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Simple Summary: This study focuses on the ABCG2 gene, which is known to play a crucial role
in secreting vitamins into milk and transporting xenotoxic and cytostatic drugs across the plasma
membrane in cattle, mice, and humans. However, the specific role of this gene in buffaloes, especially
its effect on milk fat synthesis in buffalo mammary epithelial cells (BuMECs), remains inadequately
understood. In this study, we isolated and identified the full-length coding region of the buffalo
ABCG2 gene from the mammary gland in buffalo and analyzed its physicochemical characteristics,
gene structure, conserved domains and motifs, and polymorphisms. This study found that the
ABCG2 gene is highly expressed in buffalo mammary glands and plays an important role in milk fat
synthesis in BuMECs. These findings contribute to our understanding of milk fat synthesis and could
have important implications for the dairy industry. This could benefit both farmers and consumers
by helping to provide high-quality milk products.

Abstract: The ATP-binding cassette subfamily G member 2 (ABCG2) serves crucial roles in secreting
riboflavin and biotin vitamins into the milk of cattle, mice, and humans, as well as in the transportation
of xenotoxic and cytostatic drugs across the plasma membrane. However, the specific role of the
ABCG2 gene in water buffaloes (Bubalus bubalis), especially its effect on milk fat synthesis in buffalo
mammary epithelial cells (BuMECs), remains inadequately understood. In this study, the full-length
CDS of the buffalo ABCG2 gene was isolated and identified from the mammary gland in buffaloes.
A bioinformatics analysis showed a high degree of similarity in the transcriptional region, motifs,
and conservative domains of the buffalo ABCG2 with those observed in other Bovidae species. The
functional role of buffalo ABCG2 was associated with the transportation of solutes across lipid bilayers
within cell membranes. Among the 11 buffalo tissues detected, the expression levels of ABCG2 were
the highest in the liver and brain, followed by the mammary gland, adipose tissue, heart, and kidney.
Notably, its expression in the mammary gland was significantly higher during peak lactation than
during non-lactation. The ABCG2 gene was identified with five SNPs in river buffaloes, while it
was monomorphic in swamp buffaloes. Functional experiments revealed that ABCG2 increased the
triglyceride (TAG) content by affecting the expression of liposynthesis-related genes in BuMECs.
The results of this study underscore the pivotal role of the ABCG2 gene in influencing the milk fat
synthesis in BuMECs.

Keywords: buffalo; ABCG2; polymorphism; milk fat synthesis; overexpression; knockdown

1. Introduction

The ATP-binding cassette subfamily G member 2 (ABCG2), also known as breast
cancer resistance protein, belongs to the ATP-binding cassette protein superfamily [1].
Initially discovered in multidrug-resistant human breast cancer cell lines, ABCG2 confers
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resistance to chemotherapeutic agents by actively extruding compounds such as mitox-
antrone, topotecan, and methotrexate from the cell [2]. The human ABCG2 gene, located on
chromosome 4, consists of 16 exons and 15 introns, encoding a protein of 658 amino acid
residues [3]. Functioning as a transporter located on the cell membrane, ABCG2 uses ATP
hydrolysis for the active transport of extracellular material into the cell [4].

In bovines, the ABCG2 gene is located on chromosome 6, with a coding sequence of
1977 bp that encodes 658 amino acid residues [4]. It plays a pivotal role in the secretion
of riboflavin (vitamin B2) and other nutrients in milk [1,5]. The upregulation of ABCG2
during lactation in the mammary glands of dairy cows implies its participation in active
drug secretion into milk [6] and potentially in the synthesis and secretion of milk [7].
Notably, ABCG2 significantly impacts the milk yield, milk protein percentage, and milk
fat percentage in bovines [8–10]. A genome-wide analysis revealed SNPs within the
ABCG2 gene region affecting milk production traits in cows [11]. Furthermore, blocking
ABCG2 inhibits the proliferation of bovine mammary epithelial cells, suggesting its role in
mammary epithelial cell proliferation [12].

