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Simple Summary: Immediately post-hatch, young chicks are exposed to microbes in the air, feed
and environment, and rapid colonisation of the gut begins. In environments loaded with pathogens,
this process is critical with lifelong implications for the birds. Here, we present the large-scale
commercial hatchery-based experiment using the “Hen in the bag” approach similar to faecal transfer
in humans, where the highly diverse product, based on chicken caecal microbiota, was administered
via automated spray equipment to the birds immediately post-hatch to mimic maternal inoculation.
We report highly significant alterations in gut microbiota across upper and lower gut sections,
changes in diversity in the caecum and jejunal mucosa, high resemblance of the inoculum microbial
community to the caecal microbiota of the birds and consistently higher weight of treated animals.

Abstract: The concept of designer microbiota in chicken is focused on early exposure of the hatch-
lings to pathogen-free microbiota inoculum, limiting the early access to harmful and pathogenic
microorganisms, thus promoting colonisation of the gut with beneficial and natural poultry micro-
biota. In this study, we controlled colonisation of the intestine in broiler chickens in a large-scale
industrial setting via at-hatch administration of a commercial product containing a highly diverse
microbiota originating from the chicken caecum. The treatment significantly transformed the mi-
crobiota membership in the crop, proventriculus, jejunum and caecum and significantly altered the
taxa abundance in the jejunum, jejunum mucosa, and caecum estimated using PERMANOVA and
unweighted and weighted UniFrac distances, respectively. The treatment also improved the growth
rate in chickens with no significant alteration in feed conversion ratio. A comparison of inoculum
product microbiota structure revealed that the inoculum had the highest Shannon diversity index
compared to all investigated gut sections, and the number of Observed Species second only to the
caecal community. PCoA plots using weighted or unweighted UniFrac placed the inoculum samples
together with the samples from the caecal origin.
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1. Introduction

Broiler chickens represent a substantial part of the poultry industry, providing the
affordable source of animal protein for the growing world population. The demand for
chicken meat is rising due to its low environmental footprint and cost [1]. Approximately
20.4 million metric tons of broiler meat are produced in the United States, and about
14.7 million tons by the world’s second biggest producer China [2]. Australian poultry meat
production was valued at approximately AUD 2.9 billion, according to a survey conducted
in 2019–2020 [3]. The global poultry industry faces many challenges related to food safety
and bird welfare, mainly brought by the switch to open and free-range production systems.
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The industry is continually investing in research to improve bird performance, food safety
and meat quality while considering animal welfare.

The chicken intestinal microbiota is responsible for various physiological and metabolic
processes necessary to maintain good health and productivity [4]. In addition, chicken
microbiota mediates the response to stresses like heat [5], impacts immune response [6]
and, via gut-brain axes, alters bird behaviour [7]. One of the major objectives of modifying
intestinal microbiota is to increase the number of beneficial and reduce the number of
pathogenic or harmful microbes. In addition to causing diseases, the presence of pathogens
can compromise food safety which represents a major issue the industry is continually
addressing to make the products safer for human consumption [8–10]. Supplementing the
birds with probiotics to improve the ratio of beneficial to pathogenic intestinal bacteria can
reduce enteric diseases like necrotic enteritis [11].

Studies show that the recent expansion and the industrialisation of poultry production
systems affect the gut microbiota of the birds [12]. In the poultry industry, fertilised eggs
are separated from the mother hen and incubated in a clean hatchery environment. This
prevents the exchange of maternal microbiota between the mother hen and the chick [12].
From the hatcheries, the newborn chicks are transported directly to the farm. During the
transportation, the chicks can acquire poultry uncharacteristic microbiota from the trucks,
the environment or the humans [12]. This leads to poor microbiota reproducibility, with
different batches of birds originating from the same breeding stock and hatchery, raised on
the same batch of food and in the same shed, demonstrating massive differences in microbial
community as high as at a phylum level [12]. Since microbiota plays a major role in health,
immune response, behaviour and performance [13], poor microbiota reproducibility results
in a different response to stresses, pathogens, and environment, ultimately leading to
variable flock performance [12].

