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Simple Summary: Experimental trials designed to predict the microbial protein synthesis in the
rumen via urinary purine derivatives require access to 24-h urinary volumes. This technique is
non-invasive but requires access to 24-h urinary volumes, which is impracticable in grazing animals
or a large number of feedlot sheep. The challenge is to provide the possibility of using the purine
derivatives and creatinine concentrations in a spot urine sample and the daily creatinine excretion in
urine as accurate estimators of purine derivatives’ excretion per day.

Abstract: The objective was to evaluate the influence of diets on lambs using different levels of peach
palm meal as a replacement for maize (0, 10, 40, 60, and 85% of diet dry matter) on the endogenous
creatinine clearance (CC), urine concentration ratio of purine derivatives to creatinine (PDC index),
and daily creatinine excretion (DCE) as a marker to estimate purine derivatives (PD) excretion from
urinary spot samples collected at different time points (4, 8, 12, 16, 20, 24 h after morning feeding)
compared to 24-h total urine collection. The measured parameters were voluntary intake, urinary
volume, CC, DCE, the concentration of plasma creatinine, and PD and purine derivatives’ excretion
(PDE). Five lambs were allocated to metabolic cages and distributed in a 5 × 5 Latin square. Urine
collection was taken daily on days 16 to 19 of each experimental period. The inclusion of peach palm
meal linearly reduced the intake of dry matter (g kg BW−0.75, p = 0.005), crude protein (g kg BW−0.75,
p = 0.010), metabolizable energy (MJ kg BW−0.75, p = 0.010) and CC (p < 0.0001). It also quadratically
affected the urinary volume (p = 0.008) and DCE (p = 0.004). There was a linear decrease for PDC
index (p = 0.032) and PDE (p < 0.0001) measured in the 24-h total urine with peach palm meal levels.
The different times of spot urine sampling did not affect (p > 0.05) the PDC index and PDE. Peach
palm meal decreases the CC thereby compromising the use of a mean value of DCE as a PDE marker
in spot urine samples. There is greater accuracy when using different values of DCE obtained for
each diet as markers for the PDE in spot urine samples. Unconventional foodstuffs of low palatability
affecting the voluntary intake of feed change the renal function.

Keywords: creatinine clearance; Bactris gasipaes; microbial synthesis; renal activity; total urine

1. Introduction

Peach palm (Bactris gasipaes Kunth) is native to the Amazonian region and is adapted
to a wide range of ecological conditions in the humid tropical regions, it has become an
agricultural species in the humid tropical regions of Brazil. The heart-of-palm industry
directs part of the cultivation area to the production of fruit for the extraction of seeds.
Hence, this process generates large amounts of fruit pulp waste, which does not yet have
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a suitable destination. The fruit pulp is a waste that could be used for the production of
peach palm meal as an alternative feedstuff to maize for ruminants.

However, peach palm meal was found to have low palatability owing to the bitter
taste of phenolic compounds and/or rancidness of the rich-unsaturated fatty acid lipid
fraction, with consequences for the feed consumption and intake behavior [1–6].

There are a host of appetite and satiety mediators with interactive control of food
voluntary intake, energy homeostasis, and body weight [7–16]. The neuropeptide Y (NPY)
has been strongly implicated in the stimulation of feeding and also modulates bitter
stimulation in the taste buds [11,13].

Activation of NPY receptors in the brain increases feeding intake and may affect
kidney function, causing a vasoconstrictor effect on the renal vasculature and a decrease
in renal blood flow [17–23]. Renal activity in animals can be evaluated with the use of
clearance methods, in which endogenous creatinine can be used as a testing substance to
determine the level of glomerular filtration [23–25].

The urinary purine derivatives’ excretion is an accurate estimator of microbial protein
synthesized in the rumen and is easy to determine since it overcomes the disadvantages
of more direct methods [26–29]. However, the purine derivatives’ excretion technique
requires the quantitative collection of urine, which is not applicable in grazing animals or
in a large group of animals.

An alternative to 24-h total urine collections is the possibility of using the concentration
ratio of purine derivatives (PD) to creatinine (PDC index) in spot urine samples and the
daily creatinine excretion as estimators of the PD excretion [27,30–32]. The spot urine
collection technique to obtain the urinary excretion of PD is based on the principle that
daily creatinine excretion does not vary with diet and only a sample of urine collected at
4 h after morning feeding is suitable [33,34].

Hence, we hypothesized that the PDC index and a single value of daily creatinine
excretion as markers of the urinary output were not suitable for estimating the purine
derivatives’ excretion in a spot urine sample when diets change the creatinine clearance.
To test this hypothesis, this study aimed to evaluate the influence of different levels of
peach palm meal as a replacement for maize (0, 10, 40, 60, and 85% of diet dry matter) on
the endogenous creatinine clearance, daily creatinine excretion, concentrations of plasma
creatinine, and the PD and PDC index. In addition, the accuracy of spot urine sampling
was also assessed at different time points (4, 8, 12, 16, 20, 24 h after morning feeding) as
estimators of purine derivatives’ excretion by lambs, compared to 24-h total urine collection.

2. Materials and Methods
2.1. Animal Care

The Ethics Commission of the State University of Southwest Bahia (UESB), Itapetinga
Campus, protocol 11-2012, approved the experimental procedures of this study. This
experiment was conducted in the sheep farming sector of the UESB, Itapetinga Campus,
Bahia State, Brazil.

