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Simple Summary: This investigation delves into the intricate world of aquatic life, specifically
zoobenthos, and how they respond to a combination of environmental challenges: climate change,
eutrophication, and pesticide contamination. These organisms play a vital role in aquatic ecosystems,
affecting energy flow, nutrient cycling, and sediment decomposition. Unfortunately, these challenges
have led to a decline in their numbers and changes in community structure. Notably, the warmer
temperatures associated with climate change promote the abundance and diversity of zoobenthos
while making these communities more similar across different sites. Pesticides like imidacloprid
negatively impact the survival and growth of zoobenthos. Interestingly, when combined with
warming, imidacloprid seems to mitigate its adverse effects, increasing species diversity. However,
when nutrient loading is part of the equation, imidacloprid negatively affects species diversity.
These findings reveal the intricate responses of zoobenthos to multiple stressors, offering valuable
insights for ecosystem conservation and management. In simpler terms, this study explores how tiny
underwater creatures react to a changing environment, which has consequences for our ecosystems.

Abstract: Multiple stressors, including climate change, eutrophication, and pesticide contamination,
are significant drivers of the decline in lake zoobenthos. Zoobenthos play a crucial role in aquatic
ecosystems, impacting energy dynamics, nutrient cycling, and sediment degradation. However,
these stressors have led to a decrease in the abundance and diversity of zoobenthos, resulting in
notable changes in species composition and structure. Eutrophication typically increases zoobenthos
abundance while reducing taxonomic diversity. Climate change, such as warming and heatwaves,
also affects the zoobenthos community structure, with different species exhibiting varying levels of
adaptability to temperature changes. Additionally, pesticides like imidacloprid have negative effects
on the survival and growth of zoobenthos. However, the interactions between imidacloprid and
other stressors remain understudied. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes.
We combined nutrient loading, sustained warming, and the imidacloprid pesticide to test how these
stressors interactively influence the survival and community of zoobenthos. The experimental results
demonstrate that elevated temperatures have a significant impact on aquatic benthic organisms
under different treatment conditions. The increase in temperature led to a notable rise in species
richness and α-diversity, primarily attributed to the stimulation of metabolic activities in zoobenthos,
promoting their growth and reproduction. This finding underscores the potential influence of
climate change on aquatic benthic ecosystems, particularly in terms of its promoting effect on α-
diversity. However, it is essential to note that elevated temperatures also reduced β-diversity among
different sites, implying a potential trend toward homogenization in zoobenthos communities under
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warmer conditions. Moreover, this study revealed the interactive effects of multiple stressors on
the diversity of aquatic benthic communities. Specifically, the pesticide imidacloprid’s impact on
zoobenthos is not isolated but demonstrates complex effects within various treatment interactions.
In the presence of both temperature elevation and the addition of imidacloprid, the presence of
imidacloprid appears to counteract the adverse effects of temperature elevation, resulting in increased
species diversity. However, when imidacloprid coincides with nutrient input, it significantly affects
α-diversity negatively. These findings highlight the complexity of zoobenthos responses to multiple
stressors and how these factors influence both α-diversity and β-diversity. They provide valuable
insights for further research on the conservation and management of ecosystems.

Keywords: climate change; eutrophication; pesticide contamination; multiple stressors; zoobenthos;
α-diversity; β-diversity

1. Introduction

Zoobenthos organisms constitute pivotal constituents of shallow-water ecosystems,
assuming an intermediary trophic position within aquatic food webs [1,2]. They exert a sub-
stantial influence on energy dynamics, nutrient cycling, and sediment degradation within
river and lake aquatic systems [3–5]. Zoobenthos possess crucial regulatory functions and
play a decisive role in maintaining and restoring the stability and integrity of river and lake
ecosystems [6,7]. However, global environmental changes, including eutrophication, warm-
ing, and pesticide pollution, have caused a decline in zoobenthos abundance and diversity
worldwide, leading to significant changes in species composition and structure [8–10].

Additive diversity partitioning is a promising method for understanding beta di-
versity patterns across different spatial and temporal scales and for analyzing diversity
in hierarchical studies with multiscale sampling [11–13]. Additive diversity partition-
ing was proposed in the 1960s [14] and was revived following a theoretical analysis by
Lande (1996). Beta diversity was originally calculated using a multiplicative relationship,
where beta diversity (between-habitat diversity) was defined as the quotient of gamma
diversity (total diversity of a landscape) divided by alpha diversity (within-habitat diver-
sity) (i.e., β = γ/α) [15,16]. In the latter relationship, beta diversity (between-community
diversity) is a dimensionless quantity. This implies that beta diversity cannot be given
equal weight as alpha or gamma diversity, nor can it be directly compared across different
components of diversity [11]. However, with additive diversity partitioning, beta diversity
is calculated using an additive relationship (i.e., β = γ − α) [11]. In additive diversity
partitioning, all diversity components are measured using the same method and expressed
in the same units, enabling direct comparisons between them [17,18]. This approach allows
for the quantification of the contributions of alpha and beta diversity to the overall diversity
across various spatial and temporal scales [11,19]. Therefore, the utilization of additive
diversity partitioning can readily identify the key sources of diversity in hierarchical studies
with multiscale sampling [11]. However, this technology has not yet been used to study
changes in the zoobenthos community structure in shallow lake ecosystems under multiple
environmental stressors.

