grown in the pasture are Panicum maximum cv. Mombaça and Brachiaria brizantha.

2.2.3. Continente do Pará (CP)

The CP location is a rural property in the municipality of Nova Timboteua, in the
Mesoregion of Northeast of Para. The climate is of the Am type, according to the Köppen
classification [12], with average annual temperatures of 26.1 °C, 85% relative humidity,
and 2250 mm of precipitation, distributed over two periods: rainier from January to June
and less rainy from July to December. Currently, the vegetation cover is formed by sec-
ondary forest, agricultural areas, and pastures, caused by the human modification of
the native environment [13]. The breeding system is characterized by cultivated grass-
land, with grasses such as Panicum maximum cv. Mombaça, Brachiaria humidicola, and
Urochloa syn. Brachiaria.
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2.2.4. Tomé-Açu (TA)

The confinement system studied is on a property of an animal exporting company,
located in the municipality of Tomé-Açu, Pará, also in the mesoregion northeast of Para.
The climate type is Am, according to the Köppen classification, hot and humid, with the
highest rainfall, about 150 mm/month, occurring from December to May [12,14]. In this
breeding system, the animals were fed with sorghum silage, soybean meal, wet sorghum
pre-mix, and commercial feed.

2.3. Pasture Sampling and Analysis

Samples of pasture in the three grazing systems were collected using the square
method, with a PVC plastic frame (polyvinyl chloride) enclosing an area of 1.0 m2 [15].
In CP, where there was a rotational grazing system, the collection was carried out at the
exit height (40 cm) of the animals in the paddock, collecting the upper part of the plant,
knowing that the entry height was 60 cm. In the IM and CP systems, pasture collection was
carried out close to the ground. The samples were quartered and four 1 kg subsamples
were transported in transparent plastic bags in a cooler with ice until the time of analysis.
In addition, samples of feed offered to animals in confinement (TA) were also collected.

Bromatological analyses of the diets were performed at the Animal Nutrition Labo-
ratory at UFPA, Castanhal campus, Pará, Brazil. The feeds were analyzed for dry matter
(DM; method INCTCA N-00/1), ash (method INCT-CA M-001/1), crude protein (CP;
method INCT-CA N-001/1), ether extract (EE; method INCT-CA G005/1), neutral deter-
gent fiber corrected for ash and protein (NDFap; methods INCT-CA F-002/1, INCT-CA
M-002/1, and INCT-CA N-004/1), acid detergent fiber corrected for ash and protein (AD-
Fap; methods INCT-CA F-004/1, INCT-CA M-003/1, and INCT-CA N-005/1), and acid
detergent lignin (ADL; method INCT-CA F-005/01), using the methods recommended by
the National Institute of Science and Technology in Animal Science (INCT-CA) [16]. Total
digestible nutrients (TDN) were calculated according to the Clemson University equation:
TDN = 93.59 − (ADF × 0.936).

2.4. Animals

Sixty rumen samples were collected from 60 male buffaloes, Murrah × Mediterranean
crossbreeds, aged between 24–36 months, in the BA, PA, and IM systems across two seasons
(dry and wet season). A sample was collected from each of 11 male buffaloes, aged
18 months, in the confinement system (TA). The samples from the confinement system
were collected only in the rainy season, since there was no variation in the diet with the
season. There were 10 animals in each ecosystem and period, except in the confinement
system where there were 11. The average ages and weights of the animals at the point
of rumen sample collection within each ecosystem and period are shown in Table 2. The
average weight of the animals was 432 kg at the end of the rainy season and 409 kg at the
end of the dry season.

Table 2. Age and weight of buffaloes at the time of rumen sample collection in rainy or dry seasons.

Ecosystem
Weight (kg) Age (Months)

Rainy Dry Rainy Dry

Ilha do Marajó (IM) 396 418 24 36

Baixo Amazonas (BA) 445 454 24 36

Continente do Pará (CP) 212 432 24 36

Tomé-Açu (TA) 433 18
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2.5. Sampling of Rumen Contents and DNA Extraction

The animals were slaughtered after 18 h of fasting and rumen samples were immedi-
ately collected, in regulated commercial slaughterhouses, in accordance with the Brazilian
federal legislation in force, Decree 9013 of 29 March 2017. The rumen of each animal was
emptied, the total rumen content was homogenized and separated by a tissue bag into
solid and liquid fractions, 25 g and 25 mL, respectively, and immediately transferred to
50 mL Falcon tubes with 25 mL of buffer solution (EB; 100 mM Tris, 10 mM ethylenedi-
aminetetraacetic acid (EDTA), 0.15 M NaCl, pH 8.0 with HCl), transported on ice and
stored at −80 ◦C [17]. This resulted in 2 samples per animal (the solid and liquid fractions),
and 142 samples in total. The pH of the ruminal liquid was measured immediately after
separation from the solid fraction using a pH meter (model pH Pro-02-0519, AKSO, São
Leopoldo, Rio Grande do Sul, Brazil).