2.2. Experimental Design

Five crossbred (Santa Inês × undefined breed) lambs, intact males, with an approx-
imate age of four months and body weight (BW) at the beginning of the experiment
of 17.9 ± 2.0 kg were used. The animals were numbered, dewormed, and allocated in
1.0 × 0.8 m (0.8 m2) metabolic cages, randomly distributed in a 5 × 5 Latin square design.
The experiment lasted 95 days, consisting of periods of 19 days each (14 days were used for
adaptation to the diet and 5 days were used for sample collection).

2.3. Diet and Feeding

Diets were formulated with average crude protein (CP) at 139 g kg−1 and with average
metabolizable energy (ME) at 12.26 MJ kg−1 on a dry matter (DM), formulated to allow a
body weight gain rate of 250 gd−1 as recommended for lambs by the National Research
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Council [35]. The tested diets consisted of concentrate at 700 g kg−1 of diet DM composed
with peach palm meal as a replacement for maize (0, 10, 40, 60, and 85% of diet DM). The
concentrate was mixed with Tifton 85 hay (particle size at 5 cm) at 300 g kg−1 of diet DM at
the time of diet supply.

The pulp of the pitted fruit (pericarp and mesocarp) was supplied by Indústria de
Alimentos no Mercado de Palmitos (INACERES), located in Uruçuca-BA. The peach palm
meal was produced in a flour mill at Instituto Federal Baiano (IFBAIANO), Uruçuca
Campus-BA. The obtained pulp was dried in the sun for three consecutive days, with the
material being turned over three times a day until its moisture content was reduced by
half. Subsequently, it was disintegrated in a cassava grinder, and then the groundmass was
roasted in a mechanized flour roaster. This roasting procedure lasted 30 to 40 min, with the
mass being turned over using wooden squeegees until its final drying, at approximately
13 g kg−1 moisture.

Table 1 shows the proportions of ingredients and average nutrient contents of the
Tifton 85 hay, peach palm meal, and diets, respectively. The diets (concentrate and Tifton
85 hay) were supplied for ad libitum intake, twice a day at 07:00 h and 16:00 h, to allow
residual feed of 10%. The animals had free access to the water that was supplied in drinking
troughs that were cleaned daily.

Table 1. Ingredient composition (g kg−1 DM) of the diets; chemical composition of the Tifton 85 hay;
peach palm meal and experimental diets.

Replacing Level, % of DM

Ingredient compostion 0 10 40 60 85

Tifton 85 hay 300 300 300 300 300
Maize meal 508 457 298 204 77

Peach palm meal 0 51 210 304 431
Soybean meal 177 177 177 177 177
Mineral salt 1 15 15 15 15 15

Chemical composition Tifton 85
hay

Peach palm
meal

Experimental Diets

0 10 40 60 85

DM 921 926 929 925 928 922 927
OM 920 968 935 931 935 932 935
Ash 80 32 65 69 65 68 65
CP 55 80 135 135 139 137 149

NDIP 308 116 316 325 295 313 268
ADIP 229 201 206 200 212 209 179

EE 20 136 42 37 50 54 65
TC 839 752 752 746 734 740 725

NFC 24 624 288 317 327 368 366
NDF 762 116 464 430 407 372 359
ADF 470 68 224 224 214 233 231
LIG 103 10 33 33 34 33 41

TDN a 477 809 763 710 778 749 779
ME, MJ kg−1 DM b – 9.6 11.79 11.68 12.36 12.81 12.65

DM, g/kg of natural matter; OM: Organic matter; CP: Crude protein; NDIP: Neutral detergent insoluble protein,
g/kg of CP; ADIP: Acid detergent insoluble protein, g kg−1 of CP; EE: Ether extract; TC: Total carbohydrates;
NFC: Non-fiber carbohydrates; NDF: Neutral detergent fiber, free of ash and protein; ADF: Acid detergent fiber;
LIG: Lignin; TDN: Total digestible nutrients; ME: Metabolizable energy.1 Mineral salts (DM basis) 168 g kg−1 of
Ca; 85 g kg−1 of P; 600 mg kg−1 of Cu; 1850 mg kg−1 of Fe; 45 mg kg−1 of Co; 80 mg kg−1 of I; 1350 mg kg−1 of
Mn. a TDN calculated according to Weiss (1999); b ME estimated by equation (NRC, 2001).

2.4. Collection and Laboratory Analyses

During each experimental period, on days 15 to 19, concentrates, Tifton 85 hay, and
residual feed samples were taken. The intake of each animal was measured from the 15th
to 19th day of each experimental period, calculated as the difference between the supplied
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feed (concentrate, Tifton 85 hay) and the residual feed. All samples were placed in plastic
bags and frozen (−20 ◦C) for later analyses.

