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Simple Summary: Cancer cells usually have a short timeframe for proliferation, which favors tumor
growth. Therefore, they require more energy and intermediates to sustain biosynthetic pathways that
will supply all the requirements for cell division. This event is known as metabolic reprogramming
and is described in all cancer types, it also being a vulnerability for therapy. However, metabolic
alterations in canine mammary tumors are poorly explored. In this review, we compile the metabolic
rewiring described in canine mammary tumors, which could be used as a therapeutic opportunity
for treatment in veterinary oncology.

Abstract: Canine mammary tumors (CMTs) are among the most common diseases in female dogs
and share similarities with human breast cancer, which makes these animals a model for comparative
oncology studies. In these tumors, metabolic reprogramming is known as a hallmark of carcinogenesis
whereby cells undergo adjustments to meet the high bioenergetic and biosynthetic demands of rapidly
proliferating cells. However, such alterations are also vulnerabilities that may serve as a therapeutic
strategy, which has mostly been tested in human clinical trials but is poorly explored in CMTs. In
this dedicated review, we compiled the metabolic changes described for CMTs, emphasizing the
metabolism of carbohydrates, amino acids, lipids, and mitochondrial functions. We observed key
factors associated with the presence and aggressiveness of CMTs, such as an increase in glucose uptake
followed by enhanced anaerobic glycolysis via the upregulation of glycolytic enzymes, changes in
glutamine catabolism due to the overexpression of glutaminases, increased fatty acid oxidation, and
distinct effects depending on lipid saturation, in addition to mitochondrial DNA, which is a hotspot
for mutations. Therefore, more attention should be paid to this topic given that targeting metabolic
fragilities could improve the outcome of CMTs.

Keywords: canine mammary tumors; metabolism; cancer; mitochondria; metabolic reprogramming;
glucose; amino acids; lipids

1. Introduction

Canine mammary tumors (CMTs) are the most common cancer in female dogs that
have not been surgically neutered [1], accounting for almost 50% of all canine neoplasms [2].
They arise spontaneously with increased risk through aging [3], mainly between 8 and
11 years, and also in certain breeds [4]. The deregulation of sexual hormones, such as from
exposure to endogenous ovarian hormones, may cause the development of mammary
tumors in dogs [5], but other factors may also influence CMTs, such as obesity in the early
stages of life [6], inflammation [7], and an increase in free radicals and reactive oxygen
species (ROS) [8]. CMTs may appear as single or multiple nodules, and posterior mammary
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glands are more frequently affected than anterior glands [9]. Approximately 50% of CMTs
are malignant [10], with the most common tumor type among them being tubular carci-
noma (adenocarcinoma), followed by papillary, solid, and complex carcinomas in addition
to carcinosarcoma. The other half is benign, with fibroadenomas, ductal papillomas, benign
mixed tumors, and simple adenomas being the most common [11]. Despite such classifica-
tions, it is also common to find more than one tumor type in different mammary glands
in the same patient [12], and CMTs upon metastasis usually show tropism to the lymph
node areas and lungs [6]. In the present review, we emphasized malignant tumors, unless
otherwise stated, referred to here as CMTs. Also, CMTs are associated in the literature with
stages, grades, and subtypes. “Stage” is a medical term adopted to assess the extent of
cancer. In the specific context of mammary tumors in dogs, staging follows the TNM sys-
tem, where T signifies the clinical tumor size using thresholds like 3 and 5 cm; N indicates
nodal metastasis presence; and M denotes distant metastasis diagnosed through palpation,
medical imaging, biopsy, or cytology [10,13]. Conversely, grade refers to a classification
that assesses the appearance of cancer cells under a microscope compared with the normal
cells of the same tissue. The cancer grade indicates how abnormal the cells appear and how
quickly they can multiply and spread. Typically, grades are assigned on a numerical scale
(e.g., from 1 to 3) or using descriptive terms (well-differentiated, moderately differentiated,
poorly differentiated). A lower grade usually indicates cancer cells that resemble normal
cells more and tend to grow more slowly, while a higher grade indicates more abnormal
cells that are more prone to rapid growth and spread. In addition, “subtype” refers to
the histological status via estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2/ERRB2) expression.

