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Simple Summary: Proper development of the fetal lung is vital to the survival and healthy growth
of pigs after birth, but many factors can disturb the normal growth of the fetal pig lung. In the
previous study, we found that the Hoxa1 mutation of g.50111251 G > TC resulted in the congestion
and edema of fetal lungs, and all neonatal Hoxa1−/− piglets died of respiratory failure during
the suckling period. The results of this study showed that supplementing all-trans retinoic acid
(ATRA) to pregnant sows alleviated the dyspnea of neonatal Hoxa1−/− piglets by increasing the
IFN-γ concentration (p < 0.05), airspace area (p < 0.01) and pulmonary microvessel density (p < 0.01);
increasing the expression of VEGFD (p < 0.01), PDGFD (p < 0.01), KDR (p < 0.01), ID1 (p < 0.01), and
NEDD4 (p < 0.01); and decreasing the septal wall thickness (p < 0.01) and the expression of SFTPC
(p < 0.01) and FOXO3 (p < 0.01).

Abstract: Neonatal Hoxa1−/− piglets were characterized by dyspnea owing to the Hoxa1 mutation,
and maternal administration with ATRA alleviated the dyspnea of neonatal Hoxa1−/− piglets. The
purpose of this experiment was to explore how maternal ATRA administration rescued the abnormal
fetal lungs of Hoxa1−/− piglets. Samples of the lungs were collected from neonatal Hoxa1−/− and
non-Hoxa1−/− piglets delivered by sows in the control group, and from neonatal Hoxa1−/− piglets
born by sows administered with ATRA at 4 mg/kg body weight on dpc 12, 13, or 14, respectively.
These were used for the analysis of ELISA, histological morphology, immunofluorescence staining,
immunohistochemistry staining, and quantitative real-time PCR. The results indicate that the Hoxa1
mutation had adverse impacts on the development of the alveoli and pulmonary microvessels of
Hoxa1−/− piglets. Maternal administration with ATRA at 4 mg/kg body weight on dpc 14 rescued
the abnormal lung development of Hoxa1−/− piglets by increasing the IFN-γ concentration (p < 0.05),
airspace area (p < 0.01) and pulmonary microvessel density (p < 0.01); increasing the expression
of VEGFD (p < 0.01), PDGFD (p < 0.01), KDR (p < 0.01), ID1 (p < 0.01), and NEDD4 (p < 0.01);
and decreasing the septal wall thickness (p < 0.01) and the expression of SFTPC (p < 0.01) and
FOXO3 (p < 0.01). Maternal administration with ATRA plays a vital role in rescuing the abnormal
development of lung of Hoxa1−/− fetal piglets.

Keywords: Hoxa1 mutation; alveoli; pulmonary blood vessel; maternal administration; ATRA;
fetal piglets
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1. Introduction

The lung is composed of airways, blood vessels, nerves, connective tissues, and alveoli.
Blood vessels and alveoli have crucial functions in oxygen inhalation and carbon dioxide
exhalation [1]. An alveolus is a tiny sac separated by a septum, and the surfaces of alveoli
are lined by cells of squamous alveolar type 1 (AT1) and cuboidal alveolar type 2 (AT2) [2].
AT1 cells are responsible for gas exchanges with the surface markers of T1α and aquaporin
5 (AQP5) [3]. AT2 cells are small cuboidal cells with surface markers of surfactant protein
C (SFTPC), and have metabolic, secretory, progenitor, and immunological functions [4,5].
SFTPC is a mixture of proteins and lipids that can prevent alveoli from collapsing during
gas exchange.

