
Citation: Zdun, M.; Ruszkowski, J.J.;

Butkiewicz, A.F.; Gogulski, M.

Arterial Blood Supply to the Cerebral

Arterial Circle in the Selected Species

of Carnivora Order from Poland.

Animals 2023, 13, 3144. https://

doi.org/10.3390/ani13193144

Academic Editors: Karolina Barszcz

and Michal Skibniewski

Received: 14 September 2023

Revised: 30 September 2023

Accepted: 6 October 2023

Published: 8 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Communication

Arterial Blood Supply to the Cerebral Arterial Circle in the
Selected Species of Carnivora Order from Poland
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Simple Summary: Carnivores are a wide, diverse group of mammals whose representatives live all
over the world. The study describes arterial blood supply to the cerebral arterial circle of the group
of selected species in the Caniformia suborder living in Poland. The results were discussed based on
the current knowledge of this field of research.

Abstract: Carnivores are a wide, diverse group of mammals whose representatives live all over the
world. The study presents the results of the analysis of the arterial vascularization of the blood supply
to the cerebral arterial circle of selected species in the Caniformia suborder living in Poland. The
selected group consists of wild and farm animals—105 animals in total. Three different methods were
used—latex preparation, corrosion cast, and cone-beam computed tomography angiography. The
main source of blood for encephalon in the described species is the internal carotid artery, and the
second one is the vertebral artery. The results were discussed in relation to the current knowledge of
this field of research. Information on the potential physiological meaning of such vascular pattern
has been provided.
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1. Introduction

Carnivores (order Carnivora) are a diverse group of mammals that managed to pop-
ulate many different habitats on all of the continents [1]. According to the International
Union for the Conservation of Nature, there are 290 species belonging to this order [2]. The
order consists of two suborders—Feliformia and Caniformia. In the study, only represen-
tatives of the Caniformia suborder were used. The described species belong to the Polish
fauna and are members of four families—Canidae, Mustelidae, Procyonidae, Phocidae. Red
fox (Vulpes vulpes), gray wolf (Canis lupus), European badger (Meles meles), Eurasian otter
(Lutra lutra), and gray seal (Halichoerus grypus) are native to Polish fauna. The raccoon dog
(Nyctereutes procyonoides), American mink (Mustela vison) and common raccoon (Procyon
lotor) are invasive species. American mink is also a fur animal that is kept on farms.

The vascular patterns of arteries of different animal species have been the subject of
anatomical research for decades. Various, often species-specific, vascular systems have been
described in many species of carnivorous animals, often focusing on specific parts of the
body. The cerebral arterial circle is among the most frequently described anatomical regions
in this aspect [3–5]. The blood supply to these structures is often overlooked. The aim of
this study was to assess and describe detailed arterial patterns of the arteries supplying
blood to the arterial circle of the brain in the described species.
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2. Materials and Methods
2.1. Animals

The study was conducted on 105 specimens of the Carnivora order of 8 species (Table 1).
The animals used were adults of both sexes. Only animals without the trauma of the head
and neck region were included in the research group. The animals were obtained from
hunters, breeders, and zoos. All animals were obtained as post-mortem material. No
animals were killed for the purpose of the study. The species distribution and number of
individuals used in the study are presented in Table 1.

Table 1. The number of specimens examined in this study.

Family Species Method 1 Method 2 Method 3

Canidae

Raccoon dog (Nyctereutes procyonoides) 5 10 -

Red fox (Vulpes vulpes) 5 13 2

Gray wolf (Canis lupus) 1 2 1

Mustelidae

American mink (Mustela vison) 5 13 2

European badger (Meles meles) 5 13 2

Eurasian otter (Lutra lutra) 3 7 2

Procyonidae Common raccoon (Procyon lotor) 3 8 -

Phocidae Gray seal (Halichoerus grypus) 1 1 1

2.2. Methods

In the study, different anatomical methods were used to obtain a high-quality, complete
image of the vascular pattern of the described area.

The classical anatomical preparation methods used in the study included latex prepa-
ration (method 1) and corrosion cast (method 2). A more advanced imaging method was
the use of maximum-intensity projection reconstruction of cone-bean computed tomog-
raphy scans (method 3). While working with the cadavers, additional precautions were
taken. Researchers were wearing masks with high-quality filters and were working in a
preparation room with an efficient ventilation system. The system settings were 20 air
changes per 1 h.