Probiotic products are among the most widely used poultry supplements. However, it
is accepted that most probiotics rarely colonise and persist in the gut and that continual
supplementation is needed [14]. As our understanding of the role of microbiota in the birds’
health and productivity advanced in recent years, novel ways of administering probiotics
to ensure persistence in the gut are being explored. Some probiotics can be administered
in-ovo, via injection into the egg amniotic fluid [15], others are designed to be sprayed onto
the hatchlings before transport, while the majority of products are conventionally regularly
administered into feed and very few in drinking water [16]. Environmental factors play
a major role in gut colonisation. Campylobacter jejuni is a known commensal that starts
colonisation due to the various short chain fatty acids (SCFAs) produced by the existing gut
microbiota [17]. A form of mutualism can be observed with Lactobacillus salivarius strains
as they acquire different genes responsible for energy and nutrient utilisation depending
on animal hosts [18]. Competitive exclusion due to the limited availability of nutrients
can also affect colonisation and prevent pathogens from colonising in the chicken gut [19].
Additionally, nutrient landscape determines successful colonisation and the ability of
microbes to persist long term. In this highly competitive environment, the isolates capable
of efficiently using limiting nutrients will have colonisation advantage [20].

The administration of probiotics can affect the histomorphology of the intestinal tract.
The goblet cells are essential in producing mucin and maintaining intestinal homeostasis by
providing bicarbonate [21,22]. These cells also play a role in the immune system as a line
of defence at the mucosal layer and deliver soluble antigens in the intestine to underlying
dendritic cells [23]. This function can prevent the colonisation of pathogens in the gut and
help maintain the gut health of the chickens.

Designer microbiota is a recent concept that aims to control the exposure of the
intestine to the predesigned and reproducible microbial population, restricting early access
to pathogens and allowing the beneficial microbes to colonise the gut. Wilkinson et al. [24]
showed that controlled gut colonisation is possible immediately post-hatch in a controlled
environment. In contrast to the controlled colonisation that requires a challenging process
of generation of precisely defined and reproducible community, faecal transplant commonly
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performed in humans focuses on the health and performance of the donor, accepting the
degree of individual and temporal microbiota variation.

Our research hypothesis was that early intervention in chicken gut colonisation could
bring beneficial modification in the gut microbiota population, which would eventually
help to improve the growth rate and feed efficiency. This study aimed to investigate an
alternative chicken gut colonisation intervention by administering a commercial product
originating from chicken caeca with a highly diverse microbiota, similar to the procedure
used for human faecal transplants. The inoculum was produced using biotechnology able
to provide a highly reproducible microbial community.

2. Materials and Methods
2.1. Animal Trial

The poultry trial was conducted in a commercial hatchery and an associated large-
scale broiler farm in New South Wales, Australia. The experiment was conducted with
164,000 Cobb-500 broiler chicks. Immediately after hatch, 82,000 chicks were placed in trays
(100 chicks in each tray) and put through a spraying applicator over a conveyer belt. The
chicks were sprayed with a microbiota inoculum (Aviguard®, Lallemand Animal Nutrition,
Canada). The commercial, high throughput edible gel droplet delivery system (Gel-Pac,
Animal Science Products Inc, Nacogdoches, TX, USA) was used at default settings. Gel-Pac
was designed to rapidly deliver vaccines, prebiotics, phytogens, immune modulators and
various medical treatments. More information about the Gel-Pac system is available on
the web manual [25]. The inoculum was diluted at the recommended dose and mixed
with green gel food dye, so visible green droplets, 1–3 mm in size, were formed on birds
encouraging them to preen the liquid from one another. The droplets were ingested quickly;
within 2–5 min, as estimated by the disappearance of the green droplets on the birds.
The tongues of the birds were randomly checked to confirm that they were green, as
recommended in the manual [25].