Samples of supplied and residual feed were analyzed for DM (method INCT—CA
G—003/1), and total nitrogen (N) [36]. Concentrates and Tifton 85 hay supplied were ana-
lyzed for ash (method INCT-CA M-001/1), crude protein (CP; method INCT-CA N-001/1),
and ether extract (EE; method INCT-CA G-004/1), according to [36]. For neutral detergent
fiber (NDF) analysis, samples were treated with thermostable alpha-amylase, without the
use of sodium sulfite and corrected for residual ash [37]. The NDF correction for nitrogen
compounds and estimates of the neutral (NDIN) and acid (ADIN) detergent insoluble
nitrogen compounds were carried out, according to [38]. Lignin (method INCT—CA
F—005/1) was obtained based on the methodology described by [39], with the acid deter-
gent fiber (ADF) residue treated with 72% sulfuric acid. The concentration of non-fiber
carbohydrates (NFC) was calculated by adapting the method proposed by [40], utiliz-
ing NDF corrected for ash and protein [41]. The TDN content was calculated according
to [42], but using NDF and NFC corrected for ash and protein, as shown in the equation:
TDN (g kg−1) = DCP + DNDF + DNFC + 2.25 DEE, where: DCP = digestible crude protein;
DNDF = digestible neutral detergent fiber; DNFC = digestible non-fiber carbohydrates; and
DEE = digestible ether extract.

Animals were weighed at the beginning and end of each experimental period to obtain
the mean BW of the respective experimental period. The total collection of urine (24 h)
from each animal was held on the 16th to 19th day of each experimental period. Urine was
collected using collecting funnels, which were attached to the animals and coupled with
leading hoses to conduct urine to plastic containers with 100 mL of H2SO4 20% (v/v) [43,44].
This solution was added to keep the urine pH below 4.0 [45], which was monitored during
all the collection periods. At the end of each day, the urine pool was weighed, homogenized,
filtered through cheesecloth layers, and a subsample (50 mL) was sampled and stored at
−20 ◦C for further analyses.

On the second day of collection in each experimental period, i.e., on day 2, spot
urine samples were collected at 4-h intervals over a period of 24 h. In this case, the urine
sample was collected directly into FalconTM tubes attached to the animal every 4-h interval.
Aliquots of 10 mL (spot urine) were diluted in 40 mL of H2SO4 0.018 mol L−1, labelled
appropriately, and stored at −20 ◦C for later analyses. The sum of the volume of each
collected urine sample (10 mL) was used to obtain the total urine volume on day 2.

Four hours after the morning feeding, on day 2 of the total urine collection, blood
samples were taken via puncture of the jugular vein, using 4 mL EDTA K2 Vacutainer®

tubes (Becton Dickinson Vacutainer System, Rutherford, NJ, USA). The samples were
immediately centrifuged at 2200 g (Centrifuge himac CF-16RX II, Rotor type T15A36,
Hitachi Koki) for 10 min to obtain blood plasma, which was analyzed for creatinine and
stored at−20 ◦C for later analysis for urea, allantoin, xanthine–hypoxanthine, and uric acid.
The concentrations of creatinine and uric acid in urine and in blood plasma were determined
using commercial kits from Bioclin® (ref. K016 and ref. K139, Delft, the Netherlands).
The urinary and plasma concentrations of allantoin and xanthine–hypoxanthine were
determined by colorimetric methods, as specified by [26]. The sum of the urinary excretions
of allantoin, xanthine–hypoxanthine, and uric acid was used to obtain the PDE.

2.5. Calculations

For testing the effect of the number of days of urine collection, the combinations were
realized by the mathematical calculation using the observed values on day 1 = T1 sample;
day 2 = (T1 + T2)/2; day 3 = (T1 + T2 + T3)/3; and day 4 = (T1 + T2 + T3 + T4)/4, for
comparison among the days of total collection (24, 48, 72, and 96 h).

The endogenous creatinine clearance (CC) was calculated, as described by [24]:

CC =
C

PC
× VU

1440
(1)
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where: C = the concentration of 24-h total urine creatinine (mg dl−1); PC = the concentration
of plasma creatinine (mg dl−1); and VU = the urine volume (mL) per min.

The urinary volumes estimated from the spot urine samples were calculated as:

VU =
DCE

C
(2)

where: VU = estimated urine volume (L); DCE = the mean daily creatinine excretion
(mg kg−1 BW); and C = the concentration in the spot urine sample (mg L−1).

We used the single mean value of DCE (28.12 mg kg−1 BW) in the evaluation of urinary
spot samples collected at different time points (4, 8, 12, 16, 20, 24 h after morning feeding)
to obtain PDE in lambs and to compare with 24-h total urine collection.

The different mean values of DCE obtained in each diet (30.5, 27.9, 25.9, 27.8, and
28.4 mg kg−1 BW) from 24-h total urine collection were utilized to estimate the PDE in a
spot urine sample collected 4 h after morning feeding, to evaluate the different peach palm
meal levels.

The PDC index was calculated according to [30]:

PDC index =
PD
C
× BW0.75 (3)

where: PD = the purine derivatives concentration (mmol L−1); C = the urinary creatinine
concentration (mmol L−1); and BW0.75 = the metabolic body weight (kg).

2.6. Statistical Analyses

The data were statistically analyzed using the MIXED MODEL procedure [46]. In
the 5 × 5 design structure Akaike’s Information Criteria (AIC) was used to select the
appropriate covariance structure using Compound symmetry (TYPE = CS). For exploratory
data analysis the Shapiro–Wilk test was used for normal distribution and the Bartlett test
was used for homogeneity of variance.