CMTs are the leading cause of death in aged female dogs and have a higher incidence
compared with human breast cancer, mainly in low-income countries [2,14]. CMTs are
highly prevalent in non-spayed female dogs, but a significant proportion of animals start
with premalignant lesions that can progress to invasive cancer within a relatively short
period of time. This scenario of high incidence and, sometimes, poor prognosis, highlights
the need for new assertive therapeutic approaches. A remarkable alteration commonly doc-
umented among all cancers is metabolic reprogramming, which supplies the bioenergetic
demands and the anabolic requirements for cell proliferation and tumor growth. Although
it has been widely investigated in human breast cancer, there is a lack of information on
metabolic rewiring in CMTs. In this dedicated review, we summarize metabolic adjust-
ments described in the literature, which could serve as a therapeutic strategy with a focus
on lipid, glucose, and amino acid metabolism.

2. Overview of Metabolic Features of Mammary Cancer

Cancer cells undergo several alterations to reach an imbalance between a higher prolif-
erative rate and cell death, providing a molecular context whereby neoplastic cells promote
tumor growth and even metastasis. Among such adjustments is metabolic reprogramming,
one of the hallmarks of carcinogenesis, which, for instance, meets the bioenergetic and
biosynthetic demands of cell proliferation [15–17]. In 1956, Otto Warburg described how
tumor cells uptake more glucose and use it as an energy source through aerobic glycolysis
because of the impairment of mitochondria [18]. This was later revisited, and it was demon-
strated that mitochondrial activity is decreased and not impaired, different from what was
originally proposed as the Warburg effect [19]. The increase in glycolysis, a very inefficient
ATP source compared with oxidative phosphorylation (OXPHOS) [20], provides energy
production but also intermediates for anabolic pathways such as nucleic acid synthesis and
NADPH, all of them required for cell division and tumor growth [19]. Also, glutamine is
another carbon source that fuels the tricarboxylic acid cycle (TCA) via reductive carboxy-
lation [21], which is often necessary for cell survival, mostly in advanced cancers [21–23].
Glutamine uptake and consumption increase with oxidative stress [24,25] and may be used
for fatty acid synthesis, which, in turn, provides phospholipids to membrane synthesis,
required for cell cycle progression [26]. In addition to glucose and glutamine, lipids are
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also crucial for cancer cell survival and progression to more aggressive phenotypes [27–30].
Lipids are the building blocks of membrane synthesis, post-translational modification,
and energy generation. It was reported that endogenously synthesized fatty acids are
required for cancer cell proliferation [26], and the pharmacological inhibition of fatty acid
synthase (FASN) has antitumor effects in cell lines, organoids, and xenograft models [29].
Interestingly, not only endogenous but also exogenous fatty acids obtained through diet
have been shown to modulate cancer progression [31], including through the regulation
of metabolism [32]. Taken together, this short summary highlights how the rewiring of
metabolism is a vulnerability that has been explored as a therapeutic opportunity in sev-
eral cancers.

In the literature, most available information on tumor metabolism has been gener-
ated from human breast cancer, but given the similarities with CMT, it is reasonable to
consider whether some of these alterations can be found in dogs. In breast cancer, tumor
cells display high glucose uptake compared with normal ones [33], and the former may
regulate carbohydrate availability to favor metastasis [34]. Breast cancer cells have glucose
transporter (GLUT) overexpression [35], GLUT1 being related to poor prognosis and higher
proliferation. However, GLUT overexpression has distinct patterns in malignant human
cell lines [35,36], suggesting that, although glucose uptake increases, there are adjustments
depending on the molecular context. Glucose oxidation changes during breast cancer pro-
gression since less aggressive tumors, such as luminal A and luminal B, show increased
oxidative phosphorylation and decreased extracellular acidification, while the opposite has
been found in more aggressive tumors, such as triple-negative breast cancer (TNBC) [35]. In-
deed, several glycolytic enzymes are deregulated in human breast cancer, including PKM2
(pyruvate kinase muscle isozyme 2) [37], PFK (phosphofructokinase) [38,39], and HK2
(hexokinase 2) [40,41], and the pharmacological inhibition of HK2 has been investigated
as a therapeutic strategy [42]. Supporting the glycolytic phenotype in more aggressive
tumors with poor prognosis, higher expressions of lactate dehydrogenase B (LDHB) and
lactate transporters (MCT1 and MCT4) [43,44] and the inhibition of lactate secretion into
the microenvironment to suppress tumor growth have been reported [45]. Therefore, this
body of evidence shows that the critical point of glucose metabolism is the key enzyme
that regulates glycolysis functioning.