Method 1
This method was used in 28 specimens. The method consists of injecting bilateral

common carotid arteries with liquid, red LBS 3060 latex. After the injection, the preparations
were cured in 5% formaldehyde solution for 14 days. The next step was rinsing specimens
with running water for 48 h to flush out the excess formaldehyde. The next stage consisted
of the manual dissection of soft tissues. The excess connective tissue was cut, which resulted
in red arteries being obtained from the surrounding soft tissues.

Method 2
This method was used in 67 preparations. The method consists of injecting bilateral

common carotid arteries with a tinged solution of the chemo-setting acrylic material
Duracryl® Plus (SpofaDental, Jičín, Czech Republic). This material hardened after the
injection, and the specimens were submerged in the detergent solution (Persil, Düsseldorf,
Germany) for the process of maceration. The temperature of water used for this process
was 42 ◦C. The process lasted 28 days. This method produced a red acrylic cast of the
arterial vessels on the bone scaffold.

Method 3
This method was used in 10 preparations. The method consists of administering

contrast agent (barium sulphate; barium sulphuricum 1.0 g/mL, Medana, Sieradz, Poland)
to bilateral common carotid arteries. The scans were performed at the University Centre
for Veterinary Medicine in Poznan, Poland, with the use of Animage Fidex computed
tomography (Fidex Animage, Pleasanton, CA, USA).
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After the examination, the scans were studied, and proper images were taken in FidexGUI
(version 3.6.0, Animage, USA) with maximum-intensity projection image reconstruction.

The names of the anatomical structures were standardized according to Nomina
Anatomia Veterinaria [6].

All of the photographs taken during the study were taken with a digital camera
(Canon EOS 250D). The photographs were saved in JPG format. GIMP v2.10.18 digital
image editing software was used to process the photographs.

3. Results

The main source of blood for encephalon is the internal carotid artery (arteria carotis
interna). This artery branches off from the common carotid artery (arteria carotis communis)
at the point where the main arterial stream becomes the external carotid artery (arteria
carotis externa). The internal carotid artery at the initial segment creates a thickening called
the carotid sinus (sinus caroticus) (Figures 1–4). This is most demonstrable in the gray
seal, next in the gray wolf and red fox, but in six red foxes, its expression is weaker. In the
European badger, it is slightly embossed. In the raccoon dog and common raccoon, it is
poorly marked and takes on a more elongated, less convex shape. In the American mink
and Eurasian otter, this vessel branches off with the occipital artery (arteria occipitalis) via
a common trunk. This trunk is short and there is no carotid sinus observed. No thickening
is observed after the trunk has split into the internal carotid and occipital arteries.
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Figure 1. Ventromedial view of the tympanic bulla region of the gray seal. Corrosion cast. The white 
bar corresponds to a length of 1 cm. bt—tympanic bulla; 1—common carotid artery; 2—carotid 
sinus; 3—internal carotid artery; 4—external carotid artery. 

Figure 1. Ventromedial view of the tympanic bulla region of the gray seal. Corrosion cast. The white
bar corresponds to a length of 1 cm. bt—tympanic bulla; 1—common carotid artery; 2—carotid sinus;
3—internal carotid artery; 4—external carotid artery.
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carotid artery; 2—carotid sinus; 3—initial part of the internal carotid artery; 4—the part of the 
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Figure 3. Maximum intensity projection reconstruction of the angioCT scan of the head of the gray 
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Figure 2. Ventromedial view of the tympanic bulla region of the red fox. Medial part of the tympanic
bulla has been removed. Corrosion cast. The white bar corresponds to a length of 1 cm. 1—common
carotid artery; 2—carotid sinus; 3—initial part of the internal carotid artery; 4—the part of the carotid
artery that penetrates the carotid canal; 5—the vascular look of the internal carotid artery near the
rostral opening of the carotid canal.
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Figure 3. Maximum intensity projection reconstruction of the angioCT scan of the head of the gray
seal. The white bar corresponds to a length of 1 cm. 1—common carotid artery; 2—carotid sinus;
3—internal carotid artery.

Next, the internal carotid artery heads dorsorostrally and penetrates the carotid canal
(canalis caroticus) through the caudal foramen of the carotid canal. In Canidae, this foramen
is located near the caudal end of the tympanic bulla (bulla tympanica) (Figures 2 and 5), in
the Mustelidae (Figure 6) and common raccoon it is near to the middle of the length of the
tympanic bulla, and in Eurasian otter (Figures 7 and 8) it is positioned even more rostrally,
in the one-third rostral part of the tympanic bulla. Thus, in this species of carnivores, the
internal carotid artery enters the skull more rostrally, and the carotid canal is shorter.
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Figure 4. Lateral view of branches of the common carotid artery of the gray seal. Latex preparation.
The white bar corresponds to a length of 1 cm. 1—common carotid artery; 2—carotid sinus; 3—external
carotid artery; 4—occipital artery; 5—internal carotid artery.