Water buffaloes (Bubalus bubalis) have been domesticated for 3000–6000 years, holding
significant economic importance in tropical and subtropical regions due to their contribu-
tions to dairy, meat, and draught purposes [13]. It is estimated that there are more than
200 million buffaloes in the world. Domestic buffaloes are classified into two categories:
river and swamp buffaloes. The former are primarily utilized for milk production, with
each lactating buffalo producing more than 2000 kg of milk per year, while the latter are
predominantly employed for draught purposes, with each lactating buffalo producing
500–600 kg of milk per year [14]. Although buffaloes are critical for agricultural develop-
ment, compared with other domestic animals, genomic evaluation studies in buffaloes are
still in the developing stage [15]. Therefore, it is very necessary to study the functional
genes of buffaloes. Peroxisome proliferator-activated receptor gamma (PPARG) is con-
sidered to be a central regulator in the milk lipid synthesis in the mammary glands of
cows, goats, and buffaloes [7,16,17]. The ABCG2 gene has been identified as a direct target
gene of PPARG [18]. Whether ABCG2 is involved in the synthesis and secretion of milk
lipids in lactating buffalo mammary epithelial cells requires further investigation. This
study aimed to investigate the buffalo ABCG2 gene by isolating and identifying its com-
plete coding sequence (CDS) and analyzing its gene structure, physicochemical properties,
motifs, and functional domains through bioinformatics methods. Additionally, the tissue-
specific expression of ABCG2 was assessed using real-time quantitative PCR (RT-qPCR).
Furthermore, polymorphisms in the coding region of ABCG2 were detected and analyzed
using the direct sequencing of PCR products and population genetic methods. To further
understand its role in buffalo mammary gland lactation, ABCG2 was investigated through
lentivirus-mediated overexpression and knockdown in buffalo mammary epithelial cells
(BuMECs). Ultimately, this study will provide insights into the molecular characteristics of
buffalo ABCG2 and its significance in mammary gland lactation.

2. Materials and Methods
2.1. Sample Collection

Five lactating Binglangjiang buffaloes (peak lactation, five years old, about 60 d
postpartum) were slaughtered, and tissue samples of the heart, liver, kidney (medulla),
lung, mammary gland, adipose tissue, muscle, rumen, small intestine, spleen, and brain
(cortex) were promptly collected and flash-frozen in liquid nitrogen. In addition, mammary
gland tissue samples were surgically obtained from five Binglangjiang buffaloes at sexual
maturity (two years old) and five Binglangjiang buffaloes (five years old) that underwent
four different physiological states: early lactation (approximately 20 days postpartum),
peak lactation (approximately 60 days postpartum), late lactation (approximately 220 days
postpartum), and dry-off period (approximately 60 days before parturition) following
previously described methods [19]. RNA extraction was performed utilizing RNAiso Plus
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(TaKaRa, Dalian, China), and the cDNA synthesis was carried out utilizing the PrimeScript
RT kit (TaKaRa, Dalian, China) with 2 µg RNA for each sample.

Furthermore, blood samples were collected from 102 healthy adult buffaloes, compris-
ing 52 Binglangjiang buffaloes (river type) and 50 Dehong buffaloes (swamp type), for the
purpose of SNP detection of the ABCG2 gene. The buffaloes used for sample collection
were all healthy adult buffaloes and were not related.

2.2. Isolation, Identification, and Bioinformatics Analysis of Buffalo ABCG2 Gene

To amplify the CDS of buffalo ABCG2, a pair of primers was designed based on
the mRNA sequence of cattle ABCG2 (accession no. XM_006042277): forward primer,
5′-CCAGCGAGATACTGTAGTT-3′; reverse primer, 5′-TCACTGAAATTAAAGAGGAA-3′.
PCR used cDNA from mammary gland tissue as the template, following the manufacturer’s
instructions for 2× PCR Master Mix (CWBIO, Beijing, China). After electrophoresis on
a 1.5% agarose gel, PCR products were purified using the Gel Extraction Kit (OMEGA,
Norcross, St. Petoskey, MI, USA). The purified PCR product was then cloned into the pMD-
18T vector and sequenced bidirectionally by Shanghai Biological Engineering Technology
Services Co., Ltd. (Shanghai, China). The obtained raw data were processed and analyzed
using SeqMan and EditSeq in Lasergene 7 software package (v7.1.0) (DNAStar Inc., Madi-
son, WI, USA). The open reading frame (ORF) of obtained sequence was determined using
ORF Finder (http://www.ncbi.nlm.nih.gov/orffinder/, accessed on 5 June 2023), and ho-
mologous sequences were retrieved using the BLAST program (https://blast.ncbi.nlm.nih
.gov/Blast.cgi, accessed on 5 June 2023) from the NCBI database. The basic characteristics,
hydropathy, signal peptide, subcellular localization, transmembrane regions, and secondary
and tertiary structures were determined using ProtParam (http://web.expasy.org/protpar
am/, accessed on 7 May 2023), ProtScale (http://web.expasy.org/protscale/, accessed on 7
May 2023), SignalP-5.0 Server (https://services.healthtech.dtu.dk/service.php?SignalP-5.0,
accessed on 12 May 2023), ProtComp 9.0 (http://linux1.softberry.com/berry.phtml, ac-
cessed on 12 May 2023), TMHMM 2.0 (https://services.healthtech.dtu.dk/service.php
?TMHMM-2.0, accessed on 12 May 2023), SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin
/npsa_automat.pl?page=npsa%20_sopma.html, accessed on 12 May 2023) and SWISS-
MODEL (http://swissmodel.expasy.org/, accessed on 7 May 2023), respectively. A phy-
logenetic tree was constructed using Mega 7 [20] via the maximum likelihood method
(the cpREV model) based on the amino acid sequences. The genome annotation GTF
files from various species (buffalo: GCF_019923935.1; cattle: GCF_002263795.1; zebu:
GCF_000247795.1; yak: GCF_000298355.1; bison: GCF_000754665.1; goat: GCF_001704415.1;
sheep: GCF_016772045.1) were downloaded from NCBI Datasets (https://www.ncbi.n
lm.nih.gov/datasets/, accessed on 5 August 2023) to add genetic structure information
to the ABCG2 transcripts using the TBtools software (v1.108) [21], followed by visual-
ization using the Gene Structure Display Server 2.0 (http://gsds.gao-lab.org/, accessed
on 7 August 2023). Conserved motifs in ABCG2 proteins were identified through the
MEME 5.5 website (http://meme-suite.org/tools/meme, accessed on 7 August 2023),
and conservative domains were determined using NCBI Batch Web CD-Serach Tool
(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi, accessed on 5 August
2023).