Excessive loading of nitrogen and phosphorus leads to increased eutrophication of
water bodies, resulting in a higher abundance of zoobenthos but reduced taxonomic diver-
sity [20]. Eutrophication tends to alter the habitat structure, directly leading to the extinction
of sensitive zoobenthos species that cannot tolerate new abiotic conditions, thus reducing
taxonomic differences in zoobenthos communities [21–24]. Additionally, anthropogenic
eutrophication acts as an “ecological filter” by reducing the importance of stochastic pro-
cesses in community structures, thereby reducing the compositional differences between
different locations [25–27]. The underlying mechanism behind this process can be ex-
plained by “niche selection”, where strong environmental filtering excludes species that
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are less adapted to high-nutrient environments, and these species may undergo changes
independent of habitat heterogeneity [28,29].

Climate change, including rising average water temperatures and heatwaves, also
affects the community structure of zoobenthos organisms [24,30,31]. Various species within
the zoobenthos community exhibit distinct levels of adaptability to diverse temperature
conditions [24]. Climate warming will notably reshape the life history, biomass, density,
and dimensions of zoobenthos toward smaller sizes [32–34]. Warming temperatures can
advance the breeding time for species that are triggered by high temperatures, while
shortening the breeding time for species triggered by low temperatures [35]. For instance,
Chironomids, which favor breeding in warm water, may benefit from elevated temperatures
as their growth and development rates accelerate with temperature, resulting in an increase
in their abundance and alterations in the community structure of zoobenthos [36–38].
Moreover, climate change can indirectly impact zoobenthos by influencing the community
structure of other biological groups such as algae and aquatic plants [39–41]. While the
effects of climate change on density in lake ecosystems have been widely studied for various
components like fish, phytoplankton, and zooplankton, the impact of climate warming on
zoobenthos has been less explored.

Imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] is
a novel neonicotinoid synthetic insecticide that is widely used for crop protection and
pest prevention due to its broad-spectrum and high insecticidal activity [42–44]. One
major advantage of imidacloprid is its selective action on the central nervous system of
insects (post-synaptic nicotinic acetylcholine receptors) [45–47]. However, some studies
have indicated that the use of neonicotinoid insecticides, such as imidacloprid, is a key
factor in the decline in non-target terrestrial insect biodiversity in the environment [48–52].
Imidacloprid is highly soluble in water, and it is likely to enter aquatic ecosystems via runoff,
posing a potential risk to non-target aquatic organisms [48,53]. It is already established
that the aquatic life stages of insects are highly sensitive to imidacloprid exposure, and
these toxic effects can have implications throughout the entire aquatic community [54–56].
As such, imidacloprid is known to exert deleterious effects on the survival and growth
of zoobenthic organisms [57,58]. However, the effects of imidacloprid on zoobenthos,
particularly in relation to interactions with other stressors, have received limited attention.
Additionally, it is important to recognize that different zoobenthic species may show
varying responses to multiple stressors [59,60].

In this study, we established a simulated shallow lake ecosystem employing 48 meso-
cosms and administered a combination of nutrient loading, warming, and imidacloprid to
investigate their interactive effects on zoobenthos. Our principal hypotheses postulate that
the cumulative influences of these concurrent environmental stressors will exert substantial,
and potentially synergistic, effects on zoobenthos populations, with particular sensitivity
exhibited by species acknowledged to be responsive to these stressors. We further hy-
pothesize that the magnitude and character of these effects will diverge across distinct
treatment conditions, reflecting the intricate interplay between stressor typologies and their
respective intensities. Our expectations encompass discernible modifications in zoobenthos
abundance, community composition, and diversity, with the prospect of disproportionate
impacts on sensitive species within specified treatment contexts. This research endeavors
to enhance our comprehension of the intricate ecological reactions of zoobenthos to the
multifarious challenges presented by multiple environmental stressors, elucidating the
variable responses contingent upon differing treatment scenarios.

