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Simple Summary: Organoids are 3D-cell culture systems composed of tissue-specific cells that create
structures similar to those of their tissue of origin. Organoids have generated great interest in recent
years, since they are considered a useful tool to perform laboratory studies in different scientific
areas including reproduction. Testicular organoids (TOs) may provide an innovative model for the
study of testicular physiology in various species; however, no previous studies have reported on
the production of TOs in the bovine species. Thus, in the present study, we sought to generate and
characterize bovine TOs, derived from testicular cell populations that include Leydig, Sertoli and
peritubular myoid cells. After isolation from testes and characterization, testicular cells were cultured
in ultra-low attachment dishes. Testicular cells formed TOs after 3 days of culture. Leydig, Sertoli
and peritubular myoid cells displayed specific locations and changed in number in TOs. Moreover,
bovine TOs were able to produce and increase the concentration of testosterone after 27 days of
culture. The present study represents the first report on the generation and characterization of bovine
TOs. These TOs could be useful tools to evaluate the impact of exogenous factors on the physiology
of sperm production and testis development in domestic and wild cattle.

Abstract: Organoids are 3D-culture systems composed of tissue-specific primary cells that self-
organize and self-renew, creating structures similar to those of their tissue of origin. Testicular
organoids (TOs) may recreate conditions of the testicular niche in domestic and wild cattle; however,
no previous TO studies have been reported in the bovine species. Thus, in the present study, we
sought to generate and characterize bovine TOs derived from primary testicular cell populations
including Leydig, Sertoli and peritubular myoid cells. Testicular cells were isolated from bovine
testes and cultured in ultra-low attachment (ULA) plates and Matrigel. TOs were cultured in media
supplemented from day 3 with 100 ng/mL of BMP4 and 10 ng/mL of FGF2 and from day 7 with
15 ng/mL of GDNF. Testicular cells were able to generate TOs after 3 days of culture. The cells positive
for STAR (Leydig) and COL1A (peritubular myoid) decreased (p < 0.05), whereas cells positive for
WT1 (Sertoli) increased (p < 0.05) in TOs during a 28-day culture period. The levels of testosterone
in media increased (p < 0.05) at day 28 of culture. Thus, testicular cells isolated from bovine testes
were able to generate TOs under in vitro conditions. These bovine TOs have steroidogenic activity
characterized by the production of testosterone.

Keywords: bovine testicular organoid; 3D-culture system; Leydig cells; Sertoli cells; peritubular
myoid cells
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1. Introduction

Organoids are 3D-culture systems composed of stem cells and/or tissue-specific
primary cells that self-organize and self-renew, creating structures similar to those of
their tissue of origin [1]. They bear either complete or partial structural and functional
similarities with organs in vivo [2]. Organoids have generated great interest in recent years,
since they are considered a useful tool to perform in vitro studies in different areas including
toxicology, virology, oncology, microbiology and