2.3. Tissue Differential Expression Analysis

The RT-qPCR primers used in this analysis are listed in Table S1. For mRNA expres-
sion analysis, the geometric mean of the Ct values of β-actin (ACTB), glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), and ribosomal protein S23 (RPS23) served as the
endogenous control. RT-qPCR was performed on an Applied Biosystems™ 7500 (Thermo
Fisher Scientific, Waltham, MA, USA) with TB Green® Advantage® qPCR Premix (Takara,
Dalian, China). The purity of PCR product was confirmed through melting curve analysis,
and the amplification efficiency was determined using LinRegPCR (www.linregpcr.nl,
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accessed on 7 May 2023; Table S1). Relative expression levels of the gene in different tissues
were evaluated using comparative method of 2−∆∆Ct [22].

2.4. Genotyping of ABCG2 Polymorphisms

Genomic DNA was extracted from the blood samples using TIANamp Genomic DNA
Kit (TIANGEN, Beijing, China). Primers for amplifying the DNA containing the coding
region of buffalo ABCG2 (accession no. NC_059163.1) were designed and are listed in
Table S2. The PCR reactions used the 2× PCR Master Mix (CWBIO, Beijing, China) fol-
lowing the manufacturer’s instructions. The authenticity and polymorphisms of PCR
products were confirmed via direct DNA sequencing. Population genetic data analysis
was conducted using PopGen32 software (v1.32) [23]. Haplotypes of observed SNPs were
inferred via PHASE (v2.0) [24].

2.5. Construction of pEGFP-C1-ABCG2 Overexpression Plasmid

The overexpression plasmid, pEGFP-C1-ABCG2, containing the buffalo ABCG2 gene,
was generated through PCR using the pEGFP-C1 vector (Clontech Laboratories, Inc., Palo
Alto, CA, USA). Specific primers were designed for PCR amplification, incorporating Xho
I and Kpn I restriction sites (forward: 5′-CTCGAGATGCTCAAAATGTCATCCAATAG-
3′; reverse: 5′-GGTACCTTAAGAAAATTTTTTAAGGAATAAC-3′; the restriction sites
are underlined). Once constructed, the recombinant plasmid underwent sequencing for
verification and was purified using the EndoFree Maxi Plasmid Kit (QIAGEN, Valencia,
CA, USA) for cell transfection experiments.

2.6. Design and Cloning of ABCG2-Targeting shRNAs

Utilizing the online software, BLOCK-iT RNAi Designer (http://rnaidesigner.invitro
gen.com/rnaiexpress/, accessed on 7 May 2023), three short hairpin RNAs (shRNAs) were
designed to target ABCG2 (Table S3) based on the coding region sequences obtained in this
study. These shRNA sequences were incorporated into the pLKO.1 vector to produce the
final recombinant plasmids (pLKO.1-shRNAs). The recombinant vectors were sequenced
for validation before being purified for use in cell transfection experiments using the
EndoFree Maxi Plasmid Kit (QIAGEN, Valencia, CA, USA).