Lung development is controlled by many factors, such as genes, nutrients, and micro-
biota. The results from previous experiments have shown that a decrease in the expression
of pulmonary vascular endothelial growth factor (VEGF) can lead to an increase in the apop-
tosis of alveolar and bronchial cells [1], and maternal feeding with a vitamin A-deficient
diet causes fetuses to develop lung hypoplasia [6]. Intrauterine growth retardation (IUGR)
reduces the number of alveoli and the density of blood vessels in animals, increases the
thickness of alveolar septa, and leads to an increase in alveolar size and a decrease in the
alveolar number in animals [7]. The lack of nutrients in the alveolar stage of sheep lung
development mainly damages the expression of surfactant proteins in the lungs before
birth, restricts pulmonary vascular growth, reduces the alveolar surface area after birth, and
thickens the gas–blood barrier [8]. In the cystic stage of lung development in intrauterine
stunted mice, the possibility of gas exchange in the lungs decreased, owing to the thickened
septa of the distal alveolus and the reduced elastin expression and alveolar maturation [9].
Retinoic acid (RA) is one of the bioactive metabolites of vitamin A and has vital functions
in lung development [10,11]. RA can increase the number of alveolar cells in newborn
animals [12], promote the activity of AT2 cells, inhibit their apoptosis, and convert AT2 cells
to AT1 cells [13]. RA can also attenuate lung injury induced by hyperoxia [14], preserve the
normal formation of alveoli during lung development under the condition of inadequate
energy intake [15], affect the development of AT2 cells [6], and induce the formation of
primordial lungs by controlling the expression of fibroblast growth factor 10 (Fgf10) [16].
The pathway of AR may play an essential role in regulating intramembranous transport
across the ovine amnion into the fetal vasculature by effecting VEGF expression [17]. Early
prenatal RA administration increases lung growth, restores lung maturation, and improves
arterial reactivity [18], while maternal administration of RA reverses lung malformation,
including its effects on the radial alveolar count, type II/type I ratio, and surfactant protein
expression [19]. All-trans retinoic acid (ATRA) directly regulates the expression of AQP3
and amniotic fluid volume through binding retinoic acid receptor alpha (RARA) and death
receptor 5-retinoic acid receptor element (DR5-RARE) [20].

Gene knockout or mutation damage the normal development of the lungs, and this
might be related to the changed expression of genes involved in the development of blood
vessels and alveoli. Knocking out an enhancer of Homeo box A1 (Hoxa1) can lead to a
decrease in the expression of Hoxa1, cellular retinoic acid binding protein 1 (CRABP1), and
other genes that can control the development of endoderm [21]. The Hoxa1 mutation led to
a decrease in the expression of CRABP1 in fetal pigs and an increase in the expression of
Cytochrome P450 26A1(CYP26A1), which decomposes retinoic acid [22], indicating that
Hoxa1 may not only affect the expression of retinoic acid synthesis genes, but also affect
the expression of retinoic acid transport and metabolism-related genes. In addition, Hoxa1
knockout led to the short breath and death of animals in the perinatal period, owing to
the abnormal expression of genes related to early embryo endoderm differentiation [23].
Previous experiments have found that the Hoxa1 mutation caused ear deformities, dyspnea,
and death of Hoxa1−/− piglets shortly after birth, and the congestion and swelling of the
lungs appeared after dissection (Figure 1A). In the experiment involving rescuing the
ear malformations of neonatal Hoxa1−/− piglets by maternal administration with ATRA
at different days post coitum (dpc), we found that the abnormal respiratory symptoms
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and the congestion and swelling in the lungs of neonatal Hoxa1−/− piglets were also
alleviated (Figure 1B). The purpose of this experiment was to explore how maternal ATRA
administration rescues the abnormal fetal lungs of Hoxa1−/− piglets.
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Figure 1. Effects of Hoxa1 mutation and maternal ATRA administration on the outward appearance
of the ears and lungs of Hoxa1−/− piglets.

2. Materials and Methods
2.1. Animals and Sample Collection

Twenty-four Hoxa1+/− crossbred sows (Erhualian × Shaziling) with similar body con-
ditions were artificially inseminated with semen collected from one Hoxa1+/− boar. They
were randomly allocated to one control group and nine experimental groups, respectively.
After mating, sows were administered with ATRA according to the treatment in Table 1:
Briefly, in the morning feeding, ATRA was dissolved in dimethyl sulfoxide and diluted
with soybean oil, then mixed with the regular diet at about 1/2 of the morning allowance
and finally offered to sows [24].

Table 1. Treatment of pregnant sows in different groups.

