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Simple Summary: Automatic species recognition, such as butterflies or other insects, plays a crucial
role in intelligent agricultural production management and the study of species diver-sity. However,
the quite diverse and subtle interspecific differences and the long-tailed distribution of sample data
in fine-grained species recognition are insufficient to learn robust feature representation and alleviate
the bias and variance problems of the long-tailed classifier on insect recognition. The objective of this
study is to develop a peer learning network with a distribution-aware penalty mechanism proposed
to learn discriminative feature representation and mitigate the bias and variance problems in the
long-tailed distribution. The results of various contrast experiments on collecting the butterfly-914
dataset show that the proposed PLN-DPM has a higher Rank-1 ac-curacy rate (86.2% on the butterfly
dataset and 73.51% on the IP102 dataset). Addi-tionally, we deployed the PLN-DPM model on the
smartphone app for butterfly recognition in a real-life environment.

Abstract: Automatic species recognition plays a key role in intelligent agricultural production
management and the study of species diversity. However, fine-grained species recognition is a
challenging task due to the quite diverse and subtle interclass differences among species and the
long-tailed distribution of sample data. In this work, a peer learning network with a distribution-
aware penalty mechanism is proposed to address these challenges. Specifically, the proposed method
employs the two-stream ResNeSt-50 as the backbone to obtain the initial predicted results. Then, the
samples, which are selected from the instances with the same predicted labels by knowledge exchange
strategy, are utilized to update the model parameters via the distribution-aware penalty mechanism to
mitigate the bias and variance problems in the long-tailed distribution. By performing such adaptive
interactive learning, the proposed method can effectively achieve improved recognition accuracy for
head classes in long-tailed data and alleviate the adverse effect of many head samples relative to a
few samples of the tail classes. To evaluate the proposed method, we construct a large-scale butterfly
dataset (named Butterfly-914) that contains approximately 72,152 images belonging to 914 species
and at least 20 images for each category. Exhaustive experiments are conducted to validate the
efficiency of the proposed method from several perspectives. Moreover, the superior Top-1 accuracy
rate (86.2%) achieved on the butterfly dataset demonstrates that the proposed method can be widely
used for agricultural species identification and insect monitoring.

Keywords: fine-grained recognition; long-tailed distribution; convolutional neural network; automatic
species recognition; peer learning network

1. Introduction

Insects are the most diverse animal group in nature, accounting for approximately
47% of the more than 1.8 million species that have been described [1]. They are of great
value in maintaining the ecological balance of nature, biological control and agricultural
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production. Among numerous insects, butterflies are more responsive to environmental
changes than birds and other insects and are recognized as highly sensitive indicator species
of environmental changes. As far as we know, there are nearly 20,000 species of butterflies
in the world and China is rich in butterfly resources, with more than 2000 species. Due
to this wide variety and the similar appearances of different genera and species, manual
identification is time-consuming and labor-consuming and is highly dependent on the
classification experience and skills of experts. For this reason, it is particularly necessary
to carry out fine-grained automatic insect identification. Automatic species recognition
can facilitate the intelligent management of agricultural species identification and benefit
various applications for environmental monitoring, biological diversity protection, and
sustainable agriculture development [2–4].

Instance recognition [5–7] has received much attention, and species recognition as
its subset is more challenging. First, species recognition is a fine-grained recognition task
that aims to discriminate similar subcategories belonging to the same superclass, e.g.,
recognizing hundreds of butterflies or moths. Due to the subtle and local distinctions
between similar subcategories and the marked within-species variation of the samples
belonging to the same subcategory, species recognition is difficult to perform, even for
insect experts. In addition, the distribution of species categories is long-tailed, and a
few common classes (a.k.a. head classes) contain many samples and many rare classes
(a.k.a. tail classes) have only a few samples. In the case of species recognition, long-tailed
distributions manifest as a few species being represented by many images and many
species being represented by few images, it is difficult to learn robust and discriminative
feature representation among these imbalanced data. Moreover, the number of categories
of current species datasets is relatively small compared to nature’s diversity; e.g., the
crop pest dataset [8] contains 4500 samples of 40 species, the IP102 [9] dataset includes
75,222 images of 102 species, Butterfly-200 [10] possesses 25,279 images of 200 species,
and Caltech-UCSD birds-200-2011 [5] contains 11,788 images of 200 categories. Due to
these challenges, little work has been dedicated to fine-grained species recognition under
a natural long-tailed distribution. In this study, we explore a peer learning network with
an adaptive model penalty mechanism that can learn discriminative and robust feature
representation but also alleviate the bias and variance problems of long-tailed classifier
through a parameter updating strategy. Moreover, a large-scale butterfly dataset is built for
performance evaluation and further research.

Learning discriminative and subtle feature representation is vital for fine-grained
species recognition task [11–13]. Instead of simply extracting global features, studies have
explored local and multiscale features to further enhance the image representation of similar
categories [11,14,15]. For example, Huang et al. [14] leveraged extra bounding box and part
supervision to build part-based representation for capturing the subtle visual differences
among specific parts. Zheng et al. [15] designed a progressive-attention convolutional
neural network (CNN) that located subtle yet discriminative parts at multiple scales.
Similarly, Wang et al. [16] proposed a feature fusion network with a patch detector that
detected discriminative local patches without any part annotations and built a hierarchical
representation by fusing global and local features to identify giant pandas. In contrast,
Du et al. [17] proposed a progressive multigranularity (PMG) training approach for fine-
grained feature learning that adopted a random jigsaw patch generator to learn features at
specific granularities and fused multigranular features with a progressive training strategy.
However, the image splitting operations and four training stages of the PMG method result
in an exponential expansion of the training time.