DNA was extracted from the samples in the molecular biology laboratory of the Fed-
eral University of Pará-UFPA, Brazil, using a commercial kit (FastDNA Spin Kit for Soil; MP
Biomedicals, Irvine, CA, USA), following the instructions provided by the manufacturer.

2.6. Sequencing

All 142 samples were sent, on dry ice, from Pará, Brazil, to New Zealand, where they
were sequenced in the laboratory of AgResearch Ltd. at Invermay. Restriction Enzyme
Reduced Representation Sequencing (RE-RRS) was used to sequence rumen samples, as
described by Hess et al. [11]. Briefly, 100 ng of DNA was normalized to 20 ng/µL using
PicoGreen and digested by the enzyme PstI (CTGCA|G). After digestion, the barcodes
and adapters were attached to the samples [18] and fragments between 193 and 318 bp
were selected using Pippin Prep (SAGE Science, Beverly, MA, USA), and then sequenced.
The library was purified (QIAquick 96 PCR Purification Kit; Qiagen, Hilden, Germany)
and the eluted DNA was amplified by PCR using primers and conditions described by
Elshire et al. [18]. The library was sequenced in a single run of Illumina HiSeq2500, which
generates reads of up to 101 bp of each fragment, including adapters, the barcode sequence
and the DNA of interest.

2.7. Bioinformatics Processing

The sequenced reads were demultiplexed using GBSX and cut using Cutadapt [19]
to remove sequences shorter than 40 base pairs. On average, 1,572,072 usable reads were
obtained per sample. Samples with less than 100,000 reads, after demultiplexing and
cutting, were considered “failed” and were removed from further analysis.

We used the reference-based pipeline described by Hess et al. [10,11], which compares
the sequenced reads to bacterial and archaeal genomes from the Hungate 1000 Collection [20],
with the addition of four Quinella genomes [21]. The microbial profile contained reads
assigned to one of the 61 genera in this reference database. Two other microbial profiles
were generated: (1) A Proportion matrix, in which the number of reads attributed to each
genus was divided by the total number of reads attributed to the reference database for
that sample; and (2) A Log10 Proportions Matrix, in which one was added to the counts for
each genus and this was divided by the total number of reads attributed to each genus plus
the number of genera, before that number was logged (base 10).

Ruminal bacterial diversity was estimated through diversity and richness indices, us-
ing the phyloseq [22], vegan [23] and ggplot [24] packages in R Studio software v.1.0.136 [25].

2.8. Statistical Analysis

Statistical analyses were performed with the aid of R/RStudio and the packages lme4,
according to Bates et al. [26], predictmeans [27] and lmerTest [28]. The log10 proportion of
each genus was analyzed using the model:

y = LocType + LocType:Local + LocType:Season + Fraction + Animal + e
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where y is the log10 proportion for each genus, e is the residual, Animal is the animal
ID set as a random effect, Loctype tests the difference between free (BA, IM, and CP)
and confinement systems (TA), LocType:Local tests the difference between free locations,
LocType:Season tests the difference between dry season or rainy season, and Fraction tests
the difference between the solid and liquid fractions of the rumen content of the samples.
LS means, standard errors, and F tests were obtained using the predictmeans package, with
α = 0.001 for the significance test.

3. Results

Table 3 shows the chemical composition of the diets consumed by animals from
each ecosystem in each season. The mean pH values of rumen samples collected from
the buffaloes in the three grazing ecosystems were between 7.18 and 7.53, while in the
confinement system it was 6.86 (Table 3).

Table 3. Proximate and chemical composition of experimental animal diets and mean rumen pH
values in dry season (DS) and rainy season (RS).