2.7. Cell Culture

Primary buffalo mammary epithelial cells (BuMECs), preserved in our laboratory,
were cultured in DMEM/F12 medium (Gibco, New York, NY, USA). This medium was
supplemented with 10% fetal bovine serum (Gibco, USA), 10 kU/L penicillin/streptomycin
(Gibco, New York, NY, USA), 5 mg/L bovine insulin (Sigma, St. Louis, MO, USA), 5 mg/L
hydrocortisone (Sigma, St. Louis, MO, USA), 1 mg/L epidermal growth factor (Sigma,
St. Louis, MO, USA), and 5 µg/mL holotransferrin (Sigma, St. Louis, MO, USA). The cells
were routinely cultured in a humidified incubator at 37 ◦C, 5% CO2, and 95% air. The
culture medium was refreshed every 24 h. To induce lactogenesis, BuMECs were incubated
in the above medium supplemented with 2 µg/mL prolactin (Sigma, St. Louis, MO, USA)
for 24 h prior to experiments. Moreover, HEK-293T cells for generating lentivirus particles
were acquired from Kunming Institute of Zoology, Chinese Academy of Sciences. These
cells were cultured in DMEM/F12 medium containing 10% fetal bovine serum and 1%
penicillin/streptomycin (10 kU/L, Gibco, New York, NY, USA).

2.8. Overexpression and Knockdown of Buffalo ABCG2 Gene

When BuMECs reached 70–80% confluence in culture plates, pEGFP-C1-ABCG2
(3 µg) was introduced into BuMECs using Lipo6000™ transfection reagent (Beyotime
Biotechnology, Shanghai, China). pEGFP-C1 was transfected as a negative control. Af-
ter 48 h of transfection, BuMECs were harvested for RT-qPCR analysis and TAG assay.
The primer information for RT-qPCR analysis can be found in Table S1. HEK-293T cells
were cultured in 10 cm plates until they reached 70–80% confluence. The pLKO.1-sh1,
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pLKO.1-sh2, and pLKO.1-sh3 vectors were co-transfected into HEK-293T cells along with
pEGFP-C1-ABCG2 to identify the shRNA with the highest interference efficiency. After
48 h of transfection, HEK-293T cells were collected for RT-qPCR analysis. Subsequently,
pLKO.1-shRNA, pMD2G, and psPAX2 plasmids were co-transfected into HEK-293T cells
at a ratio of 5:3:2 using Lipo6000™ transfection reagent to produce lentivirus (Lv-pLKO.1-
shRNA). Negative control (Lv-NC) was established by transfecting pLKO.1-TRC, pMD2G,
and psPAX2. After 48 h of transfection, the lentivirus was harvested, centrifuged at
1250 rpm for 5 min, and filtered through a 0.45 µm filter. The lentivirus particles were
stored at −80 ◦C for long-term storage.

Subsequently, when BuMECs reached 70–80% confluence in the culture plates, Lv-
pLKO.1-shRNA was added to the culture medium along with polybrene (2 µg/mL; Sigma,
St. Louis, MO, USA) to enhance lentivirus infection efficiency. The medium was replaced
with fresh medium 24 h later. After 48 h of infection, BuMECs were harvested for RT-qPCR
and TAG assay.

2.9. Cellular TAG Content Analysis

After overexpression or knockdown of ABCG2 for 48 h, the BuMECs were rinsed twice
with PBS. The intracellular TAG concentration was assayed using the TAG kit (GPO-POD;
Applygen Technologies Inc., Beijing, China) according to the manufacturer’s instructions.
Simultaneously, the intracellular total protein concentration was measured using the BCA
protein assay kit (Thermo Fisher, Waltham, MA, USA). The TAG content was then normal-
ized per milligram of protein.

2.10. Data Analysis

All experiments were conducted with three biological replicates, and the data are
presented as means ± standard error of the means (means ± SEM). GraphPad Prism 5
software (GraphPad Software Inc., La Jolla, CA, USA) was utilized for statistical analysis
and data visualization. The statistical significance of differences between two groups was
evaluated using two-tailed Student’s t-test. For multiple comparisons, one-way ANOVA
with Tukey’s test was employed, and p-values less than 0.05 were considered statistically
significant.

3. Results
3.1. Cloning and Identification of Buffalo ABCG2

The isolated ABCG2 gene sequence from the buffaloes contained a full-length cod-
ing sequence (CDS) of 1977 bp, encoding a peptide comprising 658 amino acid residues.
The comparison with other Bovidae species, including Bos mutus (XM_005897792), Bison
bison (XM_010860190), Bos taurus (BT030709), Bos indicus (XM_019962487), Capra hircus
(XM_018049143), and Ovis aries (GQ141082), showed a high sequence consistency, rang-
ing from 97.47% to 98.94%. The sequence was deposited in the NCBI database with the
accession number OK137537.1.