Lipids and amino acid metabolism are also dysregulated. Studies have reported
that the amino acid profile either in tumors or blood is distinct from the healthy condi-
tion [46–48]. Glutamine is the most abundant amino acid in the bloodstream and serves
not only as a source of carbon for TCA cycle intermediates, but also to reduced coenzymes
formation such as NADH and FADH2. In turn, these fuel oxidative phosphorylation
in the electron transport chain (ETC). TCA cycle intermediates from glutamine are gen-
erated via glutaminolysis, performed mainly by glutaminase 1 (GLS) and glutaminase
2 (GLS2) [49–51]. Both glutaminases convert glutamine into glutamate via reductive car-
boxylation, which enters the TCA as α-ketoglutarate [49]. In breast cancer, GLS and GLS2
are overexpressed at distinct levels depending on the histological subtype, and cells may
display dependency on glutamine to survive [51], GLS2 being investigated as a protumori-
genic gene [23]. This scenario served as inspiration for clinical trials with glutaminase in-
hibitors [52–54], but further studies are required. Carbon from glutamine may be channeled
to fatty acid synthesis and further processed into phospholipids for biological membranes.
Lipid synthesis may occur endogenously from either glutamine or glucose, a biological
process named de novo lipogenesis (DNL), which is performed by FASN and Acyl-CoA
carboxylase (ACC). In TNBC, FASN inhibition has an antitumor effect even at low protein
levels of expression [55,56], and DNL has been reported as required for brain metastasis in
humans [27].

The present scenario, built mostly with findings regarding human breast cancer,
demonstrates that metabolic reprogramming could be a fragility, therefore becoming a ther-
apeutic opportunity. Moreover, the literature reports several key points in mammary gland
cell metabolism, showing that a large number of pathways, both catabolic and anabolic,
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are deregulated. However, such alterations are poorly explored in the canine mammary
glands and leave an information gap in the veterinary community (Figure 1). Therefore,
this review aimed to put together “state-of-the-art” metabolic adjustments described in
CMTs that could be a target in cancer treatment and prevention.
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Figure 1. Alterations in canine mammary tumor energy metabolism. It has been frequently observed
that metabolic rewiring in female dogs involves changes in glucose demands (Warburg effect),
mitochondrial metabolism, amino acid profiles, and lipid metabolism. Tumors commonly increase
glucose uptake to meet their anabolic demands, with energy metabolism adjusted for amino acids and
fatty acid usage being adjusted as well. The role of distinct fatty acids regarding their unsaturation
status is not clear and requires further investigation. Legend: CMT—canine mammary tumor;
AAs—amino acids; FA—fatty acid; ETC—electron transport chain.

