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Simple Summary: IgY antibodies are used in research and in the development of solutions for
immunotherapy and the immunodiagnosis of human and animal diseases. Affinity and avidity are
forces that describe the interaction between an antigen and antibody and are important characteristics
for the biological function of IgY antibodies. Therefore, these measures are fundamental variables for
the development of immunodiagnostic methodologies and immunotherapy based on IgY antibodies.
In this review, we address factors that influence the affinity and avidity of IgY antibodies and
the methodologies used for the determination of these strengths. We observed a low number of
studies on the factors influencing the maturation of IgY affinity and avidity and a wide variation in
the methodologies used to determine these variables. The development of studies characterising
the factors that influence the maturation of IgY antibody affinity and avidity, with standardised
methodologies for the determination of these forces, is of utmost importance.

Abstract: IgY antibodies are found in the blood and yolk of eggs. Several studies show the feasibility
of utilising IgY for immunotherapy and immunodiagnosis. These antibodies have been studied
because they fulfil the current needs for reducing, replacing, and improving the use of animals.
Affinity and avidity represent the strength of the antigen–antibody interaction and directly influence
antibody action. The aim of this review was to examine the factors that influence the affinity and
avidity of IgY antibodies and the methodologies used to determine these variables. In birds, there
are few studies on the maturation of antibody affinity and avidity, and these studies suggest that
the use of an adjuvant-type of antigen, the animal lineage, the number of immunisations, and the
time interfered with the affinity and avidity of IgY antibodies. Regarding the methodologies, most
studies use chaotropic agents to determine the avidity index. Studies involving the solution phase
and equilibrium titration reactions are also described. These results demonstrate the need for the
standardisation of methodologies for the determination of affinity and avidity so that further studies
can be performed to optimise the production of high avidity IgY antibodies.

Keywords: chicken IgG; immunoglobulin Y; affinity maturation; immunochemistry

1. Introduction

Avidity is a key measure of the strength of the interaction between antigen and
antibodies and plays a key role in antibody function [1]. The higher the avidity, the longer
the interaction time of the antigen with the antibody, and the more likely the antibody
is to trigger the biological reactions necessary for the elimination of the antigen [2]. The
increase in avidity throughout the development of the humoral immune response is a
characteristic of this response and an area of intense research [3]. Understanding the
molecular process involved in increased avidity is of fundamental importance, especially
in vaccine development. In poultry, there are few studies on the avidity and affinity of IgY
antibodies. These antibodies are equivalent to mammalian IgG antibodies and are the most
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abundant in serum, and their levels increase as the humoral immune response develops [4].
Currently, IgY antibodies have been used to develop applications for immunotherapy
and the immunodiagnosis of diseases in humans and animals [5]. Despite their many
advantages over mammalian antibodies, there are few IgY-based products available on the
market. Understanding the mechanisms involved in affinity maturation can result in the
establishment of immunisation protocols that lead to the production of high-avidity IgY
antibodies in the shortest possible time. Consequently, this can increase the competitiveness
of these antibodies compared to those produced in mammals. In the current work, we
review the studies that have investigated factors that affect the affinity and avidity of IgY
antibodies and the methodologies used to determine these variables.