2. Materials and Methods
2.1. Experiment Design

The experiment was conducted at Huazhong Agricultural University, Wuhan, China
(30◦29′ N; 114◦22′ E), from February to November 2021. We employed 48 cylindrical
polyethylene mesocosms (with a volume of 2500 L, a diameter of 1.5 m, and a height of
1.4 m) that were buried up to their rims. This was chosen to enhance insulation against
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prevailing weather conditions and to replicate shallow lake ecosystems. In the experiment,
we applied three stressors as treatments: warming (W), nutrient loading (E), and the
introduction of imidacloprid (P). These three stressors were randomly assigned to all
mesocosms, including controls without stressors, in a fully factorial design. This resulted
in eight treatments, each with six replicates (Figure 1).
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The warming treatment entailed maintaining temperatures at a constant +3.5 ◦C above
the ambient conditions throughout the experiment, in addition to the introduction of
multiple heatwave events, and the frequency and magnitude of the heat waves was based
on model predictions from the historical meteorological data in the middle and lower
reaches of the Yangtze River Basin, China, predicted to be reached in this area by the end of
this century given the ongoing climate warming (IPCC 2014). The warming was achieved
using a computer-controlled system with two temperature sensors (DS18B20) and a heating
element (600 W) in each of the heated treatment mesocosms. The heating element was
installed 30 cm below the water surface and an aquarium pump was closely placed to
circulate the water. The water temperatures in the heated mesocosms were elevated based
on the mean temperatures in the ambient mesocosms [61–64]. Nitrogen (N) and phosphorus
(P) were added to the nutrient-loading treatment at a mass ratio of 10:1, by dissolving
NaNO3 and KH2PO4 powder (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) in
de-mineralized water, respectively. The averaged nutrient-loading doses were 0.90 mg L−1

(range from 0.25 to 1.6 mg L−1) and 0.09 mg L−1 (range from 0.025 to 0.16 mg L−1) for
N and P, respectively. Insecticide treatments were applied by adding imidacloprid (70%
active ingredients, PD20120072, Bayer, Leverkusen, Germany) solution to the mesocosms.
The average insecticide-loading dose was 32.67 µg L−1 (range from 10 to 50 µg L−1)
during the experiment. The nutrient-loading and insecticide treatments were administered
every two weeks, with dose adjustments made in response to agricultural activities and
precipitation levels in the area [65]. This approach aimed to replicate more realistic scenarios
involving temporally varying multiple stressors [66]. The loading doses were within the
concentration range typically observed in natural water bodies in agricultural areas around
the world [67,68].

2.2. Experiment Set-Up

The experiment was set up in early February of 2021, as it was winter, when organisms
were in dormancy. The mesocosms were acclimated for two months and all treatments were
initiated on April 8, 2021. Half of the bottom of each mesocosm was filled with 10 cm of
sediment, which was collected from Lake Liangzi (30◦11′3′′ N, 114◦37′59′′ E). Potamogeton
crispus and Hydrilla verticillata are the dominated submerged macrophytes in this area. All
sediment was homogenized and sieved through a 5 × 5 mm metal mesh to remove large
debris, macrophyte seeds, and snails. The initial properties of the sediment were a total
nitrogen (TN) of 5.5 ± 0.4 mg g−1 and total phosphorus (TP) of 0.42 ± 0.08 mg g−1, dry
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weight. Turions of Potamogeton crispus and Hydrilla verticillata were seeded in the sediment,
each species comprising 50 g in each mesocosm. The turions were obtained from the nearby
Lake Honghu (29◦51′ N, 113◦20′ E). Potamogeton crispus is an early season submerged
macrophyte dominating in spring, while Hydrilla verticillata is a warm-adapted species
dominating in summer.

The water level was gradually raised using tap water and rainfall to a 1.2 m depth
to allow the establishment of the submerged macrophytes. Before the experiment began
in April, our goal was to simulate a natural food web in the mesocosms by introducing
14 individuals of Radix swinhoei (1 to 2.5 cm) and 20 individuals of Bellamya aeruginosa
(around 2.5 cm) into each mesocosm as periphyton grazers. Five freshwater shrimps Macro-
brachium nipponense (length around 4 cm), four bitterling Rhodeus sinensis (around 3 cm),
and four crucian carp Carassius auratus (around 4 cm) were added as omnivores feeding on
zooplankton, macroinvertebrates, detritus, periphyton, and phytoplankton. The fish and
shrimp were commercially obtained, but are common species coexisting in water bodies
in this region, and the densities and biomasses were within the range occurring in na-
ture [2,69–71]. Also, 10 L of lake water were added to each mesocosm to inoculate plankton
from the nearby Lake Nanhu as a common garden inoculum (30◦28′57′′ N, 114◦22′34′′ E).
An aquarium pump was installed in each mesocosm to allow for mixing of the water.
Deionized water was added to the heated mesocosms to compensate for evaporation. The
submerged macrophyte Ceratophyllum demersum and floating macrophyte Lemna minor
emerged in a few mesocosms and were removed as soon as they were observed. Dead fish
were recorded and removed during the experiment (Figure 2).
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2.3. Sampling Strategy