Moreover, researchers have attempted to introduce extra guidance to learn more
meaningful and semantic-related parts or characteristics. Chen et al. [10] integrated seman-
tically structured category hierarchy information into a deep neural network to facilitate
butterfly recognition. Furthermore, He et al. [18] utilized four types of media (images,
text, audio, and video) to learn better common representations without discriminative
treatment for fine-grained bird recognition. Du et al. [17] employed a saliency-guided
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discriminative learning network to simultaneously learn combined coarse-grained and
fine-grained discriminative features in a multitask learning manner. Despite achieving
positive performance for fine-grained species recognition, such approaches focus on tasks
with roughly uniform class label distributions, and it remains challenging to effectively
model the long-tailed distribution of fine-grained species for recognition purposes due to
the extreme class imbalance issue.

To further mitigate the data imbalance problem in long-tailed distribution, class re-
balancing strategies (e.g., cost-sensitive re-weighting, re-sampling, and transfer learning
from head classes to tail classes) have been adopted in prior works that jointly learned
representation and classifier to adjust the network training process [19–22]. To improve the
representation learning process for the original data distribution, Zhou et al. [21] introduced
a unified bilateral branch network (BBN) model to perform representation learning and
classifier learning simultaneously and adjusted the bilateral learning procedure with a
cumulative learning strategy to make it gradually pay attention to the tail data. Similarly,
Work [23] systematically analyzed the performance of the above re-balancing strategies
through a decoupled representation learning and classification scheme. A recent study [24]
attempted to reduce the model bias and the computational cost by separately using a
distribution-aware diversity loss and a dynamic expert routing module for learning high-
quality representation.

Regarding long-tailed species classification, Wu et al. [9] studied the problem of
subordinated insect recognition by introducing a long-tailed insect pest dataset (IP102)
with 102 categories. Work [25] further proposed a weakly supervised multiple-instance
learning method that identified image patches with saliency map guidance to achieve
increased pest recognition performance on the public IP102 and citrus pest datasets. Despite
achieving positive results, these existing studies mainly focused on basic-level visual
recognition tasks (e.g., airplanes, birds, flowers, and frogs) that limited the applications
of the classification models to specific domains, such as fine-grained object recognition.
Moreover, related works [9,25] usually conducted experiments and analyses on the IP102
dataset or other smaller insect benchmarks that are prone to inducing model degradation
in large-scale fine-grained species recognition tasks due to large class variations and subtle
interclass differences.

To address the above issues, a peer learning network with the distribution-aware
penalty mechanism is proposed to mitigate the problems concerning class imbalance and
subtle interclass differences in long-tailed fine-grained species recognition. The framework
cooperates with two existing identical CNN models to classify the input samples by
utilizing different model parameters and alleviates the bias and variance of classifiers
through a parameter update strategy. To this end, two pre-trained ResNeSt-50 modules
are employed as the backbone of the peer learning module in the proposed framework to
obtain the preliminarily predicted results. Then, the models are updated with different
parameter strategies. The samples with different predicted labels are used to update the
model parameters directly, while the suitable candidate samples with the same prediction
labels are selected via a knowledge exchange strategy to update the model parameters of
the backbone by using the distribution-aware penalty mechanism. By performing such
adaptive collaborative learning, the proposed approach can effectively utilize the parameter
update strategy to alleviate the class imbalance problem, and the recognition accuracy
of head classes is further promoted by the interactive learning process of the two-stream
backbone. Extensive experimental results obtained on the public IP102 dataset and our
constructed butterfly dataset demonstrate that the proposed method obtains comparable
results to those of not only the existing fine-grained image recognition methods but also
the representative long-tailed recognition approaches.

The main contributions of this study can be summarized into three parts. First,
we introduce a simple but universal peer learning network model with a distribution-
aware penalty mechanism to mitigate the class imbalance problem, effectively exploring
the optimal candidates with a parameter updating strategy to avoid learning corrupted
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information. Second, we construct a large-scale butterfly dataset (Butterfly-914) that exhibits
a fine-grained characteristic and a natural long-tailed distribution. It can be used to
effectively evaluate fine-grained and long-tailed butterfly recognition approaches and can
also facilitate other research on species identification and verification. Finally, extensive
experiments are conducted on the butterfly dataset to demonstrate the effectiveness of the
proposed method and analyze the contribution of each component.

The rest of the paper is organized as follows. Section 2 presents the collection process
of the butterfly dataset. Then, we introduce the details of the proposed method in Section 3.
The experiments and applications are presented in Sections 4 and 5, respectively, and finally,
the conclusion and future work ideas are presented in Section 6.

2. Materials

To evaluate the efficiency of the proposed method for insect recognition, a large-scale
butterfly dataset named Butterfly-914, which focuses on the fine-grained recognition of
butterflies, is constructed. To this end, the following stages are implemented: (1) raw
butterfly image collection; and (2) preliminary data preprocessing, where the butterfly
dataset with accurate species labels is constructed by detecting the candidate images with
tight bounding boxes around butterflies.