All-Trans Retinoic
Acid Offered to

Sows at Different
DPC

Levels of All-Trans
Retinoic Acid
(mg/kg Body

Weight)

Number of Sows in
Different Groups

Control group 0 0 6
Experimental group 1 12 4 2
Experimental group 2 12 5 2
Experimental group 3 12 6 2
Experimental group 4 13 4 2
Experimental group 5 13 5 2
Experimental group 6 13 6 2
Experimental group 7 14 4 2
Experimental group 8 14 5 2
Experimental group 9 14 6 2

After delivery, ear samples of all newborn piglets were immediately collected for geno-
typing. A total of 146 piglets (109 Hoxa1+/− and 37 Hoxa1−/− piglets) were euthanized
with pentobarbital sodium (100 mg/kg body weight) according to the protocol approved
by the Animal Ethics Committee of Jiangxi Agricultural University, and their lungs were
removed. Samples of the lungs were collected from the right superior lobe, samples for
morphology analysis were fixed in 4% paraformaldehyde solution, and samples for other
determinations were stored at −80 ◦C, respectively.
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2.2. Selection of Lung Samples

Neonatal Hoxa1−/− piglets from experimental groups 1, 4, and 7 scored higher in ear
development [24] and showed less hyperemia and edema in their lungs than those from
other experimental groups, respectively. In addition, no differences were found in lung
appearance between neonatal Hoxa1+/− piglets from control group and those from the
experimental groups. Based on the above findings, lung samples collected from Hoxa1−/−

and non-Hoxa1−/− piglets in the control group and from Hoxa1−/− piglets in experimental
groups 1, 4, and 7 group were used for analysis.

2.3. Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA kits produced by Elabscience Biotechnology Co. Ltd. (Wuhang, China) were
used to test the concentrations of interleukin-8 (IL-8), interferon-γ (IFN-γ), and tumor
necrosis factor-α (TNF-α) in the lung samples according to established protocols.

2.4. Histological Morphology

First, 4% paraformaldehyde solution was used to fix the lung samples for 24 h. All
samples were embedded with paraffin wax, sliced into 5 µm sections, and then stained
with hematoxylin and eosin (HE). Five portions were randomly selected and captured
at 200 × magnification, and the airspace area and septal wall thickness were measured
according to a previously reported method [25] using an Image-Pro Plus 6.0 system (Media
Cybernetics, Inc., Bethesda, MD, USA).

2.5. Immunofluorescence Staining

Paraffin sections were firstly dewaxed and antigen-repaired, then blocked with bovine
serum albumin, and finally incubated with antibody AQP5 (ABclonal, A9927) or SFTPC
(GeneTex, GTX54694) in a 4 ◦C refrigerator overnight. After incubation, all slides were
washed with phosphate-buffered saline (PBS, pH 7.4), then incubated with the secondary
antibodies, washed with PBS, and stained with 4′,6-diamidino-2-phenylindole (DAPI;
Servicebio, G1012) before being mounted with coverslips.

2.6. Immunohistochemistry Staining

Slides mounted with the 5 µm slices were treated with sodium citrate (pH 6.0) to expose
antigens, followed by hydrogen peroxide (3%), and washed in PBS (pH 7.4). Slides were
placed into 3% bovine serum albumin (BSA) for 30 min to block endogenous peroxidase
activity and nonspecific binding of antibodies; incubated overnight with von Willebrand fac-
tor (vWF; 1:200, Dako, Carpinteria, CA, USA) at 4 ◦C and then incubated for 50 min with sec-
ondary antibodies; then washed in PBS (pH 7.4), finally stained with 3,3-diaminobenzidine
tetrahydrochloride, hydrated, and counterstained with Harris hematoxylin.

2.7. Image Acquisition

A fluorescence microscope (Nikon Eclipse C1,NikonGmbH, Vienna, Austria) and a
Nikon DS-U3 camera (Nikon Corporation, Shinagawa, Tokyo, Japan) were used to obtain
the fluorescent images. A light microscope was applied to acquire images of the samples
without immunofluorescence, and representative photomicrographs were taken for analysis
using Leica QWin (Wetzlar, Germany).