All treatments were applied when the macrophytes had established and the water was
clear in all mesocosms on 8 April 2021. Water quality samples were measured bi-weekly,
including for water conductivity, pH, turbidity, TN, TP, and phytoplankton chlorophyll
a. The conductivity and pH were measured using HACH HQD Portable Meters (HQ60d,
HACH, Loveland, CO, USA). The turbidity was measured using a portable WGZ-2B tur-
bidity meter (Xinrui, Shanghai, China). Depth-integrated water samples were collected
using a transparent Plexiglas tube (diameter 70 mm, length 1 m) to analyze the TN, TP, and
phytoplankton chlorophyll a concentration. The TN and TP were first digested using potas-
sium peroxodisulfate, and then measured using the spectrophotometric method (Chinese
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National Standards [72]). The phytoplankton chlorophyll a was determined by filtering a
certain amount of water through Whatman GF/C filters and conducting spectrophotomet-
ric analysis after acetone extraction (HJ 897-2017) (Chinese National Standards [72]).

Zoobenthos: After the start of the experiment, zoobenthos were collected approx-
imately every 30 days. Larger gastropods, such as the snail species Radix swinhoei and
Bellamya aeruginosa, were initially collected from the walls and sediment. To ensure that
all large individuals were accounted for, a second search was conducted after leaving
the mesocosm overnight. Other zoobenthos were quantified using a macroinvertebrate
collection metal basket filled with pebbles ranging from 1 to 6 cm in size. This basket was
placed on the sediment and then removed, and all pebbles were thoroughly rinsed to collect
all zoobenthos, following the protocol used by Brock et al. [73]. During the experiment,
zoobenthos were collected once each month in April, May, June, July, August, October, and
November. All species were identified to the greatest extent possible in terms of taxonomy
and subsequently grouped into three taxon categories, Insecta, Oligochaeta, and other small
snails, for the analysis (Figure 2).

2.4. Data Analysis

All statistical analyses were performed using R software version 4.2.2 (R Core Team,
2022) (R code data in Supplementary Materials). At the conclusion of the experiment, a
Poisson distributed generalized linear model was fitted using the “glm” function from the
“stats” package to compare the abundance of zoobenthos in different treatment groups
with that of the control group. In this model, the abundance of zoobenthos in various
treatment groups served as the response variable, while temperature, eutrophication, and
pesticide exposure were considered the predictor variables. It was verified that the model
residuals conformed to a normal distribution. Subsequently, the “emmeans” function from
the “emmeans” package [74] was applied to the fitted model. Pairwise comparisons among
the levels of the interaction term were calculated using the “pairwise” parameter, and
multiple comparisons were adjusted using Tukey’s correction with the “adjust” parameter
set to “tukey”. These tests were performed to assess specific differences in zoobenthos
abundance between different combinations of warming, eutrophication, and pesticide
exposure levels, while controlling for the overall interaction effects.

In order to delve into the potential impacts of warming, eutrophication, and pesticides
on zoobenthos diversity (bottom-dwelling aquatic organisms), we conducted additive
diversity partitioning analysis. We employed the “adipart” function from the “vegan”
package [75] to calculate the α, β, and γ components of zoobenthos richness, the Shannon
diversity index, and the Simpson diversity index, taking into account the sample abundance
proportions. The Shannon diversity index measures the overall diversity of a community
by considering both the abundance and evenness of different species, while the Simpson
diversity index focuses more on the dominance of a few highly abundant species. The key
difference is that Shannon is more sensitive to species evenness, whereas Simpson empha-
sizes species dominance [76]. These computations were performed using 999 permutation
simulations to estimate the statistical significance of the zoobenthos diversity components.
Finally, the “quantile” function was employed to determine the lower, median, and upper
limits of different diversity indices for the α, β, and γ components of zoobenthos diversity.

To analyze the differences in the biodiversity indices and precisely quantify these
differences, we employed the “effsize” package [77] for comprehensive effect size anal-
ysis. Specifically, we utilized the “cohen.d” function to calculate Cohen’s d effect sizes
between the treatment and control groups at the α and β levels. These effect size metrics
encompassed estimates, confidence intervals, and magnitude assessments. This meticulous
approach aimed to evaluate the significance of the observed differences in biodiversity
indices between the two groups at the α and β levels and elucidate the impact of various
treatments on the biodiversity indices [78]. “Cohen’s d” functioned as a robust metric for
measuring the effect size of the mean differences between the treatment and control groups,
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effectively accounting for the data variability within each group [78]. Its calculation method
is based on the following formula:

d = (M1 −M2)/s

Here, d represents the Cohen’s d effect size, M1 signifies the mean of the biodiversity
indices under varying treatment conditions, M2 denotes the mean of the biodiversity indices
within the control group, and s corresponds to the standard deviation of the aggregated
biodiversity indices. When Cohen’s d crosses the zero mark, it indicates that there is no
statistically significant effect. If Cohen’s d < 0, it signifies a statistically significant negative
effect of the treatment on diversity. If Cohen’s d > 0, it signifies a statistically significant
positive effect of the treatment on diversity.