Data of urine volume (measured), creatinine clearance (CC), the plasma concentration
of creatinine and purine derivatives, daily creatinine excretion (DCE), purine derivatives
excretion (PDE), and PDC index were analyzed as a Latin square with lambs fed five diets
(D: peach palm meal levels replacing maize) and five experimental periods (P). These
variables were studied on four different days (C: days 1, 2, 3, and 4 of 24-h total urine
collections) as repeated measures. The main effects of D (diet) and C (collection days) were
included as fixed effects and animals (A) and experimental periods (P) as random variables.

Estimated data of urine volume and the PDE and PDC index were analyzed accord-
ing to the description above, using day 1 of the 24-h total urine collection (C) and time
points of spot urine sampling at 4-h intervals after morning feeding (T) in lambs fed diets
(D) containing peach palm meal replacing maize.

Nutrients’ intake and urinary excretion of purine derivatives and PDC index using
spot sample collected at 4 h after morning feeding in lambs fed diets (D) containing peach
palm meal replacing maize were analyzed according to the model:

Yij(k) = µ+ Pi+Aj+D(k)+εij(k) i,j,k =1,...,r (4)

where: Yij(k) = intake, plasma concentration and urinary excretion of creatinine and PD in
evaluation k, animal j and period i; µ = overall mean; Pi = effect of period i; Aj = effect of
animal j; D(k) = fixed effect of diet k; treatment effect, εij(k) = random error with mean 0 and
variance σ2; r = number of diets, periods and animals.

The evaluation of the effects of the level of maize replacement by peach palm meal
(D) and collection time of spot urine at 4-h intervals (T) was performed by polynomial
contrast and regression analysis, in case of significant effects on ANOVA. For diets (0,
10, 40, 60, and 85% on diet dry matter) the ORPOL function in PROC IML was used to
obtain the appropriate coefficients for the CONTRAST statement. In Regression, the ARH
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(1) correlation structure was used. The general cubic model was adjusted and then phased
out to construct the final model. The model for simple linear regression was:

Yi = β0 + β1x1
+ εi i =1,..., n (5)

where: Yi = observation i of dependent variable y; β0, β1 = regression parameters; xi
= observation i of independent variable × (diets or time); εi = random error. Model
assumptions: E(εi) = 0, mean of errors is equal to zero; Var(εi) = σ2, variance is constant for
every εi, that is, variance is homogeneous; Cov(εi, εi’) = 0, i 6= i’, errors are independent,
the covariance between them is zero; usually, it is assumed that εi are normally distributed,
εi ~ N (0, σ2). When that assumption is met the regression model is said to be normal.

Results from treatments are presented as least square means which were compared
by contrast with p < 0.05. For ANOVA, the critical level adopted was 0.05 < p < 0.10 for
type I error.

3. Results

The inclusion of peach palm meal replacing maize in the diets of lambs linearly reduced
the daily intake (g kg BW−0.75) of DM (p = 0.005), CP (p = 0.010), metabolizable energy (ME,
p = 0.010), and the ether extract (EE) intake was not affected (p = 0.663) (Table 2).

Table 2. Nutrients’ intake in lambs fed diets (D) containing peach palm meal replacing maize.

Item
Replacing Level, % of DM

SEM
p-Value

0 10 40 60 85 D L Q

g d−1

DMI 1 858.0 752.0 666.0 576.0 538.0 47.7 0.029 0.002 a 0.601
CPI 2 120.0 102.0 94.0 82.2 84.0 6.65 0.059 0.006 b 0.288
EEI 3 22.52 23.34 38.22 22.82 37.79 2.56 0.805 0.807 0.627

TDNI 4 626.0 556.0 514.0 454.0 416.0 0.04 0.098 0.008 c 0.819
MJ d−1

MEI 5 9.90 7.05 8.69 4.08 6.76 0.59 0.125 0.012 d 0.786
g kg BW−0.75

DMI 1 79.0 68.4 62.5 51.3 52.1 3.36 0.007 0.005 e 0.346
CPI 2 14.47 8.40 8.32 4.78 8.06 0.51 0.063 0.010 f 0.245
EEI 3 2.80 2.34 3.80 2.68 3.72 0.19 0.633 0.478 0.492

TDNI 4 58.04 50.42 48.04 40.58 40.36 0.05 0.042 0.004 g 0.526
MJ kg BW−0.75

MEI 5 1.23 0.71 0.87 0.48 0.65 0.04 0.084 0.010 h 0.540

DM dry matter; MJ Mega joule; BW Body weight; 1 Dry matter intake; 2 Crude protein intake; 3 Ether extract intake;
4 Total digestible nutrients intake; 5 Metabolizable energy intake. a Ŷ = 802.7 − 3.200 X; b Ŷ = 111.9 − 0.397 X;
c Ŷ = 630.1 − 2.220 X; d Ŷ = 8.76 − 0.0376 X; e Ŷ = 73.7 − 0.0307 X; f Ŷ = 11.41 − 0.0668 X; g Ŷ = 54.77 − 0.0193 X;
h Ŷ = 1.01 − 0.0056 X; X = peach palm meal levels.