To explore the transcriptional structure of buffalo ABCG2, we compared all known
transcripts of the gene in buffaloes with those of other Bovidae species. Among the eight
transcripts identified in buffaloes, the coding regions contained either 14 or 15 exons, indi-
cating an alternative splicing of the ABCG2 gene (Figure 1). Specifically, the XM_025289519.1
transcript lacked the first exon in its coding region compared to the other buffalo tran-
scripts, whereas the coding region of the buffalo ABCG2 gene identified in this study
contained 15 exons, and no coding region containing 14 exons was found. It is speculated
that transcripts containing the coding region of 14 exons are not expressed in mammary
tissue. In cattle, four distinct exon composition patterns were observed in the coding
region: 13 exons (XM_024993324.1), 14 exons (XM_024993323.1), 15 exons (XM_010806035.3
and XM_024993319.1), and 16 exons (XM_024993311.1). Notably, the transcript patterns
containing 14 and 15 exons in buffaloes were also found in cattle, corresponding to tran-
scripts XM_024993323.1 and XM_010806035.3, respectively. Furthermore, variations in the
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5′ untranslated region (UTR) and intron lengths were observed among different transcripts
of the ABCG2 gene within the same species, with even greater differences observed across
species.
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Figure 1. Transcriptional region structure of ABCG2 in some Bovidae species. The coding region of
the buffalo ABCG2 gene obtained in this study belongs to the transcript type with 15 exons in the
coding region.

3.2. Characteristics and Structures of the ABCG2 Protein

Buffalo ABCG2 had a theoretical pI of 8.80 and a grand average of hydropathicity of
0.188. It was computed to be stable with an instability index (II) of 30.39 and an aliphatic
index of 101.66. Buffalo ABCG2 lacked the N-terminal signal peptide, indicating that
it is a non-secreted protein. Further prediction indicated that buffalo ABCG2 contains
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six transmembrane helices (AA397–419, AA431–453, AA481–502, AA509–531, AA536–558,
and AA632–654) (Figure S1) and is a potential membrane-bound endoplasmic reticulum
protein with a score of 7.0.

The secondary structure analysis of buffalo ABCG2 revealed a composition of 44.22%
α-helix (291 AA), 16.72% extended chain (110 AA), 5.17% β turn (34 AA), and 33.89%
random coils (223 AA) (Figure S2A). Furthermore, the tertiary structure of buffalo ABCG2
was predicted using SWISS-MODEL online based on homologous modeling (Figure S2B).
The sequence identity of ABCG2 between buffaloes and humans (template: 6hbu.1A) was
85%, with a coverage rate of 99%.

The phylogenetic relationship and comparison of the motifs and conserved domains
of ABCG2 among buffaloes and other Bovidae species are depicted in Figure 2. In the phy-
logenetic tree, buffaloes were clustered with yaks and bisons on one branch, and cattle and
zebu on another, while goats and sheep form a separate group (Figure 2A). This indicates
a closer genetic relationship between buffaloes and species of the Bos genus compared
to goats and sheep. The results of the motif pattern showed that all transcripts had all
10 motifs except for the XM_025289519.1 transcript in buffaloes and the XM_024993317.1
and XM_024993319.1–XM_024993324.1 transcripts in cattle, which had motifs 1–9
(Figure 2B). The ABCG2 proteins across all Bovidae species were found to contain a 3a01204
domain, which belongs to the 3a01204 superfamily (Figure 2C). This finding indicates a
functionally similar and conserved ABCG2 protein among Bovidae species.

3.3. Analysis of the Expression Profile of Buffalo ABCG2

The mRNA expression profiles of ABCG2 were analyzed to gain insight into its role in
various tissues of Binglangjiang buffaloes. The highest expression levels were observed
in the liver and brain, followed by the mammary gland, adipose tissue, heart, and kidney.
Relatively lower mRNA expression levels were found in the small intestine, spleen, lung,
muscle, and rumen (Figure 3A). To explore the potential impact of physiological stages on
ABCG2 expression, we assayed the mRNA levels in the mammary gland during the sexual
maturity, early lactation, peak lactation, late lactation, and dry-off periods. Remarkably, the
expression of ABCG2 was significantly elevated during peak lactation, whereas its lowest
expression occurred during sexual maturity (Figure 3B).

3.4. Population Variation Analysis

In this study, five SNPs were identified in the buffalo ABCG2 gene, in which c.393 C>T
and c.471 T>C were located in exon 5, c.720 C>T was located in exon 7, c.861 G>A was
located in exon 8, and c.1290 C>T was located in exon 11 (Table 1). The sequencing results
are shown in Figure S3. Interestingly, these five SNPs were exclusively found in river
buffaloes, with no SNPs observed in swamp buffaloes. The Hardy–Weinberg equilibrium
test showed that c.720 C>T and c.1290 C>T were in dis-equilibrium (p < 0.05). Notably, all
SNPs were synonymous substitutions and did not lead to any amino acid changes.