To analyze the response of different benthic animal species to various treatment factors,
a Gaussian-distributed linear mixed-effects model was fitted using the “lmer” function
from the “lmerTest” package. In this model, the logarithm of the abundance of zoobenthos
for different species served as the response variable, while temperature, eutrophication,
and pesticide exposure were treated as fixed-effect variables. Conducting the Shapiro–Wilk
normality test using the “shapiro.test” function resulted in a p-value greater than 0.05,
indicating conformity with a normal distribution. Additionally, the month was included
as a random variable. Subsequently, the significance levels (p-values) and the direction of
effects (positive or negative) from the computed results were stored in Table 1.

Table 1. Effects of temperature, eutrophication, pesticide, and their interactions on zoobenthos abun-
dance at the end of the experiment. Accumfreq represents the cumulative proportion of species abun-
dance. “***” represents highly significant (p ≤ 0.001), “**” represents significant (0.001 < p ≤ 0.01),
“*” represents moderately significant (0.01 < p ≤ 0.05), “NS” represents not significant (p > 0.1);
“(+)” represents positive correlation (r > 0) and “(−)” represents negative correlation (r ≤ 0). (Top
10 species by abundance in the table, complete table in Supplementary Materials Table S1).

Species Name Rank Abundance Accumfreq Warming Eutrophic Pesticide

Chironomus sp. 1 1820 15.5 ** (+) NS *** (+)
Glyptotendipes sp. 2 1690 29.9 NS NS * (−)

Ecnomus sp. 3 1497 42.6 NS NS *** (−)
Radix swinhoei 4 1063 51.7 *** (+) * (+) *** (+)

Limnodrilus hoffmeisteri 5 881 59.2 * (−) ** (+) ** (−)
Glossiphonia lata 6 600 64.3 NS NS * (+)

Hippeutis umbilicalis 7 463 68.2 NS NS * (+)
Polypedilum sp. 8 452 72.1 NS NS NS
Limnodrilus sp. 9 391 75.4 NS NS NS

Bellamya sp. 10 334 78.2 NS NS NS

3. Results
3.1. Warming Effects on Zoobenthos Diversity

At the conclusion of the experiment, the warming group (W) exhibited a significant
increase in the abundance of zoobenthos compared to the control group (C) (Figure 3). Dur-
ing the experiment, regarding biodiversity, under the warming treatment, the zoobenthos
richness significantly increased at both the α and β levels. The Shannon index showed a
significant increase at the α level while exhibiting a significant decrease at the β level. Simi-
larly, the Simpson index demonstrated a significant increase at the α level but a significant
decrease at the β level (Figure 4).
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Figure 3. The effects of different treatments on zoobenthos abundance were examined at the end of
the experiment. The treatments included warming (W), nutrient loading (E), and pesticide application
(P), both individually and in combination. The ambient control group with no treatment added
is denoted as (C). Lowercase letters represent significant differences in means between different
treatments (post hoc tests, p < 0.05), while the same letters indicate no significant differences. Vertical
bars are standard errors.
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Figure 4. The impact of warming on zoobenthos species abundance and diversity. (A) Rank abun-
dance curves: the figure illustrates species abundance ranking on the x-axis, with species abundance
on the y-axis, and displays the names of the top 10 species as label text. (B) Additive diversity
partitioning: the figure displays diversity indices on the y-axis for different treatment types on the
x-axis, with separate graphs for richness, the Shannon index, and the Simpson index. (C) Cohen’s
d: the x-axis of the figure represents the magnitude of Cohen’s d value, while the y-axis represents
levels of diversity partitioning.
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3.2. Eutrophication Effects on Zoobenthos Diversity

At the conclusion of the experiment, the abundance of zoobenthos in the eutroph-
ication group (E) did not show a significant change compared to the control group (C)
(Figure 3). In terms of biodiversity, nutrient loading increased the richness at the α level but
decreased it at the β level. Both the Shannon and Simpson indices decreased significantly
at both the α and β levels (Figure 5).
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Figure 5. The impact of eutrophication on zoobenthos species abundance and diversity. (A) Rank
abundance curves: the figure illustrates species abundance ranking on the x-axis, with species
abundance on the y-axis, and displays the names of the top 10 species as label text. (B) Additive
diversity partitioning: the figure displays diversity indices on the y-axis for different treatment types
on the x-axis, with separate graphs for richness, the Shannon index, and Simpson index. (C) Cohen’s
d: the x-axis of the figure represents the magnitude of Cohen’s d value, while the y-axis represents
levels of diversity partitioning.