The diets affected the urine volume (p = 0.008), such that the minimum urine volume
was observed to the level of 42% of peach palm meal replacing maize. The creatinine
clearance reduced linearly (p < 0.0001); the plasma concentrations of creatinine increased
(p = 0.011) by increasing the levels of peach palm meal in diets (Table 3). The daily creatinine
excretion was also altered (p = 0.016) by the peach palm meal levels in the diets and the
quadratic equation estimated the minimum point at 50% of peach palm meal replacing
maize (Table 3).
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Table 3. Measured urine volume; endogenous creatinine clearance (CC); plasma and urinary creatinine; plasma and urinary purine derivatives (PD); PD/creatinine
index using four days of 24-h total urine collections (C); and plasma concentration in lambs fed diets (D) containing peach palm replacing maize.

Item

Replacing Level, % of DM

SEM

p-Value Length of Urine Collection p-Value

0 10 40 60 85 D Linear Quadratic 24 h
(Day 1)

48 h
(Day 2)

72 h
(Day 3)

96 h
(Day 4) C D × C

Urine, L d−1 0.90 0.82 0.55 1.06 0.86 0.10 0.008 0.614 0.008 a 0.87 0.82 0.83 0.83 0.980 0.990
CC 1

ml min−1 70.8 56.2 45.9 47.4 38.7 2.18 <0.0001 <0.0001 b 0.071 53.8 59.4 46.9 46.8 0.032 c 0.984
mL kg BW−0.75 min−1 6.66 5.37 4.33 4.31 3.64 0.20 <0.0001 <0.0001 d 0.099 4.99 5.55 4.45 4.48 0.038 e 0.968

Creatinine
plasma, mg dl−1 0.72 0.78 0.89 0.97 1.30 0.07 0.095 0.011 f 0.358

urine, mg kg BW−1 30.5 27.9 25.9 27.9 28.4 0.49 0.016 0.125 0.004 g 27.8 29.4 27.9 27.3 0.280 0.990
mmol kg BW−0.75 d−1 0.59 0.54 0.50 0.54 0.55 0.01 0.011 0.150 0.003 h 0.54 0.57 0.54 0.53 0.260 0.990

Purine derivatives
plasma, mmol L−1 1.84 1.89 1.63 1.36 1.89 0.19 0.818 0.718 0.515
urine, mmol d−1 9.79 9.50 7.76 8.13 7.20 0.31 <0.0001 <0.0001 i 0.562 8.28 8.55 8.58 8.51 0.919 0.986

mmol kg BW−0.75 d−1 0.89 0.88 0.73 0.72 0.70 0.02 <0.0001 <0.0001 j 0.304 0.77 0.79 0.79 0.78 0.971 0.972
PDC index 1 16.9 18.8 16.5 15.6 14.2 0.75 0.139 0.034 0.271 15.3 15.2 17.1 17.9 0.241 0.873

1 PD, mmol L−1 ÷ creatinine, mmol L−1 × kg BW 0.75; BW = body weight. a Y = 0.92 (±0.09117, p < 0.0001) − 0.01630 (±0.004227, p = 0.0002) X + 0.000189 (±0.000049, p = 0.0002) X2;
b Y = 59.1 (±2.4386, p < 0.0001) − 0.2543 (±0.05491, p < 0.0001) X; c contrast, 48 h vs. (24 h + 72 h + 96 h) (p < 0.01); d Y = 5.70 (±0.2560, p < 0.0001) − 0.02595 (±0.005254, p < 0.0001) X;
e contrast, 48 h vs. (24 h + 72 h + 96 h) (p < 0.01); f Ŷ = 0.73 (±0.048, p < 0.0001) + 0.004557 (±0.001591, p = 0.009) X; g Y = 29.9 (±0.9117, p < 0.0001) − 0.1587 (±0.05298, p = 0.004) X +
0.001691 (±0.000588, p = 0.005) X2; h Y = 0.57 (±0.001695, p < 0.0001) − 0.00303 (±0.001019, p = 0.004) X + 0.000034 (±0.000012, p = 0.005) X2; i Y = 9.54 (±0.5111, p < 0.0001) − 0.02801
(±0.007868, p = 0.001) X; j Y = 0.88 (±0.03193, p < 0.0001) − 0.00247 (±0.000611, p = 0.0001) X; X = peach palm meal levels.
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The purine derivatives’ excretion in urine decreased linearly (p < 0.0001), PD in plasma
did not change (p = 0.818), and the PDC index showed a linear decrease (p = 0.034) with the
peach palm meal levels.

For the urine volume, purine derivatives’ excretion, and PDC index, differences
associated with the experimental diets were found in the spot urine samples collected at
4-h intervals after the morning feeding (Table 4). It is consistent with the results obtained
by the collection of 24-h total urine (Table 3). In contrast, there was an effect (p = 0.0002 and
p = 0.004) with a linear component (p = 0.006 and p = 0.015) and a cubic effect (p = 0.0003 and
p = 0.002) of the peach palm meal levels on the respective purine derivatives’ excretion and
the PDC index. Therefore, spot urine sampling was less accurate to explain the variation
of purine derivatives’ excretion depending on the diet, provided the urine volume was
not properly estimated (Table 4). Hence, the cubic effect shows other possible interfering
factors, for example, renal activity.

The effect of diet on the PDC index obtained in the spot urine samples at different time
points after morning feeding was inconsistent with the results for the PDC index obtained
in the 24-h total urine samples and with spot urine collected at a time point of 4 h after
morning feeding (Tables 3–5).