3.5. Sequence Differences in ABCG2

Based on the SNPs identified in the ABCG2 gene, a total of seven haplotypes (Buffalo_
hap1–Buffalo_hap7) were defined in buffaloes (Table S4). In addition, no new haplotype
sequences were discovered in the published buffalo ABCG2 sequences. Among these hap-
lotypes, Buffalo_hap1 was shared by two types of buffaloes, and the rest were only found
in river buffaloes. To delve into the sequence variations in the ABCG2 gene, a comparison
was conducted between the buffalo haplotype sequences and the published homologous
sequences from other Bovidae species. Ten nucleotide differences were identified at the
following positions: c.15, c.55, c.90, c.1017, c.1086, c.1278, c.1317, c.1542, c.1554, and c.1696
(Figure S4). Among these, four nucleotide differences (c.55, c.1086, c.1554, and c.1696) led
to amino acid changes in the buffalo ABCG2, resulting in the corresponding amino acids:
p.19Thr, p.362Asn, p.518Ile, and p.566Ser (Figure 4).
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3.6. Overexpression of Buffalo ABCG2 Promotes Milk Fat Synthesis

Following the transfection of the pEGFP-C1-ABCG2 vector into BuMECs for 48 h, the
mRNA expression of ABCG2 exhibited a significant increase (p < 0.01) (Figure 5A). Accom-
panying the overexpression of ABCG2, several other genes related to lipid metabolism also
demonstrated altered expression levels. Specifically, the gene expressions of SCAP, PPARG,
PPAPGC1A, SREBF2, INSIG2, FASN, ACC, and AGPAT6 significantly increased by 1.9-fold,
1.7-fold, 1.3-fold, 1.4-fold, 2.2-fold, 2.3-fold, 2.0-fold, and 5.7-fold, respectively (p < 0.05
or p < 0.01). Conversely, the expressions of SREBF1 and INSIG1 decreased dramatically
by 28% and 30%, respectively (p < 0.05) (Figure 5C). Furthermore, the impact of ABCG2
overexpression on the total triglyceride (TAG) content in BuMECs was investigated. The
results demonstrated a significant increase in the TAG content (p < 0.05) upon ABCG2
overexpression in BuMECs (Figure 5B).
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Figure 3. The mRNA expression profiles of buffalo ABCG2. (A) mRNA expression of ABCG2 in
various tissues in lactating buffalo. (B) Differential expression of ABCG2 in different stages of
mammary gland. The results are presented as mean ± SEM from n = 5 independent individuals; the
different letters (a–d) represent significant differences (p < 0.05) in mRNA expression.

Table 1. Genetic information on the SNPs found in two types of buffaloes.

Population SNP
Genotype Frequency Allele Frequency

p-Value 1
Genotype Number Frequency Allele Frequency

River buffalo

c.393 C>T
CC 50 0.962 C 0.9808 0.9207
CT 2 0.038 T 0.0192
TT 0 0.000

c.471 T>C
TT 49 0.942 T 0.9712 0.8618
TC 3 0.058 C 0.0288
CC 0 0.000

c.720 C>T
CC 43 0.827 C 0.8942 0.0262
CT 7 0.135 T 0.1058
TT 2 0.038

c.861 G>A
GG 47 0.904 G 0.9519 0.7458
GA 5 0.096 A 0.0481
AA 0 0.000

c.1290 C>T
CC 51 0.981 C 0.9808 0.0000
CT 0 0.000 T 0.0192
TT 1 0.019

Swamp buffalo

c.393 C>T
CC 50 1.000 C 1.0000 –
CT 0 0.000 T 0.0000
TT 0 0.000

c.471 T>C
TT 50 1.000 T 1.0000 –
TC 0 0.000 C 0.0000
CC 0 0.000

c.720 C>T
CC 50 1.000 C 1.0000 –
CT 0 0.000 T 0.0000
TT 0 0.000

c.861 G>A
GG 50 1.000 G 1.0000 –
GA 0 0.000 A 0.0000
AA 0 0.000

c.1290 C>T
CC 50 1.000 C 1.0000 –
CT 0 0.000 T 0.0000
TT 0 0.000

1 p-value of Hardy–Weinberg equilibrium test.
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3.7. Knockdown of Buffalo ABCG2 Inhibits Milk Fat Synthesis

To identify the shRNA with the highest interference efficiency against ABCG2, HEK-
293T cells were co-transfected with pEGFP-C1-ABCG2 along with the pLKO.1-sh1, pLKO.1-
sh2, and pLKO.1-sh3 vectors. The results demonstrated significant reductions in ABCG2
expression compared to the control (pEGFP-C1). Specifically, the expression of ABCG2
decreased by 44% (p < 0.01) with pLKO.1-sh1, by 76% (p < 0.01) with pLKO.1-sh2, and
by 94% (p < 0.01) with pLKO.1-sh3 (Figure 6). These findings indicate that pLKO.1-sh3
exhibited the highest interference efficiency against ABCG2. Consequently, pLKO.1-sh3
was selected for lentivirus packaging.