The remaining 82,000 chicks, used as the control, were sprayed with water mixed
with gel dye without the microbiota inoculum. Hatchery conditions were maintained at
25 ◦C and relative humidity around 55%. Control (CTR) and Aviguard treatment (AVG)
groups were physically separated during the spray and transported to the growing farm in
separate trucks.

The birds were reared in four temperature-controlled sheds with 41,000 birds in each.
The four sheds were adjacent, with a minimum 20 m space between them. The sheds
had controlled heating and operated as a barn type, without access to the outdoors. The
management practices in all four sheds were the same. A regular commercial diet meeting
the nutritional requirement recommended for the breed, and water were provided ad
libitum. The birds were picked up from the shed for processing in batches from day 32 to
day 54. The farm veterinarian provided the average final body weight and feed conversion
data. The feed conversion ratio (FCR) was calculated by dividing the total amount of feed
consumed by the total live weight sold. As the birds were sold in batches on different days,
the FCR was adjusted for 2.45 kg as reference body weight in both the control and treatment
groups to make it comparable. The adjusted FCR (cFCR) was calculated by multiplying the
differences in actual body weight and reference body weight with the correction factor of
0.20 and adding to the actual FCR.

The poultry experiment was approved by the Animal Ethics Committee of Central
Queensland University (Approval number 0000023123).

2.2. Sample Collection

At the age of 28 days, ten randomly selected birds from each shed were euthanised,
dead weight was collected using a hanging scale, and jejunum, caecal and crop content
were collected. Jejunal content and jejunal mucosal swab samples were collected from
around the mid-section between the posterior end of the duodenal loop and Meckel’s
diverticulum. Crop content was collected by making the lateral incision and exposing the
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crop content. A large quantity of crop content was collected and homogenised prior to DNA
extraction. Mucosal swab samples were also collected from the proventriculus mucosa.
To prevent cross-contamination, gut sections were separated into disposable trays before
sample collection. All field-collected samples for DNA extraction were stored in the Nucleic
Acid Preservation (NAP) buffer described by Menke and coauthors [26]. The samples were
kept in ice during the collection and transport and stored at −80 ◦C until processing. Three
random samples of the commercial product Aviguard (AVG powder) were sequenced using
the same 16S sequencing methodology as the intestinal microbiota samples.

We also sampled birds on days 1, 3, and 5, in order to observe the temporal aspect
of gut development, but the size of the gut sections was very small, so we could not get
enough sample for DNA extraction, and many of the samples would not amplify; therefore,
these samples were excluded from the study.

2.3. DNA Extraction, Sequencing and Data Analysis

The genomic DNA from the samples were isolated using the lysis protocol developed
by Yu and Morrison [27] and purified using DNA mini spin column (Enzymax LLC, CAT#
EZC101, Lexington, KY, US). The quantity and quality of the DNA were measured using
NanoDrop One UV-Vis spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA).

The V3-V4 region of the 16S rRNA gene was amplified using the following primers
with spacers, barcodes, and Illumina sequencing linkers [28]. The forward primer was 338F
(5′-ACTCCTACGGGAGGCAGCAG-3′) and the reverse primer was 806R (5′-GGACTACHV
GGGTWTCTAAT-3′). The resultant 16S amplicon library was purified by using AMPure
XP kits (Beckman Coulter, Brea, CA, USA) and sequenced with the Illumina MiSeq plat-
form with 2 × 300 bp paired-end configuration. The read with better quality was used
downstream with a minimum Phred score of 20 across the length of 200 nt. Raw DNA
sequences were demultiplexed with Cutadapt [29] and analysed with Quantitative Insights
into Microbial Ecology 2 (QIIME 2) [30] using DADA2 [31] for filtering, denoising and chi-
maera removal. DADA2 was also used to trim the reads based on the parameters selected
from the QIIME 2 sequence quality control parameters. SILVA v 138.1 database [32,33]
was used as a reference to assign taxonomy. The ASV data were clustered into OTUs at
98% similarity. Only the part of the analysis attempting to predict colonisation success
was done at an ASV level, while all the remaining data were analysed at an OTU level.
The analysis and interpretation of the data were completed through the data rarefied at
a minimum of 3000 sequences per sample. R packages, including Phyloseq, Phylosmith,
Vegan and Microeco were used for further downstream analysis and visualisation of the
data. The raw sequence data has been uploaded to NCBI SRA database with accession
number PRJNA887826.