The time of spot urine sampling (4, 8, 12, 16, 20, 24 h) did not affect the urine volume
urine (p = 0.314) estimated by an average value from all diets (28.12 mg kg−1 BW), purine
derivatives’ excretion (p = 0.132), and PDC index (p = 0.282) (Table 4).

The estimated purine derivatives’ excretion, using a spot urine sample collected at 4 h
after the morning feeding, presented a negative linear effect with different levels of peach
palm meal (p = 0.003), indicating that the urine output obtained with different average
values of daily creatinine excretion observed in each diet increases the accuracy of the
technique (Table 5).
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Table 4. Estimated urine volume, excretion of purine derivatives (PD) and PD/creatinine index using the first day (day 1) of 24-h total urine collection and urine
spot samples collected at 4-h intervals of time (T) after morning feeding in lambs fed diets (D) containing peach palm meal replacing maize.

Item
Replacing Level, % of DM

SEM
p-Value Time of Urine Collection, h

Day1 SEM
p-Value

0 10 40 60 85 D 4 8 12 16 20 24 T D × T

Urine1, L d−1 1.30 0.85 0.71 1.43 1.08 0.11 0.009 a 1.11 1.08 1.13 1.35 0.88 0.88 0.87 0.07 0.314 0.911
Purine derivatives 1

mmol d−1 9.51 12.52 9.96 8.05 8.37 0.61 0.0001 b 9.73 8.39 9.29 10.91 9.36 10.41 8.28 0.34 0.132 0.762
mmolkgBW−0.75 d−1 0.88 1.16 0.93 0.74 0.80 0.05 0.0002 c 0.94 0.77 0.87 0.99 0.87 0.96 0.77 0.03 0.138 0.805

PDC index 2 18.0 22.4 17.6 14.3 16.3 1.40 0.004 d 19.9 15.3 16.5 19.5 16.6 18.4 16.2 0.68 0.282 0.937

1 Estimated by single mean value of daily creatinine excretion = 28.12 mg kg−1 BW (body weight); 2 PD, mmol L−1 ÷ creatinine, mmol L−1 × kg BW 0.75. a Polynomial contrast for cubic
component (p = 0.007); b Polynomial contrast for linear (p = 0.003) and cubic (p = 0.0007) component; Y = 10.3030 (±0.5483, p < 0.0001) − 0.02671 (±0.01054, p = 0.012) X; c Polynomial
contrast for linear (p = 0.006) and cubic (p = 0.0003) component; Y = 0.9489 (±0.0456, p < 0.0001) − 0.00225 (±0.000923, p = 0.016) X; d Polynomial contrast for linear (p = 0.015) and cubic
(p = 0.002) component; Y = 18.6607 (±0.9120, p < 0.0001) − 0.05063 (±0.01983, p = 0.015) X; X = peach palm meal.
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Table 5. Urinary purine derivatives (PD) and PD/creatinine index using spot samples collected at
4 h after morning feeding in lambs fed diets (D) containing peach palm replacing maize.

Item
Replacing Level, % of DM

SEM
p-Value

0 10 40 60 85 D Linear Quadratic

Purine Derivatives 1

mmol d−1 13.1 11.9 9.5 7.8 6.3 0.87 0.054 0.004 a 0.987
mmol kg BW−0.75 d−1 1.29 1.12 0.90 0.72 0.62 0.09 0.038 0.003 b 0.734

PDC index 2 21.3 24.9 16.7 13.4 23.3 0.68 0.636 0.698 0.445
1 Estimated by following values of daily creatinine excretion: 30.5, 27.9, 25.9, 27.8, and 28.4 mg kg−1

BW (body weight) obtained in each respective diet; 2 PD, mmol L−1 ÷ creatinine, mmol L−1 × kg BW 0.75.
a Ŷ = 13.059 (±0.6767, p < 0.0001) − 0.08375 (±0.01413, p < 0.0001) X; b Ŷ = 1.228 (±0.1347, p < 0.0001) − 0.00783
(±0.002354, p = 0.003) X; X = peach palm meal levels.

4. Discussion

Although the diets were balanced to be isonitrogenous and isoenergetic, the decrease
of dry matter intake (DMI) prompted a linear reduction in the intake of crude protein (CP),
total digestible nutrients (TDN), and metabolizable energy (ME) by the inclusion levels of
peach palm meal in the diets. In view of the results described for DMI, there was higher
acceptability by the animals of the diet without peach palm meal, indicating that there was
feed selection with the rejection of the peach palm meal by the lambs. It is possible that
the increase in the total unsaturated fatty acid contents with the replacement of maize by
peach palm meal affected the palatability, due to possible rancidification of the peach palm
meal [5,6,47] and the presence of phenolic compounds [16,48,49].

The rejection caused food restriction which is associated with increased NPY protein
levels in the hypothalamus [8]. Sugino et al. [9] reported that ghrelin, secreted mainly by the
stomach, is a peptide that appears to participate in energy homeostasis by stimulating GH
secretion and controlling feeding behavior. Circulating ghrelin levels have been shown to
rise before a meal and fall afterward, suggesting that anticipation of a meal may stimulate
secretion. Thus, ghrelin may play an important role in controlling feeding behavior and
energy homeostasis. Foradori et al. [15] showed support for the hypothesis that during
short-term fasting, systemic ghrelin concentrations and NPY expression in the arcuate
nucleus rise. In the brain, NPY levels and NPY receptor density are changed in response to
alterations in energy balance [15,22,50]. Anukulkitch et al. [50] reported data showing that
diet-induced reduction in body weight leads to increased NPY expression in sheep.