2.1. The Collection of Raw Butterfly Data

The butterfly image data are collected from two scenarios, including natural images
in a field environment and standard images with butterflies in the form of specimens.
The natural images are collected by searching the scientific names of butterflies on search
engines, such as Google, Flicker, Bing, and Baidu. The standard images mainly come from
the samples of a butterfly classification expert at the College of Plant Protection, South
China Agricultural University. Images collected under these two scenarios are widely
used in practical applications and contain challenging viewpoints, similarities, and various
appearances over a wide range of resolutions. By utilizing such a strategy, numerous
candidate images are collected for each species, and each image is saved to the directory
with the corresponding Latin name.

After completing the preliminary data screening and data cleaning processes, a total
of 68,385 butterfly images are obtained as the raw butterfly data. The raw dataset contains
914 species and covers 5 families, 29 subfamilies, and 332 genera. Figure 1 shows samples
from the dataset, which is rather challenging due to the wide range of viewpoints, occlusion
conditions, illumination changes, and background complexities. Specifically, the top four
rows contain low-contrast butterfly examples under various viewpoints, illumination
changes, and ambiguous backgrounds, while the last two rows present high-contrast
butterfly samples with clean backgrounds.
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Figure 1. Examples of the raw butterfly data, which are challenging due to dramatic viewpoints,
occlusion, and background complexity.

2.2. Data Preprocessing

Most of the natural images in raw butterfly data contain many irrelevant objects,
such as leaves, flowers, and other ambiguous background items, that adversely affect the
discriminative feature representation process during model learning. Moreover, images
may contain multiple butterflies belonging to the same category, which also affects the
recognition performance. Based on the above observations, the raw butterfly data are
processed by using an object detection strategy. Specifically, as shown in Figure 2, the
raw butterfly samples are first input into the Faster R-CNN detection model, and then the
butterfly images with bounding boxes are detected. Next, manual verification is conducted
to delete the outlier samples, and the final butterfly dataset is built for use in the follow-
up experiment.
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2.3. The Butterfly Dataset

The dataset contains 72,152 images belonging to 914 butterfly categories, with more
than 20 samples of each subject; these samples are detected from the raw butterfly data
using an object detection model. Each image is organized by scientific classification (e.g.,
family, subfamily, genus, and species). For each species, the images produced from different
scenarios are considered the same type.

The dataset has the following several appealing properties. First, with 72,152 labeled
images, the proposed dataset is larger than those used in previous similar studies [10,26,27].
Second, the data collected from the indoor/outdoor environments contain abundant diver-
sities, e.g., dramatic appearances, different viewpoints, heavy occlusion, and background
clutter. This leads to a more challenging recognition problem. Moreover, the dataset is
carefully identified by professional researchers and students to ensure its high reliability.
Specifically, the butterfly images are annotated by the coauthor Min Wang and his students.
Min is an expert in the classification and verification of butterflies at the College of Plant
Protection, South China Agricultural University. In addition, the dataset not only has a
fine-grained hierarchical taxonomy but also exhibits a natural long-tailed distribution. As
illustrated in Figure 3a, each row separately denotes a different species within the same
genus. Due to the subtle interclass distinctions, they cannot be classified by their global
shapes. On the other hand, despite the samples in in each row of Figure 3b belonging to
the same species, they exhibit substantially different appearances. The large variances in
the same subcategory (Figure 3b) and the small variances among different subcategories
(Figure 3b) make it highly challenging to distinguish them from each other, even for experts.
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Apart from the biological diversity, the long-tailed distribution of the dataset further
increases the difficulty of training a robust discriminative classifier. Figure 4 demonstrates
the imbalanced distribution of the proposed butterfly dataset at different levels. As shown
in Figure 4, a few butterfly species contain many samples, while most species contain only
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a few samples. In this case, it is more challenging to discriminate them because the few tail
samples can be easily overwhelmed by the multitude of head samples.
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3. Methods

In this section, a detailed description of the proposed peer learning network model is
introduced. Moreover, a distribution-aware penalty mechanism is incorporated into the
peer learning model to alleviate the bias and variance of the classifier.

3.1. Pipeline Overview

We aim to address the task of fine-grained butterfly recognition with a long-tailed
distribution. To this end, a peer learning network with a distribution-aware penalty
mechanism is developed; the network can learn robust discriminative fine-grained feature
representation and mitigate the bias and variance of long-tailed classification problems
utilizing a parameter updating strategy. The pipeline of the proposed method is shown
in Figure 5.

The framework consists of three main modules, namely, a data enhancement module,
a peer learning network, and the distribution-aware penalty learning mechanism with a
knowledge exchange strategy. Specifically, the data derived from the input image are first
enhanced to obtain more simple features (e.g., the global and local edge information) for
model training and then input into the peer learning network to obtain the preliminary
prediction results (The “p” in Figure 5 is the prediction results). Once the classification
labels are acquired, those samples are divided into two groups based on whether the
prediction results of each backbone model in the peer learning network are the same. The
samples with different prediction labels (Figure 5a–d) mean both backbones are not good
at classifying them, which are used to update the model parameters directly. Furthermore,
the samples with the same prediction (in Figure 5e–g) and the prediction labels are wrong
means these samples are affected by the dataset distribution. Thus, the strategy sets
them as the candidate samples for knowledge exchange to obtain suitable model penalty
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samples. Finally, those penalty samples are used to update the model parameters of the peer
learning network via the distribution-aware penalty mechanism. In this way, the proposed
method can avoid learning ambiguous information by using the optimal candidates, further
improving the recognition performance.
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3.2. Modules of the Proposed Method
3.2.1. Data Enhancement

As shown in Figure 5, data enhancement is performed on each image before feeding the
images into the backbone of the peer learning network to improve the training effectiveness
of the model. Specifically, due to the different resolutions of the samples in the dataset,
each image is first resized to 256 × 256 to ensure that the images used for training and
testing are of the same size. Then, those images are cropped to 224 × 224, and 50%
random flipping is performed for each image to increase the randomness of the data. In
addition, to eliminate the adverse effects caused by singular sample data, a normalization
parameter from ImageNet is utilized to normalize the training data with their mean and
standard deviation.