2.4. Histology

The samples for histomorphology were collected from the jejunum. The samples
were fixed in 10% neutral buffered formalin solution. The further processing was out-
sourced to the Veterinary Laboratory Services at The University of Queensland, Gatton,
Australia. The tissue processing involved fixation, paraffin embedding and microtoming.
The embedded samples were cut to 4 µm thickness using LEICA RM2135 microtome (Leica
Biosystems, Wetzlar, Germany). These slides were stained using the Periodic Acid-Schiff-
Alcian Blue staining method. The slides were scanned using Panoptiq™ software (ViewsIQ
Inc., Vancouver, BC, Canada) and Nikon Eclipse Ci-L Plus biological microscope (Nikon
Corporation, Minato-ku, Japan). Villus height, crypt depth, villus width, villus area and
the number of goblet cells were measured from 10 randomly selected well-positioned villi
per slide and six slides per group, three from each shed.
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2.5. Statistical Methods

Mann–Whitney test performed in GraphPad Prizm 9 was used to compare the ani-
mal weights, alpha diversity and histological measurements. Alpha diversity indicators
were previously calculated using Phyloseq R package. Distance matrices (UniFrac and
Bray–Curtis) were calculated from the rooted Newick OTU tree (the tree was obtained
in QIIME 2), in the Microeco R package, which was also used to calculate all beta diver-
sity, including PCoA and PERMANOVA. Metastats function for univariate analysis was
performed in Microeco and plotted in GraphPad Prizm 9.

3. Results
3.1. Bird Performance

The data collected from birds euthanised on day 28 (Table 1) showed that the average
body weight of Aviguard treated birds (1516 g) was significantly higher (p = 0.0026) than
the body weight of control birds (1318 g) (Figure 1). Similarly, the final average body weight
data for the birds that were sold to the market showed that the average body weight of
Aviguard treated birds (3070 g) was higher than the average body weight of control birds
(2760 g). The FCR in Aviguard sheds (1.779) was marginally higher than the FCR in control
sheds (1.741), while cFCR, adjusted for 2.45 kg body weight as described above, was 1.678
for control and 1.656 for Aviguard.

Table 1. Average body weight of the birds on day 28 (Sample collection day).

Group Average Body Weight (g) SEM

Control 1318 37.9
AVG 1516 39.5
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3.2. Community Structure

The broiler microbial communities collected from the caecum, crop, jejunum, jeju-
nal mucosa and proventriculus mucosa were dominated by sequences assigned to phyla
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Firmicutes and Actinobacteria, followed by Bacteroidota in the caecum and Proteobacteria in
other sections. Lower abundant phyla included Fusobacteriota, Campylobacteriota, Desulfobac-
terota, Verrucomicrobiota, Acidobacteriota and Chlorofexi. With a visible distinction of genus
level membership in the caecal community (Figure 2), the major dominating genera were
Lactobacillus, Corynebacterium, Escherichia-Shigella, Bifidobacterium, Megamonas, Bacteroides,
Enorma, Gallibacterium, Alistipes, Streptococcus, and Staphylococcus.
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Aviguard is a reproducible chicken caecal community comprised of multiple non-
pathogenic species typically present in the most diverse gut section—caecum. The presence
of non-pathogenic strains of species that can contain major pathogens employs the mecha-
nisms of competitive exclusion to prevent or reduce colonisation with pathogenic strains.
The major genera we identified in the Aviguard product are Enterococcus, Lachnoclostridium,
Negativicoccus, Peptostreptococcus, Clostridium, Lactobacillus, Haloimpatiens, Blautia, Eubac-
terium, Enorma and Megasphaera, while Fusobacterium, Slackia, Bacteroides, Flavonifractor,
Collinsella, Paraclostridium, Sutterella, Escherichia-Shigella, Sellimonas, Butyricicoccus, Erysipela-
toclostridium, Candidatus, Olsenella and Megamonas were present in lower abundance based
on sequence number. There were also species belonging to unknown genera from Ru-
minococcaceae, Lachnospiraceae and Prevotellaceae.