2.8. Quantitative Real-Time PCR

The lung tissue was mechanically ground and homogenized in a mortar, and the
TransZol Up Plus RNA Kit (TransGen Biotech, Beijing, China) was used to extract the total
RNA. A NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA) was
used to evaluate the quantity and integrity of the extracted RNA.

The qualified RNA was transcribed into complementary DNA using 5 × All-In-One
RT MasterMix kit (Abm, Nanjing, China). Primers were designed using NCBI’s Primer-
BLAST and are summarized in Table 2. ACTB was used as the reference gene, and relative
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RNA expression was calculated using the 2−∆∆CT method [26]. The RT-qPCR experiments
were carried out in triplicate.

Table 2. Information on the primers.

Genes Accession Numbers Primer Sequences (5′~3′) Product Size
(bp)

VEGFD XM_001928382.5
F AGATCCCAGAAGAAGATGGATGT

198R ACAGACACACTCGCAACGAT

PDGFD XM_021062718.1
F TCAGTAACGGACCCCACTCT

198R GCCGGTCCAGGTCAACTTT

KDR XM_013997943.2
F CTGCCTACCTCACCTGTTTC

100R ACTGACTTAGAGAGTACCTGAT

ID1 NM_001244700.1
F GATCGCATCTTGTGTCGCTG

101R GGTGCTTGGAAGGACCAGAG

NEDD4 XM_021094899.1
F TCTTGGGAGCTAGACTTTGAATCC

146R AAAGAGGAACATCCACTTGACCT

FOXO3 XM_021084231.1
F CAGCAGCACAGTGTTTGGAC

120R AGTGTCTGGTTGCCGTAGTG

2.9. Statistical Analysis

The data were analyzed using 17.0 SPSS software (SPSS Inc., Chicago, IL, USA), and
Duncan’s test was carried out to verify the statistical significance; the values were consid-
ered statistically significant at p < 0.05, and the results are presented as the mean ± SE.

3. Results
3.1. Concentration of Inflammatory Factors in Lung Tissue

The Hoxa1 mutation decreased the concentration of inflammatory factors in lung tissue
(Table 3), and neonatal Hoxa1−/− piglets had lower IFN-γ (p < 0.05) in their lung tissues
compared to neonatal non-Hoxa1−/− piglets from the control group. Supplementation
of ATRA to pregnant sows at 4 mg/kg body weight on dpc 12, 13, or 14 increased the
level of inflammatory factors in the lung tissue of neonatal Hoxa1−/− piglets, respectively.
Neonatal Hoxa1−/− piglets born to sows supplemented with ATRA at 4 mg/kg body
weight on dpc 14 had higher IFN-γ (p < 0.05) values than neonatal Hoxa1−/− piglets in the
control group.

Table 3. Level of inflammatory factors in the lungs of neonatal piglets from different
treatment groups.

IFN-γ (pg/mL) TNF-α (pg/mL) IL-8 (pg/mL)

Non-Hoxa1−/− 63.98 ± 7.54 a 19.63 ± 1.24 c 75.16 ± 1.13 bc

Hoxa1−/− 33.24 ± 3.44 b 18.73 ± 0.68 c 39.18 ± 0.13 c

Hoxa1−/− + ATRA D12 38.36 ± 2.18 b 22.85 ± 2.12 ab 90.31 ± 0.13 b

Hoxa1−/− + ATRA D13 46.95 ± 3.74 b 27.48 ± 1.14 a 251.65 ± 22.40 a

Hoxa1−/− + ATRA D14 62.43 ± 4.52 a 20.57 ± 1.50 bc 73.49 ± 5.38 bc

Note: non-Hoxa1−/−: neonatal non-Hoxa1−/− piglets born by sows in the control group; Hoxa1−/−: neonatal
Hoxa1−/− piglets born to sows in the control group; Hoxa1−/− + ATRA D12: neonatal Hoxa1−/− piglets born
to sows supplemented with ATRA at dpc 12, Hoxa1−/− + ATRA D13: neonatal Hoxa1−/− piglets born to
sows supplemented with ATRA at dpc 13, Hoxa1−/− + ATRA D14: neonatal Hoxa1−/− piglets born to sows
supplemented with ATRA at dpc 14. Means within a column followed by different lowercase letters differ
significantly (p < 0.05).