2. General Characteristics of IgY Antibodies

IgY antibodies are one of the classes of immunoglobulins found in birds [5]. They were
initially called chicken IgG or 7S antibodies due to their similarities to mammalian IgG
antibodies [6]. These avian Y antibodies are related to the IgY antibodies found in reptiles
and amphibian birds [7,8]. They are found in blood and tissues and are transferred from
the circulatory stream to the developing yolk via specific receptors, where they are stored
and have the function of protecting the embryo [9]. In blood and yolk, the concentration
of IgY antibodies is variable and influenced by factors such as breed, age, and antigenic
stimulation [10–12]. Values between 4 and 14 mg/mL have been described in blood, while
values between 7 and 15 mg/mL have been observed in yolk [10–12]. Interestingly, there
is a direct proportional correlation between IgY antibody levels in serum and yolk [13].
To date, no significant differences have been described between IgY antibodies found in
serum or yolk, either in the structure or in their characteristics, such as an antigen-binding
capacity or avidity [14,15]. These immunoglobulins have a similar role to mammalian IgG.
They are produced in higher concentrations in the secondary immune response, acting as
opsonins and being involved in the activation of the complement system via the classical
pathway [16,17]. The molecular structure of IgY antibodies is similar to that of other
immunoglobulins. The IgY molecule is composed of two larger amino acid chains, the
so-called heavy chains (HCs), and two smaller chains, the so-called light chains (LCs), and
has an estimated molecular mass of approximately 170 kDa [18]. The HCs are joined via
disulfide bridges and each HC is also joined to a light chain via a disulfide bridge. The HCs
are composed of five immunoglobulin domains named, in the direction from the amino
terminal end to the carboxy terminal end, the HC variable domain, the 1st HC constant
domain, the 2nd HC constant domain, the 3rd HC constant domain, and the 4th HC constant
domain. The molecular mass of the HC is estimated to be approximately 65 kDa [18]. LCs
are composed of two domains, called the LC variable domain (amino-terminal region) and
the LC constant domain (carboxy-terminal region), and are approximately 18 kDa [18]. As
in other immunoglobulins, the antigen-binding site is formed via the the juxtaposition of
the LC variable domain and the HC variable domain, in which the positions of great amino
acid diversity are found, called complementarity determining regions (CDR1, CDR2, and
CDR3). These positions are very important for antibody avidity [16]. The IgY molecule
has two identical combinatorial sites and is considered a bivalent antibody. A detailed
description of the molecular structure and genes of IgY antibodies can be found in another
review [16].

3. Applications

IgY antibodies are molecules of great interest for immunotherapy, immunodiagnosis,
and basic research [19–24]. The production of IgY antibodies fulfils the current need
for reducing, replacing, and improving the use of animals, since IgY antibodies can be
produced in laying hens instead of using mammals, leading to less exposure to suffering
and a significant reduction in the number of animals used [25]. This is possible because
IgY antibodies can be obtained directly from the egg yolk of laying hens and other birds
via relatively simple and low-cost purification methods [26,27]. This avoids the need for
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bleeding or slaughtering the animals used for antibody production [23]. In addition, one
egg yolk can yield an additional 100 mg of IgY antibodies, and, considering that laying
hens produce almost 30 eggs per month, a single hen can replace several rabbits in antibody
production [23].

Immunotherapy studies show the possible use of IgY antibodies for the prevention
and treatment of diseases in humans and animals [17,28–32]. In particular, IgY antibodies
have been studied for immunotherapy of bacterial [12,33], viral [29,34], fungal [30,35],
parasitic [31,36], respiratory [37], enteric [38–40], and chronic diseases, such as periodontitis,
cystic fibrosis, and coeliac disease [41–43]. Within the context of immunotherapy, which is
different from the antibodies produced in mammals, IgY antibodies can be utilised without
the need for processing to remove the Fc portion. This is possible because IgY antibodies
do not activate the complement system or interact with mammalian Fc receptors, which
makes them safe for immunotherapy in mammals [17,23].

The development of IgY-based immunodiagnostic reactions is an area of intense re-
search [17,31,44,45], and reviews on the application of IgY antibodies in the diagnosis of
infectious and chronic diseases have been published [34,36,46]. IgY antibodies have been
used in the development of ELISA, Western blotting, immunohistochemistry, immunochro-
matography, immunofluorescence, radioimmunoassay, and biosensors for the diagnosis of
infectious and chronic diseases in humans and animals [46–48]. The use of IgY antibodies
presents some advantages over mammalian antibodies, the most important of which are the
non-interaction with the rheumatoid factor or mouse anti-IgG antibodies, with consequent
interference in the test results [49,50]; the non-activation of the complement system and
the generation of its fragments, which may result in the covering of epitopes important for
diagnosis [49]; and a higher molecular stability than mammalian antibodies [51].

In basic research, IgY antibodies are widely used. In particular, due to the phylogenetic
distance between birds and mammals, birds allow the production of specific antibodies
against the antigens conserved in mammals [23,24,52,53]. In addition, the fact that they can
be produced on a large scale enables the production of antibodies to meet the need for the
characterisation of proteins identified using genomic studies [54]. Finally, IgY antibodies
have been used to develop products for the optimisation of proteomics analyses [55].