3.3. Alpha and Beta Diversity

Alpha and beta diversity were investigated to compare the microbial communities
between AVG-treated and untreated groups in the different intestinal sections. Caecum
samples exhibited a significantly higher richness than other sections, measured with ob-
served species. Proventriculus and caecum residing microbial communities had higher
diversity than other sections, as assessed by the Shannon entropy index (Figure 3). Shannon
diversity index showed that AVG product contains a highly diverse microbiota popula-
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tion. The jejunum mucosal samples had the lowest richness and diversity values, but the
AVG-treated group was significantly higher than the control group.
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The Principal Coordinate Analysis (PCoA) ordination of weighted and unweighted
UniFrac distances depicted that AVG is ecologically more similar to caecum samples than
other sample types (Figure 4). The PCoA plots demonstrate the clear distinction between
caecal and AVG product samples from other sections of the gut. Among other sections,
the tight grouping and separation of crop samples for weighted UniFrac distance but not
for unweighted UniFrac distance indicated no difference in crop bacteria membership but
rather a different abundance distribution among crop samples.

To analyse if AVG introduced significant microbiota alterations in any of the gut sec-
tions, we used Permutational Multivariate Analysis of Variance (PERMANOVA) for main
variables and Paired Multivariate Analysis of Variance (MANOVA) for paired comparisons
(Table 2), at both weighted and unweighted UniFrac distances. Based on PERMANOVA,
the Shed variable and origin (caecal, proventriculus, jejunum content and mucosa, and
the crop) had a significant (p < 0.001) influence on microbiota using both weighted and
unweighted UniFrac distance. Based on weighted UniFrac, Control and AVG differences
were most prominent in the caecal (p < 0.001), followed by jejunal microbial communi-
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ties and not significantly altered in the upper digestive tract communities of the crop or
proventriculus. When observing presence data via unweighted UniFrac distance (Table 2),
caecum microbiota was again the most affected by AVG treatment, followed by micro-
biota in proventriculus, jejunum and crop, while there were no significant changes in
jejunal mucosa. Thus, AVG introduced drastic changes in the microbiota, predominantly
in the caecum and, to a lesser but still significant level, in other sections of the gut in both
membership and abundance.
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Table 2. PAIRED MANOVA effects of AVG on intestinal microbiota of different gut origins.

Measures Groups R2 p Value Significance

Weighted UniFrac

Cec.AVG vs. Cec.CTR 0.237666 <0.001 ***

Jej.AVG vs. Jej.CTR 0.150488 0.007 **

JejMuc.AVG vs. JejMuc.CTR 0.101046 0.023 *

Crop.AVG vs. Crop.CTR 0.029126 0.32

PVC.AVG vs. PVC.CTR 0.043081 0.353

Unweighted UniFrac

Cec.AVG vs. Cec.CTR 0.188473 <0.001 ***

PVC.AVG vs. PVC.CTR 0.11597 0.005 **

Jej.AVG vs. Jej.CTR 0.068658 0.01 **

Crop.AVG vs. Crop.CTR 0.062496 0.014 *

JejMuc.AVG vs. JejMuc.CTR 0.038949 0.163

* Cec = Caecum; Jej = Jejunum, JejMuc = Jejunal Mucosa, PVC = Proventriculus. Significance (*** p < 0.001;
** p < 0.01; * p < 0.05).
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3.4. Long Term Colonisation

We performed Venn diagram analysis to investigate OTUs and ASVs shared between
the AVG product and all other groups in each origin. The data were inconclusive since
the AVG product representative sequences using relatively small amplicon lengths are
very common in poultry gut species; they were detected indiscriminately. The 16S short
amplicon methodology does not have the resolution to separate the origin of the OTU
without at least the full length of the 16S sequence or additional biomarkers. Since the
PERMANOVA data from Table 2 by both weighted and unweighted UniFrac implicate
caecum as the most affected gut origin, and, more convincingly, the PCoA plots (Figure 4)
place AVG product samples with caecal microbiota of both AVG and CTR group.