3. Metabolic Reprogramming in Canine Mammary Tumors
3.1. Carbohydrate Metabolism

Glucose metabolism is among the most frequently altered metabolic pathways in
human breast cancer [34,35,57]. Although information regarding female dogs is not deeply
understood, the same seems to occur in CMTs. Increased blood glucose levels have been
reported in dogs bearing mammary neoplasms, and this seems to be related to the presence
of tumor cells given that, upon mastectomy, the levels drop considerably [58]. This has been
linked to the release of higher levels of lactate by cancer cells and its further conversion into
glucose through gluconeogenesis in the liver. Jayasri and colleagues (2016) [59] reported
on the deregulation of glycolysis in mammary tumors, supporting the increase in glucose
uptake and processing, as well as the channeling of its carbons to biosynthetic pathways.
In CMTs, the authors found an increase in hexose levels of 1.75-fold and 1.6-fold for HK.
The expression of pyruvate kinase 2 (PKM2), the last enzyme of the glycolytic cascade,
was also overexpressed in malignant tissue, its levels being correlated with the tumor
grade [60]. These findings corroborate previous data that reported increased expression in
glycolytic enzymes [61] and also supported the increase in GLUT1 expression observed in
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complex mammary carcinoma [62]. Interestingly, higher GLUT1 and GLUT3 expression
can be detected under hypoxia, which is often observed in large tumors [63]. However,
in tumors with normal expressions of TP53, glycolysis in canine mammary carcinomas
seems to respond differently because phosphoglycerate mutase 2 (PGAM1), an enzyme
that converts 3-phosphoglycerate into 2-phosphoglycerate, is downregulated [64]. The role
of glucose metabolism has been found to not only be limited to energy supply for tumor
growth but also a signaling pathway. The higher glycolysis rate in CMT cells increases
the release of lactate, which, in turn, polarizes macrophages into the M1/M2 intermediate
state [65]. M2-like macrophages can be activated by tumor-derived lactate and exert their
anti-inflammatory function, promoting immune escape, which is correlated with tumor
progression and aggressiveness [66,67]. However, the function of the microenvironment,
mainly immune cells, in CMTs is poorly explored, though in vitro study models have
been suggested [68]. In addition, not only are glucose breakdown-related metabolites
altered but also those related to derivative pathways. Decreased glucose-6-phosphatase
and fructose-1,6-bisphosphatase have been found to be decreased in CMT [59], both related
to gluconeogenesis. Also, TLK and TLK-1 have been shown to be differentially expressed,
the former being highly expressed in benign and malignant tumors compared with normal
tissue, while TLK-1 levels are higher mainly in hyperplastic lesions, simple adenomas, and
simple carcinomas [69]. This indicates that carbohydrate catabolism and anabolism are
essential to meeting the demands of tumor growth. Indeed, PPP enzymes have been shown
to be deregulated in CMT, but the estrogen context seems to play an additional role because
cells positive for estrogen receptor expression have low expressions of glucose-6-phosphate
dehydrogenase (G6PDH), whereas those that do not express estrogen receptors have higher
levels [70].

Glucose metabolism reprogramming is a hallmark of human carcinogenesis and offers
a tool for diagnosis, including in the veterinary approach. Since tumors usually uptake
higher levels of glucose, 18F-FDG-PET/CT has been adopted for imaging. Sánchez and
colleagues (2019) [71] showed that such a technique is useful in distinguishing malignant
from benign tumors but not for histologic subtypes or grades. Moreover, given that glu-
cose uptake is increased, metformin, a drug used to control glucose levels in diabetes,
has been tested as an antiproliferative agent in vivo and in vitro in the context of canine
mammary carcinomas [72]. Together, this evidence indicates that glucose is the core of
carbohydrate metabolism and is sharply related to tumor initiation and progression, but it
is still poorly explored in CMTs, mainly the underlying mechanisms. In addition, a better
understanding of carbohydrate metabolism may improve the diagnosis and offer a more
personalized treatment.

3.2. Lipid Metabolism

Obesity in dogs is an epidemiological issue that has been widely investigated given
its associated diseases, such as inflammation, neoplasia, and cardiovascular disease [73].
Overweight or obese female dogs have been reported with earlier-onset CMTs and higher
histologic grades compared with those that are either lean or have optimal body weight [74].
Moreover, obese dogs are associated with more aggressive CMTs, angiogenesis, and tumor-
associated macrophage (TAM) infiltration, this being considered a risk factor for the in-
cidence and progression of mammary neoplasms [75,76]. Adiponectin levels, usually
observed under obesity conditions, were found to be decreased in overweight or obese indi-
viduals, while the number of macrophages increased, as noted by the authors of [77]. These
alterations correlate with poor prognosis when a high histological grade and lymphatic
invasion are found [77]. The proportion of grade I tumors is higher among leptin-positive
CMTs than leptin-negative CMTs, and a positive correlation has been observed with pro-
gesterone receptor-positive tumors. Also, the number of tumors with positive estrogen
receptor expression is higher in CMTs with leptin receptor (ObR) expression than those
without it. The aforementioned authors suggested that increased adiponectin expression
may prevent cancer development and positively affect the prognosis of CMTs, whereas



Animals 2023, 13, 2757 6 of 15

decreased expression in obese dogs influences their aggressiveness [77]. Moreover, the
same authors, in another paper, found that the increased expression of aromatase is cor-
related with hormone receptor-positive tumors [74]. The leptin receptor and aromatase
both increase with obesity, but their association with the incidence of CMTs remains up
for debate. A case–control study based on interviews with owners found no correlation
between high-fat diets or obesity and CMT occurrence in female dogs [78], while others
have shown that canines fed a high-fat diet have a higher survival rate compared with
those with a low-fat diet [79].