Animals 2023, 13, x FOR PEER REVIEW 5 of 13 
 

 
Figure 4. Lateral view of branches of the common carotid artery of the gray seal. Latex preparation. 
The white bar corresponds to a length of 1 cm. 1—common carotid artery; 2—carotid sinus; 3—
external carotid artery; 4—occipital artery; 5—internal carotid artery. 

Next, the internal carotid artery heads dorsorostrally and penetrates the carotid canal 
(canalis caroticus) through the caudal foramen of the carotid canal. In Canidae, this 
foramen is located near the caudal end of the tympanic bulla (bulla tympanica) (Figures 2 
and 5), in the Mustelidae (Figure 6) and common raccoon it is near to the middle of the 
length of the tympanic bulla, and in Eurasian otter (Figures 7 and 8) it is positioned even 
more rostrally, in the one-third rostral part of the tympanic bulla. Thus, in this species of 
carnivores, the internal carotid artery enters the skull more rostrally, and the carotid canal 
is shorter. 

 
Figure 5. Maximum intensity projection reconstruction of the angioCT scan of the head of the gray 
wolf. The white bar corresponds to a length of 1 cm. 1—common carotid artery; 2—internal carotid 
artery; 3—occipital artery; 4—ascending pharyngeal artery. 

Figure 5. Maximum intensity projection reconstruction of the angioCT scan of the head of the gray
wolf. The white bar corresponds to a length of 1 cm. 1—common carotid artery; 2—internal carotid
artery; 3—occipital artery; 4—ascending pharyngeal artery.
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The white bar corresponds to a length of 1 cm. bt—tympanic bulla; 1—common carotid artery; 2—
external carotid artery; 3—internal carotid artery. 
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Figure 6. Ventromedial view of the tympanic bulla region of the European badger. Corrosion cast.
The white bar corresponds to a length of 1 cm. bt—tympanic bulla; 1—common carotid artery;
2—external carotid artery; 3—internal carotid artery.
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Figure 7. Ventromedial view of the tympanic bulla region of the Eurasian otter. Corrosion cast. The
white bar corresponds to a length of 1 cm. bt—tympanic bulla; 1—external carotid artery; 2—internal
carotid artery.
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Figure 8. Maximum intensity projection reconstruction of the angioCT scan of the head of the
Eurasian otter. The white bar corresponds to a length of 1 cm. bt—tympanic bulla; 1—external carotid
artery; 2—occipital artery; 3—internal carotid artery.

The diameter of the extracranial segment of the internal carotid artery is larger than
that of the occipital artery in foxes, European badgers, gray seal and American mink. In the
raccoon dog, Eurasian otter and wolf, these vessels are of equal diameter. In the vascular
variations, the diameter of the internal carotid artery is smaller than that of the occipital
artery in one wolf, while in one Eurasian otter, the internal carotid artery is an artery with a
larger lumen. The carotid canal runs along the medial surface of the eardrum. In the carotid
canal, the vessel runs rostrally. At the level of the rostral foramen of the carotid canal, it
forms a vascular loop, and changes direction by 180◦ (Figures 2 and 5). For a short distance,
it runs caudally. Then, it circles an arc once again, this time with a more gentle course, and
heads dorsally, entering the cranial cavity. This vascular loop at the level of the rostral
foramen of the carotid canal protrudes from the foramen in the gray wolf. This vessel
protrudes slightly or is on the border of the foramen in the fox, raccoon dog and Eurasian
otter; it does not protrude in the European badger. In the American mink, common raccoon
and gray seal, this artery does not create a vascular loop. In the American mink via the
rostral foramen of the carotid canal enters the branch from the ascendance pharyngeal
artery (arteria pharyngea ascendens) and joins the internal carotid artery. In the fox, gray
wolf, European badger and raccoon dog this branch from the ascendance pharyngeal artery
joins the vascular loop (Figure 5). In other species, no connection was observed between
the branch of the ascending pharyngeal artery and the internal carotid artery, although this
vessel ran in close proximity to the aforementioned foramen. In the Eurasian otter, from
the internal carotid artery branched off the small vessel that heads to the caudal wall of the
pharynx. No ascending pharyngeal artery from the external carotid artery was observed.
Before the internal carotid artery begins to form the cerebral arterial circle, it is joined by an
anastomosing branch from the external ophthalmic artery (ramus anastomoticus) (Figure 9).
The external ophthalmic artery is a branch from the maxillary artery (arteria maxillaris).
This last vessel is a continuation of the external carotid artery. In the common raccoon, this
connection is observed between the external ethmoid artery (arteria ethmoidalis externa)
and the internal carotid artery. In two specimens, this connection is between the external
ophthalmic artery and the internal carotid artery. No such connection was observed in the
Eurasian otter, American mink and gray seal. The internal carotid artery then divides into
the rostral cerebral artery (arteria cerebri rostralis) and the caudal communicating artery
(arteria communicans caudalis). The latter is joined to the basilar artery (arteria basilaris).
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Figure 9. Maximum-intensity projection reconstruction of the angioCT scan of the head of the European
badger. The white bar corresponds to a length of 1 cm. 1—external carotid artery; 2—vertebral artery;
3—anastomosing branch to the occipital artery; 4—internal carotid artery; 5—external ophthalmic
artery; 6—anastomosing branch from the external ophthalmic artery.