In addition to these broad areas of application, studies have shown the application of
IgY antibodies in the areas of food preservation, bioterrorism, and genetically modified
organisms’ detection [23,56–58].

The main difficulties for the more intensive utilisation of IgY antibodies are probably
their sensitivity to the acidic pH of the stomach, low efficacy against gram positives,
higher production cost compared to antibiotic production, low half-life in mammals, low
bioavailability, and concerns regarding the development of allergic reactions because IgY
antibodies are egg-derived molecules [29,59,60].

4. Affinity and Avidity

Regardless of the different uses of IgY antibodies, as with other antibodies, their
main function is to interact with the antigen. This interaction depends primarily on the
combinatorial site of the antibody (ab)—the region formed via the union of the variable
regions of the HCs and LCs—and the epitope present on the antigen (ab). The Fc portion
of the antibody may also contribute to the ab–ag interaction [61]. This interaction and
its duration are related to a set of non-covalent forces that are inversely proportional to
distance, such as ionic forces, hydrogen bridges, hydrophobic forces, and van der Walls
forces [62,63]. These forces are stronger when the distance between the elements is smaller.
Therefore, the intensity of these forces is dependent on the complementarity between
the antigen and the antibody. The greater the complementarity of the antigen–antibody
interaction, the greater the binding force between them. The expression of the interaction
force between one epitope and one combinatorial site is called affinity. A key feature
of affinity is that it is variable during the development of a specific immune response,
with an increase in antibody affinity observed throughout contact with the antigen or
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with repeated contact with the same antigen [64,65]. This process is known as affinity
maturation [3,66]. Affinity can be expressed via the association constant at equilibrium (K)
or via the dissociation constant (Kd or Kdiss) [1].

Several studies show that affinity increases 10- to 100-fold over the course of the specific
immune response, and the mechanisms involved in affinity maturation are the subject of
intense research [3,66,67]. In mammals, it is well established that the process of affinity
maturation occurs in germinal centres. Cellular structures where B lymphocytes undergo
the process of somatic hypermutation result in changes in antibody variable regions and the
selection of antibody-producing B lymphocytes with higher affinity [3]. This process occurs
during an intense migration of B lymphocytes between the dark zone and the light zone
present in the germinal centres. The dark zone is an area within the germinal center where
numerous B lymphocytes are actively dividing and undergoing somatic hypermutation. In
contrast, the light zone contains fewer cells and is responsible for stimulating the survival
of B lymphocytes using various processes, the expression of antibodies with greater avidity,
and the death by apoptosis of unselected lymphocytes [68]. These processes involve
follicular dendritic cells and follicular T lymphocytes [68]. Experimental evidence suggests
that similar processes occur in the germinal centres of birds [69,70]. The germinal centre
found in chickens is formed via an outer region with intense cell proliferation and where
somatic hypermutation occurs [71,72], and an inner area where follicular dendritic cells
are present [73]. In addition, the presence of CD3+ cells, the class change from IgM to IgY
and the occurrence of apoptosis have been described in chicken GC [74,75]. An important
observation is a slower affinity maturation in chickens than in rabbits [76]. The authors
attribute this to the smaller number of variable regions in birds compared to mammals;
however, this result is the opposite to that observed by another study [15]. In any case,
there are few studies on the process of affinity maturation in these animals.

An important feature is that affinity does not fully describe the interaction between
the antigen and antibody. Considering that an antigen can have more than one copy
of the same epitope—i.e., have a valence greater than 1, and the antibody has at least
two identical antigen-binding sites—and is therefore at least bivalent, the strength of the
antigen–antibody interaction will depend on the valence of these molecules [2]. The role
of the antigen and antibody valence in the strength of the antigen–antibody interaction is
measured using avidity. Avidity is influenced by affinity, the valences of the antibody and
the antigen, and the geometry of the interaction between the antigen and antibody [1,2].
Avidity can also be expressed in terms of the constants K and Kd [1]. It is important to
emphasise that in the literature, the terms avidity and antibody affinity are often used
synonymously, and this can cause confusion.