3.2.2. The Peer Learning Network

As shown in Figure 5, inspired by the research of Sun et al. [28], the peer learning
network module of our proposed framework employs two identical ResNeSt-50s to sep-
arately extract feature representation from data-enhanced butterfly images and predict
the classification label of each sample. To this end, the pre-trained parameters without
the fully connected layer are first loaded with ResNeSt-50 to acquire a preliminary feature
extraction capability, as shown in Figure 6. Then, different normal weight initialization
strategies are performed over the fully connected layer to ensure that the two backbones
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have different classification performances before the training stage. Specifically, Xavier
normal initialization [29] and the Kaiming normal initialization [30] are separately em-
ployed for the initialization of the fully connected layer in the two-stream ResNeSt-50. The
former makes the variance of the activation values and the variance of the state gradient
of the fully connected layer consistent during propagation, while the latter enhances the
generalization performance of the model by setting a nonzero derivative for the activation
function. The normal distribution of the former is N = (0, std). Standard deviation (std) is
defined below:

std = gain×
√

6
f an-in + f an-out

(1)
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Here, the value of the gain is 1. f an-in and f an-out represent the input dimensionality
and the output dimensionality of the fully connected layer, respectively. The latter utilizes
the same normal distribution as the former, with different std representations:

std =

√
2

(1 + a2) + f an-out
(2)

where the value a is set to 1, and f an-out is the output dimensionality of the fully con-
nected layer.

The different initialization processes of classifiers make the two-stream ResNeSt-50
backbone have different classification performances before training. After the training
data are propagated in the peer learning network, the two-stream ResNeSt-50 outputs
the prediction label of each training sample. Then, those samples are divided into groups
according to the predicted results, and all samples with the same prediction labels are set as
the candidate samples for knowledge exchange, which maps the candidate samples to the
loss function of the other ResNeSt-50 to obtain advice. The map of the knowledge exchange
strategy is shown below:
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mapKE =
{(

Lh1(x1
)
, Lh2(x1)) . . . ,

(
Lh1(xi

)
, Lh2(xi))

}
(3)

Here, xi represents the ith instance of the training set. Lhi represents the loss, which is
calculated using the 1st or 2nd ResNeSt-50 in the two-stream backbone network. The losses
of the two-stream ResNeSt-50 are mapped through the same samples. After obtaining the
mapping, we sort Lh2 from small to large in mapKE to obtain Lh1 with sequential changes.
In this way, we also obtain the new order of Lh2 .

3.2.3. Distribution-Aware Penalty Mechanism

Based on the predicted labels of the above peer learning module, the training data
are divided into two groups: samples with different predicted labels and samples with
the same predicted labels. Because the two streams of the backbone in the peer learning
network module have the same structure, the images with different predicted labels signify
that the prediction results of the two-stream backbone are wrong with a high probability.
To improve the image recognition performance of the model, these data are directly used to
update the model parameters. The samples with the same predicted labels represent that
both backbone networks provide correct or wrong prediction simultaneously. To alleviate
the incorrect predictions problem, the two-stream backbone developed in approach [28]
utilized the knowledge exchange strategy to have the two streams learn from each other
and updated the model parameters using the cross-entropy loss function.

Despite achieving acceptable performance, such a method is influenced by the distri-
bution of the given dataset. To further reduce the misjudgment of the items with the same
predicted labels, a distribution-aware penalty mechanism that uses the suitable samples
selected by the knowledge exchange strategy for model parameter updating is introduced
to mitigate the disturbance of the dataset distribution. To this end, inspired by the De-
struction and Construction Learning (DCL) model in work [31], we set the classes with
over 100 samples in the many-shot class and compute a chosen rate CR(V) based on this
many-shot class. Then, the chosen rate is used to select samples that are useful for training
the two-stream backbone module. CR(V) can be formulated as follows:

CR(V) =
Vm

V
(4)

Here, V is the number of images in the dataset, and Vm is the number of many-shot
classes. We use these samples to train the two streams of the backbone.

An abstract of the main flow of the proposed knowledge exchange strategy with the
distribution-aware penalty mechanism is presented in the pseudocode of Algorithm 1. The
pipeline of the proposed mechanism is provided below.

(1) For a set of samples in a minibatch obeying a distribution D̃b, two sets of losses
(Lh1 , Lh2 ) are obtained through the two-stream ResNeSt-50 module, and then the loss set by
the samples is mapped for knowledge exchange using Equation (3);

(2) After acquiring the mapping and separately sorting the Lh2 and Lh1 values from
small to large based on their loss values, we use the chosen rate computed by Equation (4)
to choose the suitable samples on h1 with advice from h2. Similarly, suitable samples are
chosen on h2 via advice from h1;

(3) After performing knowledge exchange, the update sets I1 and I2 can be obtained.
Then, we accumulate the update sets to separately obtain Lossh1 and Lossh2 for model
parameter updating.

Through the above mapping and selection processes, some samples with small loss
values can be obtained from one ResNeSt-50, but these samples might have large loss values
in the other ResNeSt-50 of the two-stream module. By performing the above distribution-
aware penalty learning procedure during updating, the proposed method can not only
adapt to the complexity of the head data in the long-tailed data distribution but also
enhance the robustness of the tail data, which will jointly improve the butterfly recognition
performance of the model.