The third source of blood is the vertebral artery (arteria vertebralis) (Figure 10). This
vessel passes into the transverse process foramen (foramen processus transversus) of the
cervical vertebrae.
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Figure 10. Lateral view of the first three cervical vertebrae of the gray seal. Corrosion cast. The
white bar corresponds to a length of 1 cm. C1—first cervical vertebra; C2—second cervical vertebra;
1—vertebral artery.

Between the second and third cervical vertebra branches off the medial branch of
the vertebral artery. Bilateral branches form the ventral spinal artery (arteria spinalis
ventralis) (Figure 11). This artery heads cranially and joins the basilar artery. Moreover,
the vertebral artery heads cranially and enters the transverse process foramen of the atlas.
Then, it exits more cranially under the wing of the atlas. At that point, the anastomosing
branch to the occipital artery (ramus anastomoticus cum a. occipitali) branches off. Such
arterial connection was not observed in a seal. Next, the vertebral artery enters the lateral
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vertebral foramen (foramen vertebrale leterale) of the atlas, penetrates the vertebral foramen
(foramen vertebrale) and joins the basilar artery. This pattern is present in the Eurasian
otter, American mink, foxes and European badger. In the common raccoon, no ventral
spinal artery joining the basilar artery was observed. In the gray seal, no anastomosing
branch to the occipital artery was observed. Moreover, in this species, the ventral spinal
artery branched off between the first and second cervical vertebra.
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wraps around the wing of the first cervical vertebra before entering the vertebral lateral foramen.