In addition to obesity inducing several metabolic alterations, disparities in the lit-
erature may be due to the fact that fatty acids acquired through diet do not affect tu-
mor metabolism via quantity alone but also due to their quality. In rapidly proliferating
cells, lipids are required for membrane synthesis, energy supply, cell signaling, and post-
translational modifications. The carnitine shuttle system is a key player in lipid catabolism
since it allows for the translocation of fatty acids from the cytoplasm into the mitochondria
for further oxidation and ATP production. Carnitine acylcarnitine translocase (CACT),
carnitine palmitoyl transferase 2 (CPT2), and carnitine O-acetyltransferase (CrAT) have
been found to be overexpressed in CMTs in cell lines and tissue compared with normal con-
ditions, except for decreases observed in poorly undifferentiated, higher-grade CMTs [80].
In the same manner, carnitine palmitoyl transferase 1 A (CPT1A), a rate-limiting enzyme
of fatty acid oxidation located in the outer mitochondrial membrane, has been reported
as overexpressed in differentiated CMTs compared with normal tissue both in vivo and
in vitro, whereas a decrease in CPT1A expression has been observed in less differentiated
tumors [81]. These findings suggest that lipid metabolism is rewired along carcinogenesis,
given that cells seem to rely on energy derived from lipids, but they probably shift to a
glycolytic phenotype.

In different experimental models, as well as in clinical data, saturated fatty acids (SFAs)
have been shown to drive carcinogenesis because of the MYC program in several human
cancers [82], which can also be observed in breast cancer [83,84]. Interestingly, in spheroids
from canine mammary adenocarcinoma, the levels of palmitoleate, palmitate, and dihomo-
gamma-linolenic acid are higher compared with adherent cells, suggesting that certain
SFAs are required for tumor formation [85]. Polyunsaturated fatty acids (PUFAs) have
been investigated because of their antitumoral properties in different cancers [31,32,86–89].
Conjugated linoleic acid (CLA), one of the most abundant PUFAs available in the diet,
decreases the growth of epithelial and stromal CMT cells through the suppression of
COX-2 and the prostaglandin E2 receptor (EP2) [90]. This is a promising outcome since
CMT cells may express COX-2 and produce high levels of PGE2 [91]. However, the CLA
antiproliferative effect seems to depend on its configuration, given that trans-10,cis-12
increases the expression of cell-cycle-progression-related genes and cis-9,trans-11 stimulates
apoptotic genes in CMT explants [92]. In human breast cancer, PUFAs from the omega-3
class have been shown to increase patient survival and serve as a preventive agent [93],
although this is still under debate [94]. In companion animals, fish oil supplementation,
the main source of omega-3 PUFAs, has been recommended for several conditions, such
as renal disease, cardiac and skin inflammatory disorders, dyslipidemia, and cancer [95].
Despite assessed on a very limited simple size, Tuzlu and colleagues (2021) [96] reported
that PUFAs belonging to the omega-3 class were higher in healthy dogs compared with
those bearing CMT, while an opposite correlation was observed for omega-6 fatty acids,
suggesting a protective property in the former. In humans, at the mechanistic level, the
omega-3 docosahexaenoic acid (DHA) was able to induce cell death in MDA-MB-231
cells [97], but also cell cycle modulation in other cancers, such as prostate cancer [32]. In
dogs, a clinical trial using long-chain omega-3 fatty acid supplementation through fish
oil (eicosapentaenoic acid, EPA; 29 g/kg of diet and DHA 24 g/kg of diet) showed that
increased DHA content is associated with longer disease-free intervals and survival in dogs
with stage III lymphoma [98]. In TRAMP mice, a DHA-rich diet was able to delay prostate
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cancer progression [31]. Therefore, this body of evidence suggests the potential antitumoral
effects of omega-3 in canine tumors, though its specific role in CMT remains elusive.