Animals 2022, 12, 2884 11 of 22

Algorithm 1 Knowledge exchange strategy with distribution-aware penalty mechanism

input: loss Ltotal ; batch size b; chosen rate CR(V); two initial predictors h1, h2 ∈ H;
Lh1 = 0; Lh2 = 0.
Output: Lossh1; Lossh2
1 for t = 1, 2, . . . , B do
2 draw minibatch (x1, y1), . . . , (xb, yb) ∼ D̃b

/* Map the loss of instance x through Equation (3) */
3 Map

({
Lh1 (x1), . . . , Lh1 (xb)

}
,
{

Lh2 (x1), . . . , Lh2 (xb)
})

/* Obtain a new sequence through the other stream network */
4 Sort

({
Lh1 (x1), . . . , Lh1 (xb)

})
by Lh2 in Map

5 Sort
({

Lh2 (x1), . . . , Lh2 (xb)
})

by Lh1
in Map

6 let I1 =
{
(xi) : h1(xi) = h2(xi) AND

∣∣Lh2 (xi)
∣∣ ≤ ∣∣∣Lh2

(
xCR(V)·b

)∣∣∣ }
7 let I2 =

{
(xi) : h1(xi) = h2(xi) AND

∣∣Lh1 (xi)
∣∣ ≤ ∣∣∣Lh1

(
xCR(V)·b

)∣∣∣ }
/* Accumulate the respective losses using Equation (11) */

8 Lossh1+ = Ltotal(I1)
9 Lossh2+ = Ltotal(I2)
10 end
11 Return Lossh1; Lossh2

3.3. The Proposed Model Training Process

During the model training process of the proposed framework, the cross-entropy loss
and distribution-aware loss are utilized to optimize the network parameters. Specifically,
the samples with different prediction labels are used to update the parameters with the
cross-entropy loss to describe the distance between the two probability distributions. The
cross-entropy loss is defined as follows:

Lclassi f y = −
C

∑
i

y′i log(yi) (5)

where yi is the predicted result and y′i is the ground-truth label of the corresponding
instance. C is the number of classes in the training dataset. For the samples with the same
predicted labels, the distribution-aware loss is designed to maximize the Kullback–Leibler
(KL) divergence between the different classification probabilities yielded for a sample x in
class y over a total of c classes to alleviate the incorrect prediction problem. The definition
of the distribution-aware loss is as follows:

LD-aware = −DKL(p1(x, y)
∣∣∣∣∣∣p2(x, y)) (6)

Here, DKL() and pi(x, y) represent the KL divergence and classifier, respectively, which
are defined as follows:

DKL(p||q) =
C

∑
k=1

pklog
(

pk
qk

)
(7)

pi(x, y) = so f tmax
([

D( f (x))1
T1

. . .
D( f (x))c

Tc

])
(8)

Here, D( f (x))k represents the output value of the kth class object, and Ti is the temper-
ature function of the corresponding class that comes from work [32]. For a class k with nk
samples, the smaller the nk and Tk are, the more sensitive the classification probability is to
a change in the feature f (x). The representation of Tk is illustrated below:

Tk = α(βk + 1−max(β)) (9)

Here,
βk = λ· nk

1
c ∑C

s=1 ns
+ (1− λ) (10)
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Tk scales linearly with the class size, ensuring that βk = 1 and Tk = α for a balanced set.
The value of a is determined to be 1.5 in the experiment. This simple adaptation allows us
to imbue the classifier with sufficient complexity for the head data and sufficient robustness
for the tail data. For the samples with the same predicted labels, the final total classification
loss Ltotal is defined as follows:

Ltotal = Lclassi f y + ζ·LD-aware (11)

where Lclassi f y and LD-aware are the cross-entropy loss obtained using Equation (5) and the
distribution-aware diversity loss obtained via Equation (6), respectively. ζ is a hyperparam-
eter that is restricted to the range of [0.2, 0.8].

3.4. Experimental Setup

The experiment is conducted using an apparatus with an Intel® Xeon(R) E5-2687w
CPU @ 3.10 GHz, 64 GB of memory, and an NVIDIA GTX 3090 graphics card in an Ubuntu
18.04LTS system. Moreover, the experimental environment framework is based on Python
3.7 and PyTorch 1.10. The source code (The access date: 1 September 2022) will be made
available on https://github.com/carajosaj/PLN-DPM.git.

In the experiments, two identical ResNeSt-50s are used as the backbone of the proposed
model, and the initialized parameters of the two-stream backbone come from ImageNet.
For the network input, the size of each image is set as 224 × 224, and the model is trained
using the stochastic gradient descent (SGD) optimizer with a batch size of 8, a weight decay
of 10−5 and a momentum of 0.9. The initial learning rate is set as 2 × 10−3, and it is divided
by 10 after 30 epochs.

During the validation process of the recognition test, the Top-1 accuracy achieved over
all classes is used for evaluation, and its formula is as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(12)

Here, TP is the number of true-positive samples. FP is the number of false-positive
samples. FN is the number of false-negative samples, and TN is the number of true-
negative samples.

Additionally, we use the F1-score to evaluate the performance between models further.
The function computes by precision and recall, which formula are as follow:

Precisionk =
TPk

TPk + FPk
(13)

which TPk is the number of true-positive samples from class k and the FPk is the number of
false-positive samples from class k. TPk and FPk are used to compute the precision of the
kth class.