4. Discussion

The well-developed internal carotid artery is the main source of blood for the cerebral
arterial circle in the dog [7–9], as well as the Arctic fox [7,10], common fox [11,12] silver
fox [13], raccoon dog, and species of the seal family (Phocidae), mustelids family (Mustel-
idae), bear family (Ursidae), raccoon family (Procyonidae) [7] of the order Carnivora. In
Feliformia, the second group of Carnivores, the extracranial part of the internal carotid
artery is not present in adult animals [14,15]. In fetuses and young cats, this artery provides
blood to the encephalon, but at about 4–8 weeks of age this artery is incomplete and the
connection between the common carotid artery and the cerebral arterial circle ceases to
function [15]. The connection of the cerebral arterial circle to the internal carotid artery
has been found in some rodents (Rodentia): in the European beaver [16] and Canadian
beaver [17], the Egyptian spiny mouse [18], the American muskrat [7], the rat [7,19] and
the ursine [7]. A fully preserved internal carotid artery, which is the main source of blood
to the brain, is found in all representatives of the odd-toed ungulates, i.e., the horse and
other representatives of the family Equidae [7,20,21], in tapirs of the family Tapiridae and
the rhinoceros of the family Rhinocerotidae [7]. It is also found in the rabbit and hare of
the order Lagomorpha [7,22], in the Abyssinian highlander of the order Hyracoidea, in
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the wallaby and red kangaroo of the order Marsupialia, the two-toed sloth of the order
Xenarthra, in the primates of the order Primates [7,23,24], and in the elephant of the order
Proboscidea [25,26]. The different courses of this vessel in various animal species were
described. In the horse, the course of the internal carotid artery is straight and it does
not form a bend before entering the cranial cavity. This vessel runs on the dorsal and
rostral surface of the medial compartment of the guttural pouch and passes through the
ragged opening—foramen lacerum [27,28]. Then, it enters the cranial cavity, where it
passes through the ventral petrosal sinus and enters the venous cavernous sinus; here, it
forms an S-shaped curve [29,30]. Such a course also occurs in the donkey [31]. Similarly,
in the dog, the artery takes a fairly direct course by way of the jugular foramen, through
the occipito-tympanic fissure and into the cavernous sinus [32]. Thus, this vessel does
not pass between the eardrum and scalene parts of the temporal bone, and thus does not
interfere with sound perception, as pointed out by Zedenov [33]. A preserved internal
carotid artery is also found in dolphins or narwhals. However, this vessel extends into
the tympanic cavity, passing through the middle ear in a semicircular arc [34,35]. As is
well known, for these marine mammals, their sense of hearing is their most important
sense, and they use it to emit and receive infrasound. In light of this information, it can be
assumed that the obliteration of this vessel in ruminants is not related to their emission
of low-frequency sounds, but is merely the result of developmental changes associated
with a change in the position of the eardrum portion of the temporal bone. To be sure, it
would be necessary to compare the frequency range of the waves emitted by the vessel
with the range of perceived sounds in these aquatic mammals, but Zedenov [33] does not
specify such a range. In animals in which obliteration does not occur, the course of this
vessel is different and the development of the cranial skeleton does not affect the course of
the internal carotid artery. Strategies of vascularization of the encephalon are different. In
some rodents, the basilar artery is the main source of blood. In the guinea pig, it directs as
much as about 66% of the blood to the cerebral arterial circle [36]. A strong basilar artery
has furthermore been described in the aguti [37], the porcupine [38], the capybara [39],
the common degu [40], nutria [41], European ground squirrel [42], chinchilla [43] or red
squirrel [44]. In camels, the basilar artery has a relatively large lumen; however, it does
not supply this organ to such an extent [45]. In the dromedary, the internal carotid artery
is responsible for supplying 13% of the blood to the rostral epidural rete mirabile [46],
and the vessels emerging from the rete mirabile are primarily responsible for cerebral
vascularization. In the dog, the internal carotid artery is also a strong vessel, accounting for
half the diameter of the external carotid artery [32]. In ruminants, despite the obliteration
of the internal carotid artery, the basilar artery does not contribute significantly to the blood
supply to the brain, with the maxillary artery being of greatest importance [47–49]. In
addition to the obvious role of this vessel in supplying blood to the brain, other roles of
this vessel have also been considered. Maloney et al. [50] sought to test the hypothesis of
the role of the internal carotid artery in selective cooling of the brain in the horse. This
hypothesis relied on the exchange of heat between the blood in the vessel and the air sac
with which it comes into contact. However, the authors themselves stated that, assuming
that the contact between these structures is about 6% of the surface area of the bag, it is
not possible for the air to flow through the air sac in such a way that the temperature of
the blood in the vessel can be realistically reduced. The phenomenon of selective cooling
of the brain has been described in ruminants. However, the rostral epidural rete mirabile
is involved, along with the venous cavernous sinus, and the internal carotid artery is not
involved. Cooler venous blood returning from the nasal cavity washes over the vessels
of the weird network, causing a drop in the temperature of arterial blood flowing into
the brain [51,52]. In addition, it is important to note a feature of this artery, which is the
serpentine course of the intracranial portion of this vessel. Ruedi [53] equates the probable
function of this fragment in the domestic horse to attenuate the pulse wave of arterial blood
and protect the brain from a surge of pressure. This course of the vessel was also found in
llama [54].
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5. Conclusions

The results of this study describing blood supply to the arterial cerebral circle in
selected species of Caniformia members from Poland enrich the status of the current
knowledge in the field of the angiology of the Carnivora order. The results may also
contribute as a baseline for further physiological and pathological studies in the field of
veterinary medicine.
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54. Zdun, M.; Grzeczka, A.; Zawadzki, M.; Frąckowiak, H. The rostral epidural rete mirabile of the llama as a place of retrograde
transport of various substances–anatomical basics. J. Cell Biol. 2021, 9, 105–109. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0006-8993(69)90236-4
https://www.ncbi.nlm.nih.gov/pubmed/4311724
https://doi.org/10.1093/conphys/cow078
https://doi.org/10.2478/acb-2021-0015

	Introduction 
	Materials and Methods 
	Animals 
	Methods 

	Results 
	Discussion 
	Conclusions 
	References