Using only the caecal microbiota subset and ASV level data, the PERMANOVA box
plot (Figure 5A) shows significant microbiota differences between CTR and AVG treated
groups (p < 0.01) and CTR and AVG product (p < 0.05) while there is no significant difference
between AVG group and AVG product in caecal microbiota. This is further confirmed by
the unweighted UniFrac PCoA plot (Figure 5B), where the AVG product samples were the
most similar to the microbiota of the caecal contents of AVG-treated birds and far separated
from the microbiota of samples of the CTR birds in agreement with the boxplot (Figure 4).
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Figure 5. PERMANOVA boxplot (Panel (A)) and Unweighted UniFrac PCoA plot (Panel (B)) on
caecal microbiota subset. (ns = not significant, ** p < 0.01; * p < 0.05). While the rest of the data in this
manuscript was presented at an OTU level, this data was analysed at an ASV level.

3.5. Univariate Taxa Alterations

We used Metastats [34] for differentially abundant feature analysis in each intestinal
section. This method controls the false discovery rate and applies Fisher’s exact test, which
is considered a suitable statistical method for sparsely sampled features as in microbiota
study. All sections except the proventriculus were highly balanced in the number of
samples kept in the analysis after the rarefaction: caecum (20 AVG vs. 20 CTR), crop
(20 AVG vs. 20 CTR), jejunum (18 AVG vs. 19 CTR), jejunal mucosa (19 AVG vs. 18 CTR)
and proventriculus (17 AVG vs. 9 CTR). Due to a high number of proventriculus swabs
failing in either PCR amplification or the number of sequences per sample filtering, we
used this gut section in figures to graphically present alpha and beta diversity and in
PERMANOVA comparisons that can deal with imbalanced data, but this section was not
used for differential abundance analysis. The selected features differential between the
AVG and the control are presented in Figure 6 (caecum), Figure 7 (crop), Figure 8 (jejunum)
and Figure 9 (jejunal mucosa).
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relative abundance.



Animals 2022, 12, 3296 11 of 19

Animals 2022, 12, x FOR PEER REVIEW 11 of 19 
 

 
Figure 7. Metastats selected differentially (p < 0.001) abundant genera in the crop. The asterisk indi-
cates significance level (*** p < 0.001; ** p < 0.01). Each dot represents one sequenced sample relative 
abundance. 

Figure 7. Metastats selected differentially (p < 0.001) abundant genera in the crop. The asterisk
indicates significance level (*** p < 0.001; ** p < 0.01). Each dot represents one sequenced sample
relative abundance.



Animals 2022, 12, 3296 12 of 19

Animals 2022, 12, x FOR PEER REVIEW 12 of 19 
 

 
Figure 8. Metastats selected differentially (p < 0.001) abundant genera in the jejunum. The asterisk 
indicates significance level (*** p < 0.001; ** p < 0.01; * p < 0.05). Each dot represents one sequenced 
sample relative abundance. 

Figure 8. Metastats selected differentially (p < 0.001) abundant genera in the jejunum. The asterisk
indicates significance level (*** p < 0.001; ** p < 0.01; * p < 0.05). Each dot represents one sequenced
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Figure 9. Metastats selected differentially (p < 0.001) abundant genera in the jejunal mucosa. The
asterisk indicates significance level (*** p < 0.001; ** p < 0.01; * p < 0.05). Each dot represents one
sequenced sample relative abundance.