Items
BA 1 IM 2 CP 3 TA 4

DS RS DS RS DS RS Forage BR

Proximate composition (% dry matter)

Dry matter 23.97 24.1 23.87 18.31 23.32 26.12 24.71 39

Organic matter 91.53 90.98 89.45 84.86 91.79 96.88 95.35 94.77

Crude protein 7.86 8.72 7.56 8.86 7.73 28.03 9.38 8.27

NDF 73.23 79.07 68.72 70.91 75.73 55.69 68.96 54.36

NFC 9.07 1.79 11.79 3.09 6.27 5.16 13.85 29.58

ADF 44.99 54.9 40.05 43.9 55.8 22.55 44.51 38.08

Ether extract 1.36 1.4 1.38 1.99 1.64 8 2.06 6.52

TDN 51.48 42.2 56.09 52.5 41.35 72.48 51.93 57.94

Ash 8.47 9.02 10.55 15.14 8.21 3.12 6.17 5.23

Mean rumen pH

7.18 7.53 7.23 7.35 7.36 7.13 6.86

BR = Brewery residue; NDF = Neutral Detergent Fiber; NFC = Non-fibrous carbohydrates; ADF = Acid detergent
fiber; TDN = Total digestible nutrients. 1 Ecosystem—Baixo Amazonas (BA): In this breeding ecosystem, buffaloes
are raised in the traditional way on pasture, in native pastures in areas subject to flooding. During the collection
of pastures, there was also an availability of cultivated grasses Panicum maximum cv. Mombasa and Bhachiaria
brizantha. 2 Ecosystem—Ilha do Marajó (IM): In this ecosystem, buffaloes are reared in a traditional system,
fed exclusively on pasture, with grasses native to areas subject to flooding, such as Panicum elephantipes, Leersia
hexandra, and Hymenachne amplexicaulis. 3 Ecosystem—Continente do Pará (CP): In this ecosystem, the animals
feed on cultivated pastures (Panicum maximum cv. Mombaça and Bhachiaria humidicola), in areas originally forested
(* the animals received wet brewery waste during the dry period). 4 Ecosystem—Tomé-Açu (TA): Feed consisted
of sorghum silage, soybean meal, wet sorghum premix, and commercial feed (high performance core).

High-throughput microbial profiling of buffalo rumen samples using RE-RRS resulted
in 16 ± 2.8% of reads assigned to the reference database at the genus level. This is a
little lower than the 23.4 ± 3.7% reads attributed to the reference database using the same
restriction enzyme applied to sheep rumen content samples by Hess et al. [10].

Alpha and beta diversity indices were used to compare the microbial communities.
Shannon and Simpson alpha diversity indices (Figure 1) indicated a greater level of diversity
in the IM ecosystem when compared to the other ecosystems. The solid fraction contained
greater diversity than the liquid fraction (Figure 2). Comparisons of beta diversity suggested
there was little variation in microbial species composition between ecosystems (Figure 3A)
and between the seasons of the year (Figure 3B).
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The bacteria and archaea were classified at different taxonomic ranks: phylum, class,
order, family, and genus. The taxonomic composition was not very variable between the
BA, CP, IM, and TA ecosystems. The Bacteroidetes and Firmicutes were the predomi-
nant bacterial phyla, and among the archaea, the phylum Euryarchaeota was identified
(Figure 4A). At the class level, the taxonomic profile revealed the predominance of three
classes: Bacteroidia, Clostridia, and Negativicutes. The classes of Archaea present were
Methanomicrobia and Methanobacteria (Figure 4B). The most abundant bacterial orders
were Bacteroidales, Clostridiales, and Acidaminococcales. The predominant order of
Archaea was Methanobacteriales (Figure 4C).
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The 61 genera in our reference database represent 38 families, 3 of which are Archaea.
In all ecosystems, seasons, and fractions, the families Prevotellaceae, Lachnospiraceae, and
Acidaminococcaceae were the most abundant (Figure 5). The biggest driver of differences
in microbial profiles was whether the sample was from the solid or the liquid fraction. Of
the most abundant families, Prevotellaceae and Bacteroidaceae were more abundant in the
liquid fraction than the solid fraction, while Lachnospiraceae and Acidaminococcaceae were
more abundant in the solid fraction than the liquid fraction (Figure 5B). The microbial
profiles from the TA ecosystem were the least similar to the other ecosystems (Figure 5A),
and these differences were largely driven by differences in abundance of Ruminococcaeae
(lower in TA), Bacteroidaceae (lower in TA), Spirochaetaceae (higher in TA), and Succinivib-
rionaceae (higher in TA) and Archaea (higher in TA). Prevotellaceae and Acidaminococcaceae
were less abundant in the rainy season than in the dry season, while Lachnospiraceae was
more abundant (Figure 5C). Three families of archaea were identified: Methanobacteriaceae,
Methanomicrobiaceae, and Methanosarcinaceae. The confinement system showed the highest
abundance of Archaea (Figure 5C), and among the fractions, the solid fraction had a greater
predominance of archaea than the liquid fraction (Figure 5B).
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All 61 genera in the reference database were identified in samples from all of the
ecosystems (CP, BA, IM, and TA). Prevotella was the most abundant genus, followed by Suc-
ciniclasticum, Bacteroides, Butyrivibrio, and Ruminococcus (Figures 6–8 and Table S1). There
were 25 genera that differed significantly (p < 0.001) in relative abundance between the
confinement and free systems, 23 of which were bacterial and two archaeal (Figure 9). Seven
genera differed significantly between locations with the free system (Dorea, Fibrobacter,
Lachnoclostridium, Oscillibacter, Proteiniclasticum, Sarcina, and the archaeal genus Methanobre-
vibacter) (Figure 9). When comparing the seasons and the confinement system, six genera
differed significantly, four bacterial (Bacillus, Clostridum, Prevotella, and Proteiniclasticum)
and two archaeal (Methanomicrobium and Methanosarcina) (Figure 10). There was a greater
number of reads per sample in the solid fraction (mean 1,577,199) than in the liquid frac-
tion (mean 1,567,111). Thirty genera were observed to be significantly different (p < 0.001)
between the fractions (liquid and solid); twenty-eight bacterial and two archaeal (Figure 11).
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4. Discussion