Neuropeptide Y (NPY) is a co-transmitter of the sympathetic nervous system includ-
ing the renal nerves. The kidney expresses NPY receptors, which can also be activated
by peptide YY (PYY), a postprandial circulating hormone released from gastrointestinal
cells [16,22,23,51]. Despite the profound reductions of renal blood flow, systemic NPY
infusion can cause diuresis and natriuresis; this occurs largely independently of the pres-
sure natriuresis mechanisms and is possibly mediated by an extrarenal Y5 receptor. NPY
produces potent renal vasoconstriction via theY1 receptor, thus, the glomerular filtration
rate may be affected [21,22,52].

It is known that protein intake leads to renal hyper-perfusion and plasma hyperfiltra-
tion in the renal glomerulus, so that it can enhance urine formation [25,53]. The possibility
of higher plasma filtration in the kidneys of animals after feeding and protein intake
can explain the filtered tubular load of creatinine and PD, thus increasing their urinary
excretion [24,53–56].

As products of metabolism excreted in the urine, the concentrations of plasma cre-
atinine and purine derivatives are determined by renal perfusion and filtration fraction
in the kidneys, and variations in both have been observed in livestock [53]. In addition,
Kiani et al. [56] showed that the concentration of plasma creatinine increased in adult
ruminants fed a low protein diet.
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The endogenous creatinine clearance can be used to measure the glomerular filtration
rate, which is an indicator of kidney function [24,25]. Hence, the decrease of creatinine
clearance could indicate that the renal activity in the lambs was affected by the diets with
peach palm meal. Consistently, there was an increase in the concentration of plasma
creatinine, possibly as a consequence of its lower clearance in response to the levels of
peach palm meal in diets.

An increase in the concentrations of plasma creatinine was observed in adult rumi-
nants, indicating that there are mechanisms enabling animals with a lower food intake to
change the glomerular filtration rate [56]. The adaptation of the renal perfusion potentially
may have an impact on concentrations of plasma creatinine, which does not effectively
suffer tubular absorption and secretion [24].

Creatinine, whose excretion is considered as a fixed proportion relative to the metabolic
body weight (muscular mass) and dietary factors, requires adjusting for variation in the
urine or plasma volume [26,57,58]. However, Braun et al. [59] related that plasma creatinine
is not an early indicator of kidney function, and Kiani et al. [56] observed that creatinine
concentration in plasma is increased when renal perfusion and filtration fraction decrease
in small ruminants fed a diet with low CP. Skotnicka et al. [53] reported that feeding time
and diet (particularly the high protein content) can modify renal activity, which results in
plasma hyperfiltration in renal glomeruli.

In this present study, there was higher plasma creatinine in lambs that ingested lower
amounts of CP and ME as a consequence of lower voluntary intake. On the other hand,
the relationship of these phenomena to decreased creatinine excretion in sheep fed a diet
with 40% peach palm meal level is worth investigating. However, Santos et al. [5] related
better feed conversion at the 40% level of peach palm meal that could be associated with
the increased energy density of the diet with the use of peach palm meal. The implications
of this for adequately understanding the effects of food restriction and energy balance on
the renal activity to obtain the purine derivatives excretion should not be overlooked.

Zoccali et al. [60] and Ezzat et al. [23] showed that greater serum creatinine was
associated with increased serum NPY and decreased glomerular filtration rate. Moreover,
increased voluntary intake and energy balance correlated with decreased NPY levels [50,61].
This is not surprising considering that the food restriction decreases the renal blood flow
by direct mechanisms of intrarenal action of NPY, causing a decrease in the creatinine
clearance. Diuresis may also occur secondarily by systemic hemodynamic changes as a
consequence of multiple extrarenal effects of NPY, promoting increased filtration fraction.
This would explain the increase in creatinine excretion, as was observed at levels of peach
palm meal above 40% maize replacement [21,22,52].

The purine derivatives to creatinine ratio depends on the level of feed intake and
intestinal flow of microbial purines and can indicate the intestinal flow of microbial ni-
trogen [31,62]. According to Chen et al. [30], the PDC index can be used as a marker to
estimate the PDE because it considers the animal’s metabolic body weight.

In this present study, for the PDC index, there was imprecision in differentiating the
diets, as was observed with the 24-h total urine sample and also when using the spot
urine sample at a single time point at 4 h after morning feeding. Biased measurements
were obtained with spot samples taken on a number of occasions during the 24-h cycle
since there was significant linear and cubic variation. This may be explained by changed
creatinine clearance in lambs fed a total mixed ration with peach palm meal. Hence, the
PDC index was not effective in predicting purine derivatives’ excretion obtained in that
urine spot samples collected at a single time point (4 h after morning feeding) and in urine
obtained by the 24-h total urine collection.