After the co-transfection of pLKO.1-sh3, pMD2G, and psPAX2 in HEK-293T cells,
the resulting lentivirus (Lv-sh3) was packaged and collected. Subsequently, the Lv-sh3
was transfected into BuMECs to achieve ABCG2 knockdown. The mRNA abundance of
ABCG2 in the Lv-sh3 group was significantly lower (59%) than that in the Lv-NC group
(p < 0.01; Figure 7A). The silencing of ABCG2 resulted in altered expression levels of related
genes, including decreases in SCAP, PPARG, PPAPGC1A, SREBF2, INSIG2, FASN, ACC,
and AGPAT6 expressions by 52%, 40%, 32%, 48%, 42%, 32%, 44%, and 59%, respectively,
compared to the Lv-NC group (p < 0.01 or p < 0.05). Moreover, the expressions of SREBF1
and INSIG1 were significantly increased by 1.46-fold (p < 0.05) and 2.04-fold (p < 0.01),
respectively (Figure 7C). Furthermore, the interference of buffalo ABCG2 led to a significant
decrease (p < 0.05) in the content of TAG in BuMECs (Figure 7B).
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4. Discussion

In this study, the complete CDS of the ABCG2 gene was successfully cloned from the
mammary tissues of Binglangjiang buffaloes, and the obtained sequence exhibited a high
homology of more than 97.47% with other Bovidae species. In addition, the transcriptional
region of the buffalo ABCG2 gene shared remarkable similarity with its counterparts of
other Bovidae species. A phylogenetic analysis based on the ABCG2 amino acid sequences
revealed that buffaloes clustered with other species of the Bos genus, and the motifs and
conserved structural domains of their ABCG2, were highly consistent. These findings
collectively suggest that the function of buffalo ABCG2 is likely similar to that of other
Bovidae species. A bioinformatics analysis displayed that buffalo ABCG2 is a non-secretory
protein with six transmembrane helices and engages in the biological process of solute trans-
port across lipid bilayers with ATP enzyme activity and ATP-enzyme-coupled transporter
activity.

In the mammary glands of dairy cows, sheep, and goats, the ABCG2 protein is pri-
marily expressed in alveolar epithelial cells and most ducts. The highest expression is
observed in the small intestine and mammary gland, with a high level in the liver and
moderate amounts in the lung, colon, and kidney [25]. The results of this study showed that
ABCG2 expression was the highest in the liver and cortex of the brain of lactating buffaloes,
followed by the mammary gland, adipose tissue, heart, and medulla of the kidney, while
showing very low levels in the small intestine, spleen, lung, muscle, and rumen, which is
slightly different from the results of the previous study [25]. We hypothesize that there are
two reasons for this situation; one is that there may be species differences in the expression
of the ABCG2 gene, and the other reason may be related to the different physiological
periods of the tissues. Whether this is the case needs further study. Furthermore, the
expression of this gene was significantly higher during peak lactation in the mammary
gland compared to that in the non-lactating mammary gland, which is consistent with the
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findings in dairy cows, sheep, and goats [25]. This reveals that buffalo ABCG2 may be
involved in the lactation process of buffaloes. In addition, the ABCG2 gene was identified
with five SNPs in river buffaloes, while it was monomorphic in swamp buffaloes. Although
all five SNPs are synonymous substitutions, a previous study has shown that synonymous
substitutions may alter the translation efficiency [26]. Therefore, we hypothesized that the
expression of the ABCG2 gene in the mammary glands of the two types of buffaloes is
distinct, which may be one of the reasons for the differences in the lactation performance
between the two types of buffaloes. In this study, the dominant alleles of the five SNPS
found in riverine buffaloes all have a tendency to be close to homozygous fixation, and this
homozygous fixation trend has long been realized in swamp buffaloes, indicating that the
ABCG2 gene sequence of the ancestors of riverine buffaloes and swamp buffaloes is consis-
tent. However, they may have undergone different nucleotide substitutions and genetic
drift processes, resulting in the differences in their current nucleotide sequences. From
another perspective, since the five SNPS found in riverine buffaloes are all synonymous,
indicating that the ABCG2 amino acid sequence of riverine buffaloes and swamp buffaloes
is identical, this reveals that ABCG2 is functionally conserved in both types of buffaloes.
It also revealed that the five SNPs found in this study may not have practical application
significance in the breeding selection scheme of buffaloes.