The ruminal microbiota may show some difference between ruminant species, but a
major factor influencing the microbial composition in the rumen is the animal’s diet [29–32].
Many studies have focused on different aspects of the ruminal microbiota, such as com-
position, function, and how efficiently the animal digests feed. This study aimed to
characterize the ruminal microbial community of buffaloes in natural habitats and in a
confinement system in the eastern Amazon, through sequencing using a reference based
RE-RRS pipeline [10,11].

Microbial diversity indices were higher in the solid fraction than in the liquid fraction,
in all ecosystems, probably because this fraction contains the greatest range of structural
and chemical diversity and microbes adhere to the ingested feed to initiate degradation
on the many complex components of their feed. This result agrees with the findings of
AlZahal et al. [31], who observed that bacterial diversity changes according to the diet and
location of the rumen content sample. Reported microbial diversity is also limited by the
reference database.

The results show that Prevotellaceae and Bacteroidaceae are the main families of the
phylum Bacteroidetes present in the buffalo rumen in all studied ecosystems, while the Lach-
nospiraceae, Acidaminococcaceae, and Ruminococcaceae families were prevalent in the phylum
Firmicutes, in agreement with previous studies by AlZahal et al. [31] and Nathani et al. [32],
who observed similar results in cows and Jaffrabadi buffalo, respectively.

The present research demonstrated that the genera Prevotella, Succiniclasticum, Bu-
tyrivibrio, and Bacteroides were predominant among ecosystems. Henderson et al. [30]
found that the genera Prevotella and Butyrivibrio were among the most abundant found in
rumen content of different species of ruminants around the world. Prevotella was the most
abundant microorganism among the ruminal bacterial genera in the samples described here
and represented almost 56% of the identified taxa (Figure 6). Prevotella and Succiniclasticum
were predominant in the TA system, where the animals had a concentrate-based diet, rich
in starch. Prevotella’s main function in the rumen is likely the degradation and use of starch,
the degradation of polysaccharides such as xylans and pectins in the cell wall of plants, but
it does not degrade cellulose [33–35]. Succiniclasticum ferments succinate to propionate and
previous studies indicate that the abundance of this microorganism increases with diets
rich in concentrate [36], which can explain the greater abundance of this genus in ruminal
buffalo samples raised in confinement (TA).

A group of 25 taxa showed a significant difference (p < 0.001) in relative abundance
between the TA feedlot ecosystem and the grazing ecosystems (Figure 9). Seven genera
differed significantly between the grazing ecosystems. Dorea had a significantly greater
abundance in the CP ecosystem in relation to BA and IM, but it did not differ from TA
(Figure 9). Butyrivibrio had lower abundance in TA, compared to the BA and IM ecosystems.
Butyrivibrio is a fibrolytic microbe, despite being able to use starch to produce butyrate [37],
which explains the reduction in its abundance in the rumen of buffaloes raised in TA, as
the diet was rich in concentrate and with lower NDF than in other ecosystems. Bacteroides
were significantly less abundant in TA than in the other ecosystems, where the animals had
diets rich in forage.