3.3. Pesticide Effects on Zoobenthos Diversity

At the conclusion of the experiment, the imidacloprid addition group (P) significantly
reduced the abundance of zoobenthos compared to the control group (C) (Figure 3). During
the experiment, in terms of biodiversity, under the pesticide treatment, the richness signifi-
cantly increased at the α level but decreased at the β level. The Shannon index increased
significantly at both the α and β levels, as did the Simpson index (Figure 6).



Animals 2023, 13, 3722 10 of 19Animals 2023, 13, x FOR PEER REVIEW 11 of 21 
 

 
Figure 6. The impact of pesticide on zoobenthos species abundance and diversity. (A) Rank abun-
dance curves: the figure illustrates species abundance ranking on the x-axis, with species abundance 
on the y-axis, and displays the names of the top 10 species as label text. (B) Additive diversity par-
titioning: the figure consists of three separate graphs representing “Richness”, “Shannon”, and 
“Simpson” indices. The y-axis represents diversity indices, while the x-axis represents different 
treatment types. (C) Cohen’s d: the figure consists of seven separate graphs, each representing dif-
ferent treatment type groups. The x-axis represents the magnitude of Cohen’s d value, while the y-
axis represents levels of diversity partitioning. 

3.4. All Treatments’ Effect on Zoobenthos Diversity and the Response of Zoobenthos Abundance 
to the Treatments 

At the end of the experiment (with C as the control group), warming (W), nutrient 
loading (E), pesticide application (P), and their interactions had varying impacts on zoo-
benthos. The highest zoobenthos abundance was under the warming and nutrient loading 
(WE) treatment, while the lowest was under nutrient loading and pesticide application 
(EP) (Figure 3). In terms of biodiversity, the E treatment reduced the richness at the α level, 
whereas the EP, P, W, WE, WEP, and WP treatments increased the richness at the α level. 
All treatments showed a decrease at the β level. For the Shannon index, the E and EP 
treatments decreased at the α level, while the P, W, WE, WEP, and WP treatments in-
creased at the α level. The E, EP, WE, WEP, and WP treatments decreased at the β level, 
while the P and W treatments increased at the β level. Regarding the Simpson index, the 
E, P, W, WEP, and WP treatments increased at the α level, whereas the EP and WE treat-
ments decreased. The E, EP, WE, WEP, and WP treatments decreased at the β level, with 
the P treatment increasing, and the W treatment showing no significant change at the β 
level (Figure 7). 

Figure 6. The impact of pesticide on zoobenthos species abundance and diversity. (A) Rank abun-
dance curves: the figure illustrates species abundance ranking on the x-axis, with species abundance
on the y-axis, and displays the names of the top 10 species as label text. (B) Additive diversity
partitioning: the figure consists of three separate graphs representing “Richness”, “Shannon”, and
“Simpson” indices. The y-axis represents diversity indices, while the x-axis represents different
treatment types. (C) Cohen’s d: the figure consists of seven separate graphs, each representing
different treatment type groups. The x-axis represents the magnitude of Cohen’s d value, while the
y-axis represents levels of diversity partitioning.

3.4. All Treatments’ Effect on Zoobenthos Diversity and the Response of Zoobenthos Abundance to
the Treatments

At the end of the experiment (with C as the control group), warming (W), nutrient
loading (E), pesticide application (P), and their interactions had varying impacts on zooben-
thos. The highest zoobenthos abundance was under the warming and nutrient loading
(WE) treatment, while the lowest was under nutrient loading and pesticide application
(EP) (Figure 3). In terms of biodiversity, the E treatment reduced the richness at the α level,
whereas the EP, P, W, WE, WEP, and WP treatments increased the richness at the α level.
All treatments showed a decrease at the β level. For the Shannon index, the E and EP
treatments decreased at the α level, while the P, W, WE, WEP, and WP treatments increased
at the α level. The E, EP, WE, WEP, and WP treatments decreased at the β level, while the P
and W treatments increased at the β level. Regarding the Simpson index, the E, P, W, WEP,
and WP treatments increased at the α level, whereas the EP and WE treatments decreased.
The E, EP, WE, WEP, and WP treatments decreased at the β level, with the P treatment
increasing, and the W treatment showing no significant change at the β level (Figure 7).
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Figure 7. The impact of all treatments on zoobenthos species abundance and diversity. (A) Rank
abundance curves: the figure illustrates species abundance ranking on the x-axis, with species
abundance on the y-axis, and displays the names of the top 10 species as label text. The curves are
color-coded to represent different treatment types. (B) Additive diversity partitioning: the figure
displays diversity indices on the y-axis for different treatment types on the x-axis, with separate graphs
for richness, Shannon index, and Simpson index. (C) Cohen’s d: the x-axis of the figure represents
the magnitude of Cohen’s d value, while the y-axis represents levels of diversity partitioning.

There were different zoobenthos abundance responses for different treatments. All
treatments had significant effects on some of the top 35 species in abundance and none on
the rest, and each treatment had a different direction of positive or negative effects on each
species (Table 1).