Taken together, this evidence indicates that either endogenously synthesized fatty
acids or exogenous lipids obtained through diet may affect tumor growth. Also, despite
being widely studied in humans, lipid metabolism is poorly investigated in CMTs, but it
could be a new venue as a preventive and therapeutic strategy, as it has been for human
breast cancer.

3.3. Amino Acids Metabolism

Amino acids and their transporters play a plethora of roles in cells, including protein
synthesis, oxidative status, the regulation of protein conformation, excretion through the
urea cycle, and cell signaling, but this study will limit their role to cell metabolism, acting
directly or indirectly. Plasma-free amino acid (PFAA) levels were investigated in dogs
bearing or not bearing CMTs and with or without metastasis in [99]. Compared with
healthy animals, methionine, serine, asparagine, glutamine, alanine, taurine, and citrulline
plasma levels decreased in the CMT group. In the metastatic group, methionine, lysine,
histidine, aspartate, serine, asparagine, glutamate, glutamine, alanine, taurine, citrulline,
and ornithine plasma levels increased compared with healthy dogs [99]. This evidence
suggests that distinct amino acids may play a role in CMT initiation and progression
and during metastasis. Alterations in amino acid profiles due to the presence of tumors
have also been observed in mice bearing xenograft tumors of human MDA-MB-231 triple-
negative cells, resulting in the deregulation of arginine and proline metabolism, the urea
cycle, and aspartate metabolism [100]. Moreover, the amino acid profile in plasma varies
depending on the light cycle, showing cross-talk between the circadian rhythm and amino
acid metabolism in breast cancer [100]. It would be reasonable to consider such associations
in CMTs given their similarities with human breast cancer, but further investigation is
required to elucidate this issue.

In human TNBC, an aggressive tumor subtype with a poor prognosis [101,102], cells
are dependent on glutamine metabolism, and studies have shown that the inhibition of
glutaminase A (GAC) leads to reductions in survival and cell proliferation [103]. GAC is
often overexpressed in human breast cancer, and it has been demonstrated via immuno-
histochemistry and protein expression that GLS follows the same pattern in CMTs, as it
is highly expressed in high-grade tumors [104]. Although further studies are required to
elucidate this issue, this is a promising target since glutaminase inhibitors such as CB-839
have been proposed as therapeutic opportunities [103]. Transglutaminase II (TGase II) has
also been reported as overexpressed in canine tumors, including in mammary tumors, and
this was linked to survival mechanisms [105]. The expression of amino acid transporters
has also been reported to be altered in CMTs. L-type amino acid transporter 1 (LAT1) is re-
lated to the uptake of branched or aromatic amino acids, such as leucine, isoleucine, valine,
phenylalanine, tyrosine, tryptophan, methionine, and histidine, in a sodium-independent
manner [106]. While upregulated in CMT, it detains low expression in normal tissue, being
LAT1 inhibition a potential therapeutic strategy [106,107]. In addition, it is speculated that
citrulline, a non-essential and non-proteinogenic amino acid involved in the urea cycle, also
plays a role in CMT since peptidylarginine deiminase 2 (PAD2), an enzyme that converts
arginine into citrulline, decreases in CMTs compared with normal tissue [108]. In this
context, PAD2 was shown to be responsive to the epidermal growth factor (EGF), but not
estrogen or progesterone, in the canine mammary primary carcinoma cell line CMT25 [109].
Taken together, this evidence shows that the amino acid profile and metabolism seem to be
altered in CMTs.