Archaea were more abundant in TA buffalo samples, compared to samples from the
BA, IM, and CP ecosystems. The most abundant archaea were in the genus Methanobre-
vibacter, and similar patterns occurred in water buffaloes [38,39]. Methanobrevibacter had a
significantly greater abundance in TA (p < 0.001) compared to the other locations.

There were six genera that differed significantly between the seasons (dry and rainy),
two of which were archaea (p < 0.001). Bacillus and Clostridium had a significantly higher
average abundance in the rainy season than in the dry season or the confined system
(TA). Proteiniclasticum was more abundant in the rainy season than in the dry season.
The rainy season presented pasture with a higher proportion of protein than the dry
season or confinement system (Table 1). These genera belong to the phylum Firmicutes
and degrade cellulose, and the results corroborate studies in buffaloes and cattle, which
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indicate that diets rich in fiber have a greater abundance of microorganisms belonging
to this phylum [32,40]. The genus Prevotella was significantly more abundant in the dry
than in the rainy season. Prevotella is a non-fibrous carbohydrate-fermenting member of
Bacteroidetes [33], which may explain why it had a lower abundance when the feeds had
a lower proportion of non-fibrous carbohydrate in the rainy period. Nathani et al. [32]
showed that Prevotella decreases with increasing roughage in the buffalo diet.

Archaea were more abundant in the confinement system than in the grazing systems
in the dry or rainy seasons. Among the identified archaea, Methanomicrobium had a signifi-
cantly higher abundance (p < 0.001) in samples from the rainy period in relation to the dry
season and confinement. Methanosarcina had a higher relative abundance in confinement
than in the rainy season, which in turn had a higher relative abundance than in the dry
season. Previous studies have described that increasing concentrated, digestible NDF in
the diet can increase the abundance of archaea in the rumen content [41].

Genera of the phylum Firmicutes were observed with greater abundance in the solid
fraction, when compared to the liquid fraction. In contrast, genera of the phylum Bac-
teroidetes were more abundant in the liquid fraction than in the solid fraction. Similar
results have also been described previously in buffaloes and cattle [32,42], At the family
level, Prevoletaceae and Bacteroidaceae were more abundant in the liquid fraction, while
Lachnospiraceae and Ruminococcaceae were more abundant in the solid fraction, probably
because they develop fibrolytic activities in the rumen and a large part of the fiber can be
found in the solid fraction of the ruminal content [31].

There were 30 genera with a significant difference between fractions. Eighteen bacte-
rial genera, including Clostridium and Eubacterium, and one archaeal genus had significantly
higher abundance (p < 0.001) in the solid fraction (Figure 11), where most substrate degra-
dation occurs. Similar results, with a greater abundance of Clostridium and Eubacterium in
the solid fractions, have also been described in cattle and buffaloes [32,42].

In the liquid fraction, ten bacterial genera and one archaeal genus showed significantly
greater abundance (p < 0.001) compared to the solid fraction. The genus Prevotella was the
most abundant in both fractions, but it had a higher relative abundance in the liquid fraction,
in agreement with previous research in lactating cows and buffalo fed on roughage [32,43].
Prevotella is a polysaccharide degrader [33], and the liquid fraction of the rumen content
contains dissolved sugars that can be metabolized without the need for fibrolytic attack [44].
Amylolytic genera also had greater relative abundance in the liquid fraction, such as
Bacteroides, Succinivibrio, and Ruminobacter. Methanosarcina was the archaea with a higher
relative abundance (p < 0.001) in the liquid fraction compared to the solid fraction, although
its total abundance was low. Methanobrevibacter had a greater relative abundance in the
solid fraction compared to the liquid fraction.

5. Conclusions

The identification allowed the capture of all 61 genera tested from the content of the
rumen of buffaloes among the studied ecosystems. with Prevotella, Succiniclasticum, Bac-
teroides, Butyrivibrio, and Ruminococcus being the most prevalent genera of microorganisms.
The rumen microbiome of buffalo varies with ecosystem and season, but these differences
are small.
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