4. Discussion
4.1. The Effects of Different Treatment Conditions on the α Diversity of Zoobenthos

Our findings align with previous research, highlighting that increasing temperatures
positively influence zoobenthos species abundance and α-diversity [79,80]. Elevated tem-
peratures stimulate metabolic activities, fostering a more diverse community. Favorable
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conditions, driven by temperature, may attract a broader range of species [81,82]. In
contrast, nutrient loading has a mixed impact on α-diversity. While it promotes species
richness, it negatively affects the Shannon and Simpson diversity indices [83]. Recent
research emphasizes ecological networks’ role in these dynamics [84]. Nutrient loading
fosters eutrophication, favoring dominant species and disrupting ecological interactions.
This shift reduces the species distribution evenness by increasing the dominance of certain
species. Imidacloprid addition positively influences zoobenthos α-diversity, indicating
that imidacloprid may selectively target specific organisms, reducing competition and
benefiting other species [48,85]. However, further research is needed to understand the
underlying mechanisms and long-term consequences.

The WE treatment, which combined warming and nutrient loading, exhibited an
increase in species richness and Shannon diversity but a decrease in Simpson diversity.
This result suggests that the combination of these stressors may have created favorable
conditions for a wider range of species to coexist [86]. Warming might have accelerated
metabolic rates, while nutrient loading provided additional resources, promoting diver-
sity [87]. In the EP treatment group (nutrient loading and imidacloprid), the increase in
species richness combined with decreased Shannon and Simpson diversity may be at-
tributed to the disruptive impact of imidacloprid [48,85]. While nutrient loading supported
higher species richness, the presence of imidacloprid could have led to the dominance
of certain pesticide-tolerant species, reducing the evenness. The WP treatment (warming
and imidacloprid) resulted in increased species richness, Shannon diversity, and Simpson
diversity. Warming may have alleviated some of the negative effects of imidacloprid,
allowing for a more diverse community [88,89]. Elevated temperatures could enhance
metabolic rates and promote greater resource utilization, counteracting imidacloprid’s
potential disruptiveness [90]. The WEP treatment, which included all three stressors, ex-
hibited increased species richness and diversity indices. This complex response may be
attributed to the combined and possibly compensatory effects of these stressors [91,92].
Warming might enhance nutrient cycling, mitigating the negative effects of imidacloprid
and supporting a more diverse community [93].

4.2. The Effects of Different Treatment Conditions on the β-Diversity of Zoobenthos

Our study, conducted in freshwater ecosystems, unveiled intriguing insights into the
impacts of warming, nutrient loading, and the addition of the insecticide imidacloprid
on zoobenthic community β-diversity. These findings emphasize the dynamic nature of
benthic ecosystems and the multifaceted responses of their communities. Warming plays a
significant role in reshaping the structure of zoobenthic communities at the regional scale
(β-diversity) [94]. The decrease in β-diversity implies that warming exerts a homogenizing
influence on the composition of zoobenthic communities across various sampling sites.
Recent research has shed light on the potential mechanisms driving this phenomenon [80].
Warmer temperatures can enhance the metabolic rates of certain species (e.g., Chironomi-
dae), giving them a competitive advantage and allowing them to dominate across multiple
sites. Such dominance can lead to a reduction in regional variability, contributing to the
observed decrease in β-diversity [95,96]. Conversely, nutrient loading exhibited a contrast-
ing pattern in its impact on β-diversity. Despite reducing the species richness at both local
and regional scales, it contributed to an increase in β-diversity, indicating greater differ-
entiation in zoobenthic community composition among sites [97]. Eutrophication-driven
nutrient enrichment can create favorable conditions for certain species, allowing them to
thrive and dominate specific sites. These contrasting responses across sites contribute to
the increased β-diversity in eutrophic environments [97]. Lastly, the introduction of the
insecticide imidacloprid had a pronounced influence on zoobenthic community β-diversity.
While causing a decrease in species richness at the local scale, it significantly increased
β-diversity, signifying a greater variation in community composition among sites. Recent
research has indicated that the selective toxicity of imidacloprid toward specific species can
lead to shifts in community composition [98,99]. Furthermore, imidacloprid can indirectly
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affect the community structure by altering the abundance and distribution of primary
producers (e.g., algae), which serve as the foundation of the food web for zoobenthic organ-
isms [41,98,100]. These complex interactions result in the observed increase in β-diversity
in imidacloprid-treated sites [101].