Similarly, Nsahlai et al. [63] observed that diets had no effect on the purine derivatives
to creatinine ratio, however, related that the poorest quality diet (teff straw) exhibited the
lowest PDE in the daily total urine sample without affecting voluntary intake. Nevertheless,
George et al. [62] reported that the purine derivatives to creatinine ratio was constant over
a wide range of voluntary DMI at different times after feeding in crossbred bulls. The
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authors concluded that the spot urine sampling technique to predict the microbial protein
supply is not suitable for detecting small differences in microbial nitrogen supply. Hence,
the determination of PDE in total urine (mmol d−1) is necessary to assess precisely the
microbial nitrogen supply.

In this study, there was a similar plasma concentration of purine derivatives in lambs
that ingested lower amounts of both CP and ME. The urinary purine derivatives excretion
ranged from 0.70 to 0.89 mmol kg BW−0.75 d−1, decreasing with increased levels of peach
palm meal. Thus, as shown above, the total digestible nutrients’ intake decreased with
the increased levels of peach palm meal that have probably contributed to causing a
reduction in microbial protein synthesis, as reported by Santos et al. [64]. In the study of
Santos et al. [64] the microbial protein synthesis was obtained in thirty lambs by spot urine
sampling at 4 h after the morning feeding and different mean values of creatinine excretion
for each diet as markers of urine output. Therefore, urinary PD excretion reflects microbial
protein synthesis due to the high correlation between the two parameters [26,27,33,62,65].

Comparing the urine volume and purine derivatives’ excretion, there were no differ-
ences in the mean values obtained by spot sampling at different time points compared
to the 24-h total urine. However, a single average value of daily creatinine excretion
(28.12 mg kg−1 BW) obtained from experimental diets to calculate the urinary volume,
was not suitable to assess accurately the purine derivatives’ excretion in lambs. The cubic
response indicates interference from renal activity.

As there was no difference in the circadian rhythm of the PDE and PDC index, these
were tested in the spot urine sample obtained at 4 h after the morning feeding, as suggested
by [25,33,34]. Muszczyñski et al. [25] did not find a modifying effect of food (feeding time)
on diurnal renal activity and reported a lack of GFR rhythms in goats with permanent food
access. The results showed that the spot urine collection at 4 h was suitable for detecting
differences between the experimental diets when different mean values of DCE were used
(30.5, 27.9, 25.9, 27.8, and 28.4 mg kg−1 BW) from each diet. It indicates that a sole average
value of daily creatinine excretion could not be used to estimate urine volume in spot urine
samples, because the different levels of peach palm meal affected the creatinine clearance,
indicating renal activity changed by diet. Aside from diet, the difference has to be under-
lined between ruminants’ species. In fact, urinary purine derivatives’ excretion (mmol kg
BW−0.75 d) in the present study was intermediate [66] while the PDC index was lower [67]
in lambs compared to cows and buffaloes. In addition, according to Thanh et al. [66], spot
sampling is not reliable in buffaloes due to infrequent urination.

Similarly, Pereira et al. [68] compared urine sampling techniques (24-h total and spot
urine) in lambs fed unconventional feedstuff, and suggested sampling at any time point
after the feeding to obtain the PDE with the urine volume estimated by average daily
creatinine excretion measured in each experimental diet.

Chen et al. [69] found that the purine derivatives to creatinine ratio in spot samples
showed no significant difference when obtained at 1-h intervals of collection and it corre-
lated with the purine derivatives’ excretion. It is consistent with the PDC index and purine
derivatives excretions which were not affected by the different time points of spot urine
collection. In contrast, in this present study, both showed a significant cubic component
of diet effect suggesting interference with renal activity. Possibly, this could be associated
with peach palm meal levels affecting the food intake. The lack of an effect of the collection
time on the PDC index indicates the possibility of using a spot urine sample to obtain the
PD excretion at any time point of the day.

However, the PDC index obtained, using spot urine at 4 h after morning feeding, was
inaccurate in detecting dietary differences, indicating poor utility in this regard. If the
creatinine clearance is affected by the diet, both the PDC index and also the urinary volume
estimated by a single average value for daily creatinine excretion per body weight, do not
allow a precise estimation of PD excretion.

Our hypothesis “the use of PDC index and a single average value of daily creatinine
excretion as a marker of the urinary output is not suitable for estimating the purine
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derivatives’ excretion in a spot urine sample when diets change the renal activity” was not
rejected. In addition, the PDC index was not precise in detecting the difference between
levels of peach palm meal in diets. The spot urine sampling at 4 h is suitable in sheep for
detecting differences in purine derivatives’ excretion [33] when the feed does not change the
renal activity; otherwise, this technique requires validation by the 24-h total urine collection.

Results showed that peach palm meal in diets for lambs reduces the endogenous
creatinine clearance, indicating the necessity to perform 24-h total urine collection in at least
one individual providing the DCE for each diet to assess precisely the purine derivatives’
excretion in the spot urine of lambs.

5. Conclusions

Peach palm meal in diets decreases the endogenous creatinine clearance in lambs.
A single average value for daily creatinine excretion and purine derivatives to creatinine
index is inadequate as markers to estimate the urinary purine derivatives’ excretion in spot
urine samples when the renal function is affected by feed. Therefore, it is recommended
to use measured creatinine excretion for each diet. These findings represent a baseline for
future studies on the interaction between low palatability compounds from unconventional
foodstuffs, feed intake behavior, and renal function.
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