Many studies in different dairy cow populations have identified ABCG2 as a potential
quantitative trait locus (QTL) related to milk production, including the milk yield, milk fat,
and protein content [5,8,9,27]. However, its precise role in milk fat synthesis and secretion
remained inconclusive. Bionaz et al. [7] pointed out that ABCG2 plays an important role
in secreting “some” important milk components, and is possibly involved in cholesterol
transport, but the whole lactation period is not affected by cholesterol [28]. The only
confirmed role of ABCG2 in milk component secretion is in riboflavin, which is an essential
but limited nutrient for newborns. Therefore, a significantly upregulated expression of
this gene was observed during lactation, suggesting that ABCG2 may possess additional
functions beyond riboflavin secretion. Sterol regulatory element binding proteins (SREBFs)
are members of the basic helix-cyclic-leucine zipper transcription factor family, regulating
lipid homeostasis by controlling the gene expressions associated with cholesterol, fatty
acids, TAG, and phospholipid synthesis [29]. When the cholesterol levels drop below a
certain level, the binding of SCAP to the insulin-induced gene (INSIG) protein breaks down,
releasing SCAP. Then, SCAP binds to SREBF to make SREBF an active transcription factor,
which, in turn, activates the expression of its target genes to promote cholesterol synthesis.
On the contrary, when the concentration of cholesterol is high, the INSIG-SCAP complex
fails to activate SREBFs, thus inhibiting cholesterol synthesis and gene expression [29]. In
this study, the mRNA abundance of SCAP, SREBF2, and INSIG2 genes related to cholesterol
synthesis increased significantly after the overexpression of the buffalo ABCG2 gene in
BuMECs. It is speculated that ABCG2 might enhance cholesterol synthesis by aiding in
cholesterol extracellular transport. Follow-up experiments need to be further verified.
Our previous study has shown that the PPARG gene is an important core regulatory
gene of milk fat synthesis, and the knockdown of PPARG led to a marked decrease in
ABCG2 expression within BuMECs [16]. With regard to the fact that the overexpression
or interference of ABCG2 will lead to the increase or decrease in the expression of the
PPARG gene, we speculate that the regulation of PPARG by ABCG2 may be a positive
feedback loop. In the mammary glands of dairy cows, the profiles of PPARG, SREBF1,
and SREBF2 show high correlations with ABCG2 profiles. And the increase in the PPARG
levels at the onset of lactation reflects an elevated physiological demand for PPARG in
the activation of ABCG2 [30]. PPARG, PPARGC1A, and INSIG1 cooperate to regulate
the function/expression of SREBF1 in the milk fat synthesis of dairy cows [7], which is
consistent with the results of this study in which the expression of these genes had the
same trend after ABCG2 overexpression or interference. Fatty acid synthase (FASN) and
acetyl-CoA carboxylase α (ACC) are activated by acyl-CoA synthetase (ACSS) to synthesize
fatty acids [31]. This study also suggests that ABCG2 may increase the de novo synthesis of
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fatty acids by upregulating the expression of FASN and ACC. In addition, the expression
modulation of the AGPAT6 gene related to triglyceride synthesis by ABCG2 indicates its
potential in regulating the milk fat content. This is corroborated by the observed changes
in the triglyceride content upon the overexpression/knockdown of ABCG2.

5. Conclusions

In this investigation, we successfully isolated and characterized buffalo ABCG2, shed-
ding light on its functional attributes. The structural integrity of the transcriptional region,
as well as the presence of motifs and conserved domains, underscore the similarity between
buffalo ABCG2 and its counterparts in other Bovidae species. Notably, buffalo ABCG2
exhibited prominent expression levels in the liver and brain, with the mammary gland
following suit. Of particular interest, our findings unveiled a dynamic pattern of ABCG2
expression in the mammary gland, with the highest level observed during peak lactation.
This temporal variation indicates a potential role of buffalo ABCG2 in lactation processes.
Furthermore, the alterations in the mRNA expression observed in the key genes associated
with milk fat synthesis, coupled with changes in the cellular triglyceride content, under-
score the capacity of buffalo ABCG2 to orchestrate milk fat biosynthesis within BuMECs.
This study significantly advances our understanding of buffalo ABCG2’s role in modu-
lating milk fat synthesis. By unraveling these mechanisms, we lay the groundwork for
comprehending the genetic underpinnings and regulatory intricacies governing the milk
fat traits in buffaloes.

Supplementary Materials: The following supporting information can be downloaded at https://
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buffalo ABCG2; Figure S2. Structure prediction of buffalo ABCG2. (A) The secondary structure of
ABCG2 protein. (B) The tertiary structure of ABCG2 protein; Figure S3. Sequencing results indicate
polymorphisms in the coding region of buffalo ABCG2; Figure S4. Nucleotide differences in the
ABCG2 haplotype sequences among some species of Bovidae. Number represents the position of
coding region. Dots (.) denote identity with Buffalo_hap1. Nucleotide substitutions are denoted
by different letters. Missing information is denoted by a question mark (?); Table S1. Primer
information used for qPCR investigated in this study; Table S2. Primer information for polymorphism
identification; Table S3. Information of shRNA used for knockdown of ABCG2; Table S4. Haplotype
information of buffalo ABCG2 gene.
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