The consistent decrease in β-diversity across treatment groups (WE, EP, WP, and WEP)
aligns with previous studies investigating the impacts of multiple stressors on aquatic
ecosystems, reaffirming the robustness of our findings [102,103]. Several factors may
contribute to the observed decline in β-diversity, indicative of a shift toward more similar
community compositions among different sites or treatments, as observed in prior research.
Our results are in line with previous research indicating that the decline in β-diversity
may be attributed to the reduced presence or even disappearance of specialist species
uniquely adapted to specific environmental conditions [104–106]. Consistent with prior
studies, our findings suggest that warming, nutrient loading, and pesticide exposure can
homogenize environmental conditions across sites, diminishing the variation supporting
diverse community compositions [107,108]. Our results align with research indicating
that the interactive effects of stressors could displace certain species that were previously
dominant or unique to particular sites [109]. The reduction in β-diversity may also indicate
functional redundancy within zoobenthic communities, a concept consistent with previous
ecological research [110,111].

4.3. The Sensitivity of Different Zoobenthic Species to Various Treatment Conditions

Ephemeroptera, Plecoptera, and Trichoptera (EPT) are highly sensitive to environmental
disturbances among large benthic organisms [112]. They are commonly used indicators
for monitoring the health of freshwater ecosystems [112]. Based on the experimental
results, five species of EPT were identified. Among them, the Ecnomus sp. ranked third
in abundance among all benthic organisms, exerting a significant impact on the entire
ecosystem. The four remaining species exhibited low abundances, each with fewer than
50 individuals, and can be regarded as negligible. The Ecnomus sp. typically inhabits
cleaner, fast-flowing water bodies. Imidacloprid, as an insecticide, may accumulate in
water, leading to potential water quality degradation in the habitats of the Ecnomus sp.,
affecting its survival and reproduction [113–115]. The larvae of the Ecnomus sp. primarily
feed on aquatic microorganisms and algae [116]. The presence of imidacloprid may have
adverse effects on the aquatic microbial communities, thereby impacting the food sources
for the Ecnomus sp. larvae, potentially limiting their growth [117]. Imidacloprid has been
demonstrated to inhibit reproduction and development in many insects [118–120]. If the
Ecnomus sp. is subjected to imidacloprid inhibition, it may affect its reproduction and larval
development, reducing the number of subsequent generations. Furthermore, prolonged
exposure of the Ecnomus sp. to high concentrations of imidacloprid may result in more
pronounced negative effects.

The Chironomus sp. is the most abundant species, dominating the entire ecosystem.
Both warming and imidacloprid have a positive impact on the Chironomus sp., with im-
idacloprid having a stronger effect. Higher temperatures may enhance the Chironomus
sp.’s activity and reproduction, while imidacloprid could improve resource utilization via
nervous system or metabolic effects [57,121]. In warmer conditions, the Chironomus sp. may
reproduce more easily, with faster larval development, shortening the generation time [122].
Imidacloprid might somehow boost reproduction and development via complex mecha-
nisms [123]. Elevated temperatures usually promote the growth of algae and plankton,
providing extra food. The Chironomus sp. may benefit from this, increasing its survival and
reproductive success. Imidacloprid may alter the aquatic food chain, making food more
accessible to the Chironomus sp. [124].

Radix swinhoei, as the most abundance Mollusca, plays an indispensable role in the
ecosystem. Warming, nutrient loading, and imidacloprid all have a positive impact on
Radix swinhoei, with warming and imidacloprid having a more pronounced effect. Ele-
vated temperatures can enhance metabolism and growth, accelerating reproduction and



Animals 2023, 13, 3722 14 of 19

population growth. Nutrient loading, representing increased nutrient levels, fosters the
growth of algae and plants, which constitute Radix swinhoei‘s primary food source [125].
In nutrient-rich waters, they can access more food resources, facilitating their growth and
reproduction [126]. Imidacloprid, despite being an insecticide, may positively influence
Radix swinhoei by affecting food resources or ecological interactions under conditions of
prolonged and continuous exposure [127–129]. Moreover, Radix swinhoei populations may
gradually adapt to nutrient-rich conditions, warming temperatures, and imidacloprid
exposure, potentially developing resistance to these factors over time.

4.4. Issues in the Study and Future Exploration

In our research, we identified significant variations in zoobenthos abundance between
treatments, a limited range of studied species, and challenges quantifying snail biomass
due to their larger size. To address these concerns, future studies can employ standardized
methods to minimize the differences between treatments [130,131], expand the scope of
investigated zoobenthos species, and employ modeling techniques for biomass estimation
despite variations in species counts. Prioritizing functional assessments and establishing
long-term monitoring programs will augment our comprehension of zoobenthic ecosystems
and provide valuable insights for effective management strategies [132].

5. Conclusions

In conclusion, this study highlights the complex impacts of multiple stressors on
the diversity of lake zoobenthos. Climate change and pesticides like imidacloprid play
pivotal roles in zoobenthic communities, promoting α-diversity and reducing β-diversity.
Subsequent research should delve into the ecological mechanisms underlying the responses
of zoobenthos to multiple stressors and focus on effective management and conservation
strategies for aquatic ecosystems to preserve their functionality and services.
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