3.2. Histological Appearances

The Hoxa1 mutation and maternal ATRA administration affected the lung histology
of Hoax1−/− fetal piglets (Figure 2). In the control group, the lungs of neonatal Hoxa1−/−

piglets exhibited thicker septal walls (p < 0.01) and smaller airspace areas (p < 0.01) than
neonatal non-Honxa1−/− piglets. Maternal administration with ATRA on dpc 12, 13, or
14 decreased (p < 0.01) the average thickness of the septal wall and increased (p < 0.01)
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the average area of airspaces in the lungs of neonatal Hoxa1−/− piglets when compared
with neonatal Hoxa1−/− piglets in the control group, respectively. The lungs of neonatal
Hoxa1−/− piglets delivered by sows administered ATRA at dpc 14 had thinner septal
walls and larger airspace areas compared with neonatal Hoxa1−/− piglets born to sows
supplemented with ATRA at dpc 12 or 13, respectively.
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3.3. Development of Alveolar Epithelial Cells

The Hoxa1 mutation decreased AQP5 expression and increased SFTPC expression
in the lungs. Neonatal Hoxa1−/− piglets had lower AQP5 expression and higher SFTPC
expression than neonatal non-Hoxa1−/− piglets in the control group (Figure 3). Admin-
istration of ATRA to pregnant sows increased the AQP5 expression and decreased the
SFTPC expression in the lungs of neonatal Hoxa1−/− piglets compared with neonatal
Hoxa1−/− piglets in the control group. Neonatal Hoxa1−/− piglets delivered by sows
supplemented with ATRA at dpc 14 had higher AQP5 levels and lower SFTPC levels in the
lungs than neonatal Hoxa1−/− piglets born to sows administrated with ATRA at dpc 12 or
13, respectively.
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3.4. Development of Microvessels in the Lungs

In order to explore lung angiogenesis, immunohistochemical staining was performed
using vWF as a specific marker for microvessel endothelial cells (Figure 4A). Hoxa1 mu-
tation decreased the integrated optical density (IOD) of stained lung blood vessels, and
neonatal Hoxa1−/− piglets had lower (p < 0.01) IOD values than neonatal non-Hoxa1−/−

piglets in the control group (Figure 4B). Maternal administration with ATRA increased the
IOD values of neonatal Hoxa1−/− piglets in the experimental groups; neonatal Hoxa1−/−

piglets from the three experimental groups had higher (p < 0.01) IOD values than neonatal
Hoxa1−/− piglets from the control group, respectively, and no significant differences were
found in the IOD values of neonatal Hoxa1−/− piglets among three experimental groups.
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development-related genes. VEGFD: vascular endothelial growth factor D. PDGFD: platelet-derived
growth factor-D. KDR: kinase insert domain receptor. ID1: inhibitor of differentiation 1. NEDD4:
neuronal precursor cell-expressed developmentally downregulated 4. FoxO3: forkhead box O3. All
data are expressed as mean ± SEM. ** p < 0.01, n.s., not significant.

The Hoxa1 mutation and maternal ATRA administration altered the relative expression
of microvessel-development-related genes in the lungs (Figure 4C). The results indicate
that in the control group, neonatal Hoxa1−/− piglets had lower expressions of VEGFD
(p < 0.01), PDGFD (p < 0.01), KDR (p < 0.01), and NEDD4 (p < 0.01), but higher expression
of FOXO3 (p < 0.01) in the lungs compared with neonatal non-Hoxa1−/− piglets. Maternal
administration with ATRA elevated the levels of VEGFD, PDGFD, KDR, ID1, and NEDD4,
but reduced the level of FOXO3 in the lungs. Neonatal Hoxa1−/− piglets born to sows
supplemented with ATRA at dpc 14 had higher (p < 0.01) levels of VEGFD, PDGFD, KDR,
ID1, and NEDD4 and lower (p < 0.01) levels of FOXO3 in the lungs than neonatal Hoxa1−/−

piglets delivered by sows in the control group.
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4. Discussion