An extremely important aspect is that affinity and avidity directly influence the bio-
logical role of the antibody [2,77]. For example, the ability to facilitate antigen phagocytosis
and the ability to activate the complement system contribute fundamentally to pathogen
elimination and this ability is directly associated with antibody avidity [2,77]. On the other
hand, the avidity of the antigen–antibody interaction is also associated with the severity of
autoimmune diseases [77,78]. In addition, avidity is a parameter that directly influences
immunodiagnostic reactions, including avidity measurements being used to assess the
stage of a given pathology [79–83].

Several methodologies have been developed for the assessment of antibody affin-
ity and avidity [1]. These methodologies can be grouped into the solution-phase, solid-
phase, and equilibrium titration ELISA methodologies. Affinity/avidity determinations
via solution-phase assays cover reactions where antigen and antibody interactions occur in
the solution and the free antigen concentration is determined [84]. In solid-phase method-
ologies, the antigen is bound to a support, and after the formation of the antigen–antibody
complex, the amount of antibody bound to the immune complex is determined [85];
whereas in equilibrium titration ELISA determinations, the amount of free antibody present
in a solution where the immune complex formation occurs is determined [86]. The afore-
mentioned methodologies involve the calculation of the association constant at equilibrium
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(K), a measure of the affinity of an antibody derived from the relationship between the
concentration of the formed antigen–antibody complex and the concentrations of the anti-
gen and free antibodies [1]. In addition to calculating the association constant, the affinity
can also be defined using the dissociation constant Kdiss, as determined via the reciprocal
of K (Kdiss = 1/K). Another way to evaluate the affinity/avidity of the antibody is the
determination of the affinity index (AI), which is obtained using the ratio between the
absorbances (Abs) arising from the antigen–antibody complex in the presence and absence
of a chaotropic agent. Chaotropic agents are molecules that can disrupt the network of
hydrogen bridges between water molecules and reduce the stability of the native state
of the protein by reducing the hydrophobic effect [87]. The affinity index has a direct
correlation with affinity [88].

In studies on IgY antibody avidity, methodologies that use chaotropic agents are the
most commonly used [89–92]. These methodologies vary in the type of chaotropic agent
used, either determining the avidity index from the ratio of the optical density obtained
in the presence and absence of the chaotropic agent, or from the reduction in the optical
density obtained from the use of increasing concentrations of the chaotropic agent. As in
mammals, the establishment of standards for the determination of IgY antibody avidity via
ELISA is extremely important [93].

5. Factors Affecting IgY Antibody Avidity

Like mammalian antibody avidity, chicken antibody avidity is a trait of great interest
and is directly related to the development of the humoral immune response. In birds, the
dynamics of the humoral immune response to an antigen are similar to those observed
in mammals [94]. Initially, there is an increase in the antibody levels within 8–10 days,
followed by a significant drop in antibody levels. With the administration of booster doses,
an increase in the antibody levels is observed [4,95].

Several factors can affect the antibody production in birds and mammals.

5.1. Adjuvants

One factor is the use of substances that enhance the magnitude and durability of
antibody production. These substances are called adjuvants [96]. For the production of
IgY antibodies in birds, the most frequently used adjuvants are complete and incomplete
Freund’s adjuvants. The primary immune response is profoundly affected by the use of
Freund’s adjuvant. The use of Freund’s complete adjuvant (FCA) causes a first increase in
antibody production between days 7 and 21, and a further increase in antibody production
between days 42 and 59 of the initial inoculation [97]. It is interesting to note that this two-
phase response stimulated via FCA also occurs in relation to the avidity of the antibodies
produced, with the antibodies produced in the second phase having higher avidity than
those in the first phase [97]. This effect of FCA appears to be dependent on the route
of inoculation, since an intramuscular inoculation of the antigen is associated with the
adjuvant results as an increase in the avidity of the antibodies produced, whereas an
intravenous inoculation without the adjuvant does not lead to a significant increase [98,99].
It is important to note that in mammals, an intravenous inoculation of the antigen without
adjuvant leads to a significant increase in the avidity of the antibodies produced, suggesting
significant differences in the affinity maturation process between birds and mammals [98].