Recallk =
TPk

TPk + FNk
(14)

Here, FNk is the number of false-negative samples from class k. TPk and FNk are used
to compute the recall of the kth class.

F1-scorek =
2·Precisionk·Recallk
Precisionk + Recallk

(15)

Furthermore, F1-scorek is computed by Precisionk and Recallk.

F1-score =

(
1
n

n

∑
k

F1-scorek

)2

(16)

The final F1-score is obtained by averaging the kth F1-score under each class.

https://github.com/carajosaj/PLN-DPM.git
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Moreover, to measure the performance of different output combinations of the two-
stream recognition part in the peer learning network, two final predicted measurements R1
and R2 are employed, and their formulas are defined as follows:

R1 = argmax
(

yL−1
)

(17)

R2 = argmax
(

yL−1 + yL−2
)

(18)

where y represents the predicted value of a single network in the two-stream part for the
samples of all classes. L− i represents the y that comes from the ith fully connected layer.

4. Experiments

In this section, we analyze the recognition performance of the proposed method via
extensive experiments and the Accuracy and F1-score are an average across five times trials.
First, we use the ratio of 0.6:0.1:0.3 to divide datasets into the training, validation, and
test sets before training and ensure they do not include very similar data. The training set
is used to update the model parameters, the validation set is used to verify whether the
model has completed training, and the test set is used to test the performance of trained
model. Second, the existing leading generic object recognition methods are employed
to evaluate the robustness of the proposed model. Third, we compare the proposed
method with the representative fine-grained recognition approaches to assess its feature
representation capability in various butterfly recognition challenges. Moreover, to illustrate
the amelioration of the proposed method on the many-shot and few-shot classes in the
long-tailed distribution, an experiment is conducted between several long-tailed models
and our method. In contrast to the above comparisons based on our Butterfly-914 dataset,
we further compare our results with the above methods on the fine-grained and long-tailed
IP102 dataset to make another comparison. Furthermore, some comparative experiments
are conducted to discuss the contribution of each module in our method.

4.1. Comparisons with the Generic Recognition Methods

In this experiment, the proposed model derived from Equation (12) is named Ours,
whereas that obtained with Equation (13) is named Ours (Combined). We compare our
proposed method with 11 generic object recognition methods, ResNet50 [33], ResNeXt-
50 [34], EfficientNet-B0 [35], ResNeSt-50 [36], and PLN [28], as selected from among the
existing leading generic object recognition models. It is worth mentioning that PLN is
based on the idea of a two-stream backbone network, which has a similar mechanism to
that of our proposed method. Except for the PLN model, the above compared models are
based on a single backbone network.

The Top-1 accuracy plots of the different methods are presented in Figure 7, and the
detailed results can be seen in Table 1. In Table 1, the first column represents the different
recognition models, and the second column represents the number of feature extractors.
The third column is the input resolution setting chosen before model training to ensure that
the same feature extraction region is used, and the last column contains the Top-1 precision
results of different approaches.
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Table 1. Top-1 accuracy and F1-score comparisons with existing leading generic object recognition
models on the Butterfly-914 dataset. The highest score is shown in bold.

Methods Backbone F1-Score Top-1 Accuracy (%)

ResNet-50 - 0.732 80.9
ResNeXt-50 - 0.744 81.3

EfficientNet-B0 - 0.756 82.6
ResNeSt-50 - 0.753 82.8

PLN ResNet-50 × 2 0.764 83.1
Ours ResNeSt-50 × 2 0.81 85.3

Ours (Combined) ResNeSt-50 × 2 0.816 86.2

As shown in Table 1, the proposed method achieves superior performance compared to
that of the state-of-the-art generic object recognition methods. Specifically, the performance
of Ours is 85.3%, representing 4.4%, 4.0%, 2.7%, and 2.5% increases over the results of
ResNet-50, ResNeXt-50, EfficientNet-B0 and ResNeSt-50, respectively. The Top-1 accuracy
performance of Ours (Combined) is 86.2%, representing a 3.4% increase over that of the
optimal ResNeSt-50 model. The reason for these findings can be attributed to the fact
that the two-stream network can learn complementary predictions to further improve its
recognition performance.

Despite utilizing a similar mechanism, the proposed method outperforms the PLN
model by 2.2% and 3.1%. The superiority of our proposed method should be attributed
to the distribution-aware penalty mechanism, which selects a suitable loss for model pa-
rameter updating to reduce the number of misjudged items with the same predicted labels.
Moreover, the backbone ResNeSt-50 model, which adopts the split-attention block and
comparatively more convolution operations, further improves the robustness of discrimina-
tive features. In addition, Ours (Combined) has a higher accuracy rate, with a 0.9% higher
Top-1 accuracy than that of Ours. This result can be attributed to the complementarity of
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the outputs of the two-stream network, which enhances the robustness of the model to
ambiguous prediction labels.

4.2. Comparisons with the Fine-Grained Recognition Approaches

The goal of this experiment is to test and verify the performance of the proposed
approach on the fine-grained recognition task. To this end, we compare the proposed
method with two existing representative fine-grained methods on the Butterfly-914 dataset.
One is the PMG model [17], which is based on partial attention for recognition, and the
other is the HSE model [10], which simultaneously predicts the categories at all levels in the
hierarchy and integrates the structured correlation information into a deep neural network.