3.4. Mitochondrial Metabolism

Mitochondria is known as the powerhouse of the cell because of its ATP production
property, which meets bioenergetic needs. According to the revised Warburg effect, its
activity is mostly channeled to biosynthetic pathways and energy production would not be
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its main role. In CMTs, the most frequent mitochondrial alteration reported in the literature
is to its DNA (mtDNA), which suggests organelle plasticity to support carcinogenesis. It has
16,727 pb as a reference sequence, encoding two ribosomal RNA, twenty-two transfer RNA,
and thirteen polypeptides related to the ETC [110,111]. The high heterogeneity of mtDNA
can be observed in distinct CMTs [112] and might be explained by a lack of histones and
repair mechanisms, in addition to mitochondria being the main source of ROS. Oxidative
stress is related to carcinogenesis, and a number of different markers have been identified
in CMTs, such as increases in lipid oxidation and the altered activities of antioxidant
enzymes [113–115]. Studies have demonstrated that defects in mtDNA are potential risk
factors for CMT. Surdyka and Slaska [116] identified a sequence of 26 polymorphic loci
and five mutations, revealing that the mitochondrial displacement loop is a hotspot for
mutation in CMT, with these alterations being correlated with dog size. Also, Surdyka and
Slaska [117] reported that ND2 (NADH dehydrogenase subunit 2), COXII (cytochrome c
oxidase subunit II), ATP6 (ATP synthase F0 subunit6), and COX3 (cytochrome c oxidase
subunit III), most of them related to the ETC function, are mutated in CMT, which is a
hotspot too. Moreover, such alterations have been found in both tumors and blood, with
ATP6 and COXII exclusively in the latter case [117]. This is of particular interest because
it reveals heteroplasmy and also that specific mitochondrial mutations might be required
for niche formations along with metastasis. Surprisingly, such variability was found in
the same dog bearing two tumors in [112]. Despite this evidence allowing us to infer
alterations in mitochondrial metabolism, no study has analyzed mitochondrial function,
especially among cancer subtypes. However, as aforementioned, CPT1A is overexpressed
in CMT [81], suggesting a higher mitochondrial activity compared with normal conditions,
but further studies are required to address this issue.

A high number of alterations in mitochondria indicates their crucial role in canine
mammary carcinogenesis, which may also be a vulnerability. In addition to metabolism,
mitochondria are closely related to cell death, which has been explored in vitro as a thera-
peutic strategy for CMT [118], including by our research group [119]. The administration
of iodine (I2) combined with doxorubicin in dogs with mammary tumors has been shown
to improve the therapeutic outcomes associated with mitochondrial membrane oxida-
tion [120]. Moreover, induced mitochondrial dysfunction has an antitumor effect on CMT
cells from metastasis [121].