In the caecum samples, the most differential genera were Lachnoclostridium, Coprebacter,
Alistipes, Colidextribacter, Butirycicoccus, Bacteroides, Provotellaceae UCG-001, Enorma, Megas-
phaera and Olsenella. Some of the most differential genera in the crop content samples were
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Alistipes, Eubacterium hallii group, Subdoligranulum, Flavonifactor, Staphylococcus, Bacillus,
Dietzia, Exiguobacterium and Romboutsia. The differential genera found in the jejunum sam-
ples included Flavonifactor, Eubacterium hallii group, Lactococcus, Bacillus, Corynebacterium,
Enorma and Lactobacillus. Corynebacterium, Sutterella, Lactobacillus, Gallibacterium, Enorma
and Dietzia were some of the most differential genera in the jejunum mucosa.

3.6. Histology

There were no significant differences in villus height (Mann–Whitney test p = 0.12), vil-
lus width (p = 0.28), villi area (p = 0.79), crypt depth (p = 0.22), or villus/crypt ratio (p = 0.98)
(Figure 10). These results indicate that measured parameters remained unaffected by Avi-
guard supplementation. The number of goblet cells was significantly higher (p = 0.0021) in
the Aviguard treated group compared to the control (Figure 10), and this increase is more
noticeable in the crypt than in the region of the villi. Mucin granules in the goblet cells
demonstrate mostly a light blue colouration in both experimental groups, indicating that
epithelium goblet cells in jejunum might contain only acidic mucin. (Figure 10).
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4. Discussion

Designer gut microbiota is a recent concept that involves controlling the gut’s expo-
sure to microorganisms to obtain more uniform and beneficial gut microbiota. Different
methods have been attempted for gut manipulation and creating designer microbiota.
Early gut intervention can cause long-term and stable alterations in the bacterial and
metabolic composition of the gut [35], which in turn can also alter the gene expression in
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the host [36] and improve immunity against enteric pathogens [37]. Moreover, early inter-
vention and controlled colonisation can also reduce the relative abundance of pathogens
such as Enterococcus and Escherichia-Shigella and increase the concentration of short-chain
fatty acids (SCFAs) like acetate, propionate, butyrate and isovalerate, thus improving gut
health [38]. Controlled colonisation with a faecal transplant can also influence intestinal
histomorphology [39] and growth rate [35,39].

Aviguard significantly affected the alpha diversity in the caecum and jejunum mucosa
microbial communities. Both richness, as indicated by observed species, and diversity
measured with Shannon entropy decreased in the Aviguard group’s caecum. Contrary
to our results, a recent study has shown that caecal microbiota transplants increase the
richness and diversity of caecal microbiota in treated birds [40]. Samples in this caecal
microbiota transplant study were collected from day 1 to day 7 after the transplant, in
contrast to our study, where samples were collected much later at day 28 as we aimed to
investigate long-term effects of Avigurad at the end of the production cycle. Unlike in
caecum, the richness and diversity were increased in the jejunal mucosa microbiota. Other
gut sections were also marginally affected. Diversity in the caecum microbiota, representing
the most diverse section of the gut, was reduced, while it was increased in jejunal mucosa,
one of the least diverse microbial communities. This increase in jejunal mucosa microbial
diversity could have been influenced by the early arrival of AVG product species into the
naïve gut of treated chicks. The jejunum mucosal layer is more challenging to colonise
as it supports highly specialised microbial community membership [41]. This could be
associated with genetic resistance [42,43] or expression of an immunogene [44] as observed
against pathogens like Salmonella [42,43] and Campylobacter jejuni [44]. The increase in the
mucosal diversity could be attributed to AVG Product containing more species capable of
utilising, degrading and/or moving through the mucous layer, leading to colonisation with
non-pathogenic taxa and competitive exclusion of pathogens.

The beta diversity analysis showed that administration of Aviguard significantly
affected the weighted UniFrac distance in the caecum, jejunum and jejunum mucosa and
significantly affected the unweighted UniFrac distance in all the gut sections except jejunum
mucosa. The weighted UniFrac distance measures the phylogenetic relationship between
samples considering the abundance of individual taxa while unweighted UniFrac distance
shows the phylogenetic relationship based on the presence or absence (membership) of taxa.
Further investigation showed no significant differences in Bray–Curtis distance between
the AVG product and the caecum content of the AVG treated group. This indicated that
microbiota in AVG products is ecologically more similar to the caecum of AVG treated birds
than to the caecum of CTR birds. These observations suggest that AVG likely colonised
caecum to some extent. However, the significant alteration of overall caecal microbiota
by AVG administration does not necessarily indicate that many AVG species permanently
colonised the caecum. Even a single species arriving at the caecum early in the process
of colonisation could alter the colonisation to result in different final abundance and
membership. This logic also applies to other sections.