It is interesting to note that FCA stimulates greater avidity than other adjuvants,
including FIA. A study comparing the effect of adjuvants FCA, ABM-N/-S, Gerbu, and
Titer Max on IgY antibody production and avidity showed that the use of FCA results
in higher avidity than the other adjuvants [76]. Another study comparing the effect of
FCA and Emulsigen-D adjuvant also showed the production of antibodies with higher
avidity with the use of FCA [100]. On the other hand, this effect of FCA on avidity may be
related to time, since it has been observed that the use of FCA results in a faster increase
in avidity compared to the use of Freund’s incomplete adjuvant or Hunter’s Titer Max
adjuvant; however, at the end of the immunisation period, the avidity obtained was similar
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when comparing the three adjuvants [101]. In addition, the ISA VG71 adjuvant was found
to have a similar effect to Freund’s adjuvants with respect to the avidity of the antibody
against bothropic venom [102].

5.2. Time

Regarding the time, high avidity rates (60 to 75%) are observed within 30 days after
the first immunisation [101–106], and in some studies, 100% avidity rates are observed
between day 7 and 21 of the first immunisation [107,108]. On the other hand, other studies
did not obtain antibodies with a high avidity index (below 60%) in this same period of
time [109–113]. In addition, some studies were not able to produce antibodies with high
avidity [114,115]. It is interesting to note that, in general, avidity increases throughout the
immunisation period and remains high [91,100–102,108,116]; however, some studies have
shown a reduction in avidity after the last immunisation [104,117].

5.3. Other Factors

In addition to the use of adjuvants and the timing of the immunisation, other factors,
such as antigen composition, genetics, and the presence of natural antibodies, can influence
the avidity of IgY antibodies.

Studies using carrier-bound peptides show that the carrier used has an effect on the
avidity of the antibody produced. Comparisons of the use of beta-lactoglobulin and KLH
carriers for the production of anti-insulin antibodies showed that the inoculation of the
insulin–KLH complex results in IgY antibodies with higher avidity than the application of
the insulin–beta–lactoglobulin complex [118]. The use of KLH or BSA as a carrier for cancer
15-3 antigen peptides seems to influence the avidity of the IgY antibodies obtained, with
the use of BSA as a carrier being related to the obtention of antibodies of higher avidity
than the use of KLH, with this effect being specific to peptide 1066-1085 [116].

Genetic selection seems to be able to influence IgY antibody avidity. In an experiment
selecting animals for the high and low levels of natural anti-KLH antibodies, it was observed
that the serum of animals selected for the high levels of anti-KLH AcNs have IgY anti-
KLH AcNs with higher levels of avidity than the AcNs of animals selected for the low
levels of anti-KLH AcNs, with this effect being specific for the KLH antigen [119]. The
animals selected for high SRBC antibody production have higher levels of anti-ovalbumin
and anti-KLH natural antibodies (NCAs), and these antibodies have a higher avidity
index than the same NCAs from the animals selected for the low anti-SRBC antibody
production [120]. In both studies, the observed effect on avidity was influenced by the
antigen analysed [119,120].

Furthermore, inoculation via intramuscular, intradermal, and subcutaneous routes and
the dose of the antigen do not seem to influence the avidity of the antibodies obtained [112].

6. Comparison of Avidity of Avian and Mammalian Antibodies

Few studies have compared antibody avidity in birds and mammals. In one study
the authors obtained Kd values of 1 × 10−12 mol/L in birds and Kd 7 × 10−13 mol/L in
guinea pigs [121]. In another study, K values of 1.3 × 1010 L/mol and 3.1 × 1010 L/mol
were observed in birds and sheep, respectively [15]. An interesting result was found
when the avidity was followed by a long immunisation process. In this study it was
observed that after the first immunisation, the avidity of antibodies in birds was higher
(4.7 × 109 L/mol) than in sheep (5.9 × 108 L/mol), but after the fourth immunisation,
the avidity levels increased only 2-fold in birds and 60-fold in sheep [15]. On the other
hand, other studies have observed a higher avidity of IgY antibodies towards mammals.
K values ranging from 0.3 × 105 M−1 to 15.6 × 106 M−1 for IgY antibodies and from
0.6 × 105 M−1 to 9.2 × 105 M−1 for rabbit IgG antibodies have been observed [122]. Similar
results were obtained in the comparison of chicken IgY and cow IgG antibodies against
Escherichia coli antigen K99 [123], as well as chicken IgY and rabbit IgG anti-progesterone
antibodies [124] and anti-HER and anti-human telomerase IgY antibodies in relation to
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rabbit IgG and mouse IgG (monoclonal) anti-HER antibodies and mouse IgG (monoclonal)
anti-telomerase antibodies [125], respectively. In addition, other studies did not observe
significant differences between birds and rabbits [76,101,126]. In relation to the comparison
between IgY antibodies from laying hens and from rabbits, the values of Kd 2.6 × 10−8 and
Ka of 0.478 × 108 M−1 for IgY antibodies and Kd of 2.5 × 10−8 and Ka of 0.39 × 108 M−1