The Top-1 accuracy vs. number of training epochs curves obtained on the testing set
are presented in Figure 8. Compared with the above models, although the PMG model has
fewer fluctuations due to the split operation, the proposed method can be trained more
stably and converges faster.
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Table 2 further presents a detailed report of the results of different methods. It can be
found that the recognition performances of our proposed models are all superior to those of
the fine-grained approaches. In terms of Top-1 accuracy, the performance of Ours is 85.3%,
representing 2.2% and 1.5% increases over those of the PMG and HSE models, respectively.
The performance of Ours (Combined) is 86.2%, which is a 3.1% improvement over that
of PMG and a 2.4% improvement over that of the HSE model. The better performance of
our proposed methods can be attributed to the fact that they can capture not only generic
features but also discriminative fine-grained visual representations.
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Table 2. Top-1 accuracy and F1-score comparison with the fine-grained recognition methods. The
highest score is shown in bold.

Model Backbone F1-Score Top-1 Accuracy (%)

PMG (resize in 550 × 550) Se-ResNeXt-50 0.769 83.1
HSE ResNet-50 0.777 83.8
Ours ResNeSt-50 × 2 0.81 85.3

Ours (Combined) ResNeSt-50 × 2 0.816 86.2

4.3. Comparisons with the Leading Long-Tailed Recognition Methods

Due to the characteristics of the long-tailed distribution of the proposed Butterfly-
914 dataset, we compare our proposed methods (Ours and Ours (Combined)) with the
existing state-of-the-art methods, such as BBN [21], DRC [23], and RIDE [24], based on
their performance. As shown in Figure 9, the training curves of our proposed methods are
smoother than those of other long-tailed recognition methods. Table 3 presents the feature
extraction backbone and the recognition results of the above methods. As shown in Table 3,
the proposed methods significantly outperform all these other methods.
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Table 3. Top-1 accuracy and F1-score comparisons with the long-tailed recognition methods. The
highest score is shown in bold.

Model Backbone F1-Score Top-1 Accuracy (%)

DRC ResNeXt-50 0.735 82.2
BBN ResNet-50 0.742 82.7
RIDE ResNeXt-50 0.774 83.8
Ours ResNeSt-50 × 2 0.81 85.3

Ours (Combined) ResNeSt-50 × 2 0.816 86.2
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Moreover, we further analyze how the proposed method achieves improved perfor-
mance on long-tailed data by splitting the groups based on the samples of each class.
Inspired by the DRC model, classes in the dataset with different numbers of butterfly
samples are divided into three groups: many-shot (more than 100), medium-shot (30–100),
and few-shot (20–30) groups. As shown in Table 4, the proposed method achieves the best
performance on all three groups.

Table 4. Top-1 accuracy comparisons with the long-tailed methods on the many-shot, medium-shot,
and few-shot classes. The highest score is shown in bold.

Model Many-Shot Medium-Shot Few-Shot

DRC 87.27% 76.19% 69.03%
BBN 88.02% 77.1% 68.97%
RIDE 88.73% 77.75% 69.8%
Ours 89.75% 80.56% 75.57%

Ours (Combined) 90.17% 80.63% 76.53%

In the many-shot class, the performances of the proposed Ours and Ours (Combined)
models are 89.75% and 90.17%, respectively, which are 2.48% and 2.9% superior to that
of the DRC model, 1.73% and 2.15% better than that of the BBN method, and 1.02% and
1.44% superior to that of the RIDE model, respectively. In the medium-shot class, the
performances of our proposed methods are 80.56% and 80.63%, respectively, which are
4.37% and 4.44% better than that of the DRC model, 3.46% and 3.53% superior to that of
the BBN model, and 2.81% and 2.88% better than that of the RIDE model. For the few-shot
class, the two performances are 75.57% and 76.53%, which are 6.54% and 7.5% better than
that of the DRC model, 6.6% and 7.56% superior to that of the BBN model, and 5.77% and
6.73% better than that of the RIDE model.

In addition, it can be observed that our proposed method is within a 1.9% margin for
the many-shot class. The reason for this might be that these models can learn discriminative
feature representations when the sample sizes are large. The performance of the proposed
method is significantly higher than that of the other long-tailed algorithms on the medium-
shot and few-shot classes. This can be attributed to the two-stream backbone and the
knowledge exchange strategy with the distribution-aware mechanism used for instance
selection, which can effectively improve the performance of the model for medium-shot
and few-shot classification, thus simultaneously avoiding the performance degradation of
the many-shot class.

4.4. Comparisons with the Existing Methods on a Public Long-Tailed Dataset

The previous experiments have illustrated how the proposed method achieves im-
proved recognition performance on our proposed Butterfly-914 dataset. For a fairer evalua-
tion, the proposed method is tested and evaluated on the public IP102 dataset for insect pest
recognition. IP102 is not only a fine-grained recognition dataset with a total of 75,222 im-
ages belonging to 102 categories; it also exhibits a natural long-tailed distribution. In this
experiment, we evaluate the performance of the state-of-the-art fine-grained/long-tailed
methods, including IP102 [9], PMG [17], BBN [21], DRC [23], RIDE [24], WSLG [25], and
our proposed model, on the IP102 dataset. The PMG model is a leading fine-grained image
classification approach. The DRC, BBN, and RIDE models are representative methods for
long-tailed recognition, while WSLG, IP102, and our proposed method focus on object
representation with fine-grained and long-tailed characteristics.