Table 2 shows that the upper sections of the digestive system, crop and proventriculus,
were not altered in abundance (weighted UniFrac). The upper gut would be at the forefront
of AVG exposure which can explain the significant alteration in the presence and absence
of different taxa. Although it is challenging to investigate the influence of AVG on the
temporal dynamics of colonisation due to the complexity and richness of the product, we
must acknowledge the number of other variables that can affect and interfere with the
colonisation process, one of the most important being environmental and feed microbial
community. The differences in these background communities can be rather dramatic,
especially in the sheds that experience frequent disease outbreaks. However, adverse effects
are implausible since AVG product does not contain poultry pathogens. In challenging
environments, the administration of AVG can ensure that benign and beneficial commensal
species from the product outcompete pathogens through competitive exclusion during the
early colonisation process.
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Aviguard increased the abundance of several microbial genera in different gut sections.
The bacterial genera enriched in the Aviguard group, reported previously as beneficial SCFA
producers, were Lactobacillus [45–47], Flavonifractor [48], Megasphaera [49], Bacteroides and
Blautia [50]. Similarly, the genera linked to better growth performance, improved immune
response, better intestinal morphology, increased nutrient digestibility and improved
energy metabolism, such as Bacillus spp. [51–54], Dietzia [55], Romboutsia [56], Sutterella [57],
Lactococcus [58,59] and Olsenella [60], had a higher abundance in the AVG treatment group.

Aviguard reduced the abundance of some common bacterial genera containing pathogenic
species like Staphylococcus, Proteus [61,62], while Gallibacterium [63] was increased. Some ben-
eficial genera associated with improved growth, such as Butyricicoccus, Subdoligranulum [50],
Alistipes [64], Lachnoclostridium and Shuttleworthia, were reduced in the Aviguard group.
Nevertheless, the above beneficial or pathogenic taxa effects on the birds cannot be specu-
lated based on 16S microbiota data because this methodology cannot distinguish taxa at
the species level; and both beneficial and pathogenic effects are highly strain-specific.

Although Aviguard did not significantly alter the villi heights, width, crypt depth,
height to depth ratio and villi area, there was a significant increase in the number of goblet
cells. This is a beneficial effect of Aviguard as these cells produce mucin [21,22] and can
also be instrumental in protecting the gut against pathogens [23]. Further studies are
required to understand why the goblet cells were majorly increased in the crypt region and
to understand the importance of this finding.

5. Conclusions

Performing large-scale studies under industrial conditions is an excellent way to
reproduce the actual conditions endured by animals. However, industrial trials often
lack precision in performance measures collection and near complete control of variables
involved that is present in studies done in highly controlled experimental animal facilities.
On the other hand, while providing a statistically superior setup, perfectly controlled
trials in animal research facilities often present conditions very far from real production.
Investigating the controlled colonisation and designer microbiota concept will require
combining both approaches. Here, we presented the large-scale application of AVG in
commercial hatcheries, demonstrating that the product at-hatch administration was highly
automated and simple. Our data agree with the AVG inoculum’s caecal origin and its
exceptionally high diversity. We also report that AVG administration resulted in significant
differences in all gut sections concluding that AVG strongly influenced the dynamics of the
colonisation process. However, using the 16S methodology does not allow us to speculate
on the permanent colonisation of different species. More controlled and industry-scale
experiments are needed to dissect the influence of background microbiota in the feed,
shed and hatchery on the reproducibility of the colonisation alterations by AVG. Shotgun
metagenomics data would help investigate the transfer of functional capabilities and would
likely provide evidence of the species transfer from AVG product into the birds.
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