for rabbit IgG antibodies have been observed [126]. Considering the possibility that the
differences observed in these studies are due to the differences in species, strains, sex,
and immunisation protocols, as well as the types of animals, further studies are needed
to demonstrate that IgY antibodies values close to mammalian avidity can be obtained.
This is especially relevant in studies on immunoprophylaxis and immunotherapy with
IgY antibodies.

7. Methodology for the Determination of Affinity and Avidity of IgY Antibodies

Most studies on antibody affinity and avidity utilise solid phase methodologies. These
studies assess IgY antibody avidity by calculating the AI using urea, magnesium chloride,
or ammonium thiocyanate as the chaotropic agent. A concentration of 6 M of urea is the
most commonly used. However, there is a great diversity of methodologies where the
incubation time and the buffer solution of the chaotropic agent vary. Some studies use
incubation for 5 or 10 min with 6 M of urea in PBS-Tween [100,106,107,116,117,127,128];
others use 6 M of urea [91,108] or 6 M of urea in PBS [111], or 6 M of urea in buffered
saline [90,129]. Other studies use 6 M of urea in PBS-Tween only at the time of washing
after the addition of the IgY samples [103,105]. In addition, other concentrations of urea
can be used, such as 1 M [114] and 8 M [110]. For the use of magnesium chloride, two
conditions are observed: incubation for 30 min after the incubations with the antibody
samples [109,112,115], or the addition of magnesium chloride together with the antibody
sample of magnesium chloride [101]. Ammonium thiocyanate was used in only one study,
which determined the AI as the molarity of ammonium thiocyanate required for a 50%
reduction in optical density relative to optical density without ammonium thiocyanate [76].

In addition to these methodologies, other solid phase methodologies have been used
to assess IgY antibody avidity using the ELISA reactions [119,123], protein assay [130,131],
or detection via technologies such as surface plasmon resonance [132,133] or a layered
peptide array [125].

With regard to solution phase methodologies, most papers utilised radioimmunoassay
reactions to assess IgY avidity [14,15,121,124,134,135]. However, indirect ELISA [120] or
a fluorescence reaction have also been used [122], with the characteristic that in the vast
majority of them, K or Kdiss values of IgY antibodies have been obtained. Another way to
obtain an estimate of affinity is the ABC test, where the labelled antigen is incubated [97].
Finally, the least commonly utilised type of methodology to assess IgY antibody avidity is
equilibrium titration ELISA [16,118,126]. In two of these studies, K or Kdiss values were
obtained [16,126].

8. Conclusions

IgY antibodies have an affinity and avidity comparable to IgG antibodies produced by
mammals. However, the processes and factors involved in the affinity/avidity maturation
of IgY antibodies in birds are poorly understood. The number of studies on this topic is
small. These studies show that affinity/avidity maturation is influenced by the type of
adjuvant used, the number of antigen doses, the dose interval, the characteristics of the
antigen, and the animal used. It is interesting to note that most studies use the determina-
tion of the avidity index via ELISA, probably due to its low cost and simplicity. However,
there is great variability in the methodologies used, making it difficult to compare the
results and identify the factors involved in affinity/avidity maturation accurately. Con-
sidering that these variables directly influence antibody action, it is crucial to develop a
widely adopted ELISA methodology for determining avidity in IgY antibody production
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research. This would greatly facilitate the development of solutions in immunotherapy and
immunodiagnosis based on IgY antibodies.
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