The lungs are vital in keeping animals alive, and the abnormal development of
the lungs may lead to poor health, low performance, or even death. The mutation of
genes exerts adverse effects on lung health by impairing immune function, morphologi-
cal structure, and blood vessel development in the lungs. The Pellino 1 (Peli1) mutation
exhibits an impaired innate cytokine production, and Peli1−/− mice have been shown
to have lower levels of IFN-α and TNF-α than Peli1+/+ mice [27]. High levels of IFN-
γ or (and) TNF-α play crucial roles in viral and bacterial clearance and infant health
protection [28–30]. It is reported that the treatment of dendritic cells with ATRA promoted
NK cell-derived IFN-γ production [31]. Furthermore, IL-8 has its special functions in T-
lymphocyte chemotaxis [32] and neutrophil activation [33], and the level of IL-8 positively
correlates to the concentration of TNF-α [34]. Therefore, certain levels of IFN-γ, TNF-α,
and IL-8 are helpful in eradicating pathogens, and extremely low levels of these cytokines
can affect the normal development of the lungs. The findings of this experiment indicate
that the Hoxa1 mutation decreased the levels of IFN-γ, TNF-α, and IL-8 in the lungs.
Administration with ATRA to Hoxa1+/− pregnant sows at a level of 4 mg/kg body weight
on dpc 14 increased the levels of IFN-γ, TNF-α, and IL-8 in the lungs of neonatal Hoxa1−/−

piglets when compared to neonatal Hoxa1−/− piglets in the control group, and the elevated
IFN-γ, TNF-α, and IL-8 alleviated the symptoms of dyspnea and abdominal respiration in
neonatal Hoxa1−/− piglets delivered by sows who had been administered ATRA at a dose
of 4 mg/kg body weight on dpc 14.

The proper supply of nutrients plays vital roles during organogenesis, because the
installation of blood vessel networks is mandatory during the embryonic period. ATRA
can regulate lung development and regeneration through the regulation of pulmonary
vasculogenesis and angiogenesis [35,36], owing to the fact that ATRA is a transcriptionally
active agent [37,38], and maternal administration with ATRA was shown to stimulate
alveologenesis in a model of nitrofen-induced pulmonary hypoplasia [39]. The results
of this experiment demonstrate that maternal supplementation with ATRA increases the
airspace area and the IOD, and decreases the thickness of the septal wall in the lungs of
neonatal Hoxa1−/− piglets compared to the lungs of neonatal Hoxa1−/− piglets in the
control group.

The increase in AT2 cells and the decrease in AT1 cells may lead to the death of
newborn animals, owing to the imbalance between AQP5 and SFTPC expression [40].
AQP5 is selectively expressed in AT1 and plays an important role in water permeability [41];
the fetal lung can produce fluid to increase the amniotic fluid volume, and that is regulated
by AQPs such as AQP5 [42,43]. SFTPC is produced predominantly by AT2 cells and is
responsible for reducing pulmonary surface tension [44,45]. SFTPC can increase membrane
permeability, and excessive expression of SFTPC causes the development of edemas by
forcing large amounts of alveolar fluid into the lung tissue [46,47]. The expression of
SFTPC can be altered by some cytokines, such as IFN-γ, because increasing IFN-γ could
decrease SFTPC levels [48]. ATRA can induce AT2 proliferation [49,50], promote fetal
AT2 differentiation to AT1, and enhance AQP5 expression [13]. The data in this study
indicate that the Hoxa1 mutation disturbed the balance between AQP5 and SFTPC, and the
administration of ATRA to pregnant sows improved the balance between AQP5 expression
and SFTPC expression.