Table 5 shows the recognition performance of the above models. We can see that the
proposed methods, Ours and Ours (Combined), separately achieve 72.63% and 73.51%
recognition accuracies, which are significantly higher than the results of the other main-
stream models. In contrast to the fine-grained PMG model, the proposed models improve
the Top-1 recognition accuracy by at least 5.87% and 6.75%, respectively. Compared with the
long-tailed methods, the proposed method (such as Ours) outperforms the DRC, BBN, and
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RIDE approaches by 20.42%, 4.84%, and 4.5%, respectively. Our methods also significantly
outperform the WSLG and IP102 models for fine-grained classification with a long-tailed
data distribution. These desirable results can be attributed to the more discriminative local
feature learning of the two-stream backbone and the knowledge exchange strategy with
the distribution-aware mechanism in our proposed framework.

Table 5. Top-1 accuracy comparisons with different fine-grained/long-tailed methods on the IP102
dataset. The highest score is shown in bold.

Model Backbone F1-Score Top-1 Accuracy (%)

PMG Se-ResNeXt-50 0.531 66.76
DRC ResNeXt-50 0.383 52.21
BBN ResNet-50 0.547 67.79
RIDE ResNeXt-50 0.567 68.13

WSLG Inception-v4 - 48.2
IP102 ResNet-50 - 49.4
Ours ResNeSt-50 × 2 0.673 72.63

Ours (Combined) ResNeSt-50 × 2 0.691 73.51

4.5. Ablative Analysis of Each Module of the Proposed Model

As shown in the previous subsection, the two-stream backbone and distribution-aware
penalty mechanism of the proposed model significantly improve its recognition perfor-
mance. This subsection presents a further ablative analysis to evaluate the contribution of
the components of proposed model by comparing the recognition performance achieved
with and without the penalty mechanism and under different backbone combinations on
the proposed Butterfly-914 dataset. The configurations and results of the tested models are
presented in Table 6. “+” and “−” indicate that the corresponding model is trained with
and without the distribution-aware penalty mechanism, respectively.

Table 6. Ablative analysis conducted with/without different module combinations on the Butterfly-
914 dataset. The highest score is shown in bold.

Model DPM Backbone Top-1 Accuracy (%)

ResNet-50 − − 80.9
PLN − ResNet-50 × 2 83.1

Ours (PLN + DPM) + ResNet-50 × 2 84.8
Ours + ResNeSt-50 × 2 85.3

Ours (Combined) + ResNeSt-50 × 2 86.2

As shown in Table 6, with the same CNN backbone (ResNet-50), the recognition
performance of the PLN model is 83.1%, which is 2.2% better than that of the ResNet-50
model in which a single backbone is used. The results demonstrate that the combination of
multiple CNN backbones can help achieve better recognition performance than that yielded
by utilizing a single backbone. Moreover, with the same two-stream ResNet-50, the Top-1
accuracy of Ours (PLN + DPM) is 84.8%, which is 1.7% better than that of the PLN model.
Note that the backbone design in the model is similar to that of the PLN method. However,
our model makes an innovative change via the knowledge exchange strategy based on
the distribution-aware penalty mechanism, which outperforms the PLN framework by a
critical margin. This result can be attributed to the fact that the distribution-aware penalty
mechanism in the knowledge exchange strategy can reduce the number of misjudgments
concerning items with the same predicted labels. In addition, our proposed model and
the Ours (Combined) model both outperform the other models, which means that the
improved backbone and the combination prediction of the two-stream classifier further
facilitate the recognition performance.
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5. A Smartphone App for Butterfly Recognition

In this section, a smartphone app is developed based on the proposed method to
recognize butterflies in a real-life environment, and a mini WeChat program is introduced
in detail. Figure 10 displays the entire process of the butterfly recognition application,
which is device-agnostic and works on any phone.
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Users input a butterfly image saved in their smartphone or take a photo into the app
to obtain the hierarchical names of the included butterflies, such as their family, subfamily,
genus, and species classifications. The graphical display is shown in Figure 11. The
software implementation of the app involves butterfly detection, a metadata base, butterfly
recognition (Figure 11a), scan the QR code on the left to access the app), and a cloud-based
data storage server (Figure 11b). The app uses the proposed model with a recognition rate
of 86.2%, and its processing time on a mobile phone is 0.932 s. At present, the app is used
in many universities to help experts and butterfly enthusiasts identify species.
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6. Conclusions

This paper proposes a novel peer learning network that cooperates with a distribution-
aware penalty mechanism to alleviate the problems of fine-grained representation learning
and long-tailed data distribution in fine-grained image recognition tasks. Based on the
predicted class labels of all samples provided by the two-stream backbone learning process,
the proposed model utilizes the knowledge exchange strategy with the distribution-aware
penalty mechanism to select suitable penalty samples for mitigating the misjudgments
concerning items with the same predicted labels. To evaluate the proposed approach, a
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large-scale fine-grained butterfly dataset with a long-tailed distribution, Butterfly-914, is
constructed. Extensive experiments and thorough analyses conducted on the Butterfly-914
dataset and the public IP102 pest dataset demonstrate the superiority of the proposed model
over the state-of-the-art fine-grained methods, long-tailed methods, and other existing
object recognition competitors.

Moreover, a device-agnostic application is developed to recognize butterflies readily in
real environments. This application will provide high accuracy, easy operation, simplicity,
and a low-cost means for performing butterfly management in agriculture monitoring.
Furthermore, an attention mechanism can be introduced in follow-up research to extract
more subtle and rich feature representations to improve the accuracy achieved on the
few-shot class. In addition, we will investigate how much improvement is achieved by
incorporating the re-identification method.
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