4. Conclusions

Metabolic reprogramming in CMTs is summarized in Figure 2 and Table 1, showcasing
the most commonly described alterations compared with healthy individuals, as well
as their sources, in vivo or in vitro. However, studying metabolic rewiring in CMTs is
challenging given the limited number of samples, their high variability, the lack of well-
characterized tumor subtypes, and the absence of suitable in vitro and in vivo experimental
models. These factors have led to descriptive studies and potential data misinterpretations,
underscoring the need for new investigations that focus on understanding the underlying
mechanisms and employing improved experimental designs. Several metabolic alterations
observed in CMTs are also described in human breast cancer, particularly in glucose,
amino acid, and lipid metabolism. However, despite numerous clinical trials attempting
to target metabolic vulnerabilities in humans, most of them have not been tested on dogs
or have very limited reported information. Tumor metabolism has garnered attention
in the past decade because of its potential as the “Achilles heel” of neoplastic cells, and
its complexity has increased with its interaction with the microenvironment. It has been
reported that tumor cells can secrete metabolites that regulate immune cell populations,
such as macrophages. The polarization of macrophages, particularly the M2 type, plays
a crucial role in suppressing inflammation, which can favor immune evasion, cancer
progression, and metastasis. However, studies examining the association between these
two variables in CMTs are scarce, despite the potential to improve the outcomes of current
therapies. Collectively, this body of evidence highlights new avenues for therapeutic
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approaches to canine mammary cancer, uncovering a plethora of metabolic vulnerabilities
that should be explored. By delving into these vulnerabilities, we can potentially enhance
the disease-free interval and overall survival of affected animals.
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Figure 2. Summary of metabolic alterations in canine mammary tumors. Changes in carbohydrate, amino
acid, lipid, and mitochondrial metabolism were found. Glucose uptake and glycolysis enzymes HK
and PKM2 increase in CMTs. This pattern is also observed for gluconeogenesis and the pentose
phosphate pathway. Amino acid utilization has been reported to be altered, especially in glutamine
metabolism via glutaminase 1 and amino acid transport. In addition, fatty acid oxidation increases
because of the overexpression of enzymes related to the carnitine system. Such alterations involve mi-
tochondrial metabolism, which is affected in CMTs mainly by ETC genes, given that they are described
as a hotspot for mutations in mtDNA. Legend: GLUT1—glucose transporter 1; HK—hexokinase;
G6Pase—glucose-6-phosphatase; FBPase—fructose-1,6-bisphosphatase; PKM2—pyruvate kinase
muscle 2; LAT1—L-type amino acid transporter 1; TKTL1—transketolase-like 1; CPT1—carnitine
palmitoyl transferase 1; CPT2—carnitine palmitoyl transferase 2; CACT—carnitine acylcarnitine
translocase; ND2—NADH dehydrogenase subunit 2; COXII—cytochrome c oxidase subunit II;
ATP6—ATP synthase F0 subunit 6; COXIII—cytochrome c oxidase subunit III; ER—estrogen receptor;
FA—fatty acid; GLS1—glutaminase 1; PPP—pentose phosphate pathway; ETC—electron transport
chain; mtDNA—mitochondrial DNA.
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Table 1. Metabolic alterations in canine mammary tumors sorted by source and metabolic path-
ways. Findings on CMTs available in the literature were almost entirely collected from tis-
sue or blood and minimally obtained from cell cultures. Legend: GLUT1—glucose trans-
porter 1; HK—hexokinase; PKM2—pyruvate kinase muscle 2; LAT1—L-type amino acid trans-
porter 1; TLK-1—transketolase-like 1; CPT1—carnitine palmitoyl transferase 1; CPT2—carnitine
palmitoyl transferase 2; CACT—carnitine acylcarnitine translocase; ND2—NADH dehydroge-
nase subunit 2; COXII—cytochrome c oxidase subunit II; ATP6—ATP synthase F0 subunit
6; COXIII—cytochrome c oxidase subunit III; GLS1—glutaminase 1; mtDNA—mitochondrial
DNA; CLA—conjugated linoleic acid; DHA—docosahexaenoic acid; PAD2—peptidylarginine
deiminase 2; Met—methionine; Ser—serine; Asn—asparagine; Gln—glutamine; Ala—alanine;
Tau—taurine; Cit—citrulline; Orn—ornithine; G6Pase—glucose-6-phosphatase; FBPase—fructose-
1,6-bisphosphatase.

Metabolic Pathway Alteration in CMTs Source Reference

Glycolysis

Glucose levels in vivo Rodigheri et al., 2023 [58];
Jayasri et al., 2016 [59]

Glycolysis enzymes in vivo Jayasri et al., 2016 [59];
Arai et al., 1997 [61]

HK in vivo Jayasri et al., 2016 [59]
PKM2 in vivo Lee et al., 2020 [60]

GLUT1 and GLUT3 in vivo Freeman et al., 2010 [62];
Mees et al., 2011 [63]

TLK and TLK-1 in vivo Burrai et al., 2017 [69]

Pentose phosphate pathway G6PDH in vivo Nerurkar et al., 1990 [70]

Gluconeogenesis G6Pase and FBPase in vivo Jayasri et al., 2016 [59]

Fatty acid oxidation CACT, CPT2, CrAT, CPT1A in vivo and in vitro Cacciola et al., 2021 [80];
2020 [81]

Omega-3 fatty acids CLA in vitro, primary cell culture Wang et al., 2006 [90]
DHA in vivo Tuzlu et al., 2021 [96]

Amino acids Met, Ser, Asn, Gln, Ala, Tau,
Cit, and Orn in vivo Azuma et al., 2012 [99]

Amino acid-related enzymes

TGase II in vivo Wakshlag et al., 2006 [105]
GLS1 in vivo Ryu et al., 2018 [104]

LAT1 in vitro Fukumoto et al., 2013a [106],
2013b [107]

PAD2 in vivo Cherrington et al., 2012 [109]

Mitochondria
mtDNA in vivo Bertagnolli et al., 2009 [111]
ND2, COXII, ATP6, COX III in vivo Surdyka et al., 2017 [117]
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