The normal development of pulmonary microvessels has an important impact on lung
function. VEGFD, PDGFD, KDR, ID1, NEDD4, and FOXO3 are crucial genes in regulating
the vascular network development of lung. The Hoxa1 mutation decreased (p < 0.01) the
expression of VEGF, PDGFD, KDR, and NEDD4, but increased (p < 0.01) FOXO3 expression
in the lungs of neonatal Hoxa1−/− piglets, maternal administration with ATRA at 4 mg/kg
body weight on dpc 14 elevated (p < 0.01) the expression of VEGF, PDGFD, KDR, and
NEDD4, but decreased FOXO3 expression in the lungs of neonatal Hoxa1−/− piglets
compared to neonatal Hoxa1−/− piglets in the control group. It is reported that VEGFD
exerts important roles in the production and maturation of SFTPC, and SFTPC can prevents
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the collapse of alveolar cells. Down-regulating VEGFD expression may lead to shortness of
breath and increase the rate of breathing [51]. Our study found that neonatal Hoxa1−/−

piglets from the control group had severe dyspnea owing to the Hoxa1 mutation and had
lower VEGFD expression in the lungs than healthy neonatal non-Hoxa1−/− piglets. This is
similar to the report that infants with severe respiratory distress syndrome had significantly
lower VEGFD expression in the lungs than healthy infants [52]. PDGFD can be expressed
in many kinds of cells, including endothelial cells and vascular smooth muscle cells [53,54],
and is closely related to angiogenesis and tissue fibrosis [55–57]. Downregulation of PDGFD
will inhibit angiogenesis [58–61]. The Hoxa1 mutation also reduced PDGFD expression in
the lungs of neonatal Hoxa1−/− piglets with decreased micro-vessel density in the lungs.
KDR participates in the branching morphogenesis processes, and the high expression
level of KDR promoted vasculogenesis in the lungs [62]. Increasing the thickness of the
alveolar septum can block angiogenesis by downregulating KDR expression, and the
downregulation of KDR is prevented by treatment with RA [63]. Our study concluded with
a similar result, that Hoxa1 mutation achieved a decreased KDR expression and thickened
septal wall in the lungs of neonatal Hoxa1−/− piglets, but maternal administration with
ATRA elevated the KDR expression and reduced the thickness of the septal wall in the lungs
of neonatal Hoxa1−/− piglets. Downregulating NEDD4 can cause pulmonary edemas
by increasing vascular permeability [64], and low NEDD4 expression can cause mice
to die perinatally with a failure to breathe [65]. This is similar to our results, because
pulmonary edema (Figure 1A) was also found in neonatal Hoxa1−/− piglets with low
NEDD4 expression, but maternal administration with ATRA reversed the congestion
and swelling in the lungs of neonatal Hoxa1−/− piglets (Figure 1B) and increased their
survival rates. Previous studies have reported that the overexpression of FOXO3 results in
microvascular endothelial apoptosis [66], and FOXO3 can significantly inhibit the migration
of endothelial cells and the formation of tubes by suppressing the expression of angiogenesis
genes such as PDGF. The decrease in FOXO3 expression enhanced the formation and
maturation of blood vessels [67] and decreased the apoptosis of vascular endothelial
cells [68]. The results of this experiment show that neonatal Hoxa1−/− piglets had higher
FOXO3 expression than the neonatal non-Hoxa1−/− piglets in the control group, and the
increase in FOXO3 expression inhibited the formation of blood vessels in the lung tissue of
neonatal Hoxa1−/− piglets by decreasing the density of the blood vessels. Maternal feeding
with ATRA decreased the FOXO3 expression and increased the density of the microvessels
in the lungs of neonatal Hoxa1−/− piglets.

5. Conclusions

The Hoxa1 mutation causes the development of abnormal lung function by destroying
the normal formation of alveoli and the pulmonary microvascular network of Hoxa1−/−

piglets. Maternal administration with ATRA at 4 mg/kg body weight on dpc 14 rescued
the abnormal lung development of Hoxa1−/− piglets by significantly increasing the IFN-γ
concentration, the airspace area, the pulmonary microvessel density, and the expression
of VEGFD, PDGFD, KDR, NEDD4, and AQP5, as well as by significantly decreasing the
septal wall thickness and the expression of FOXO3 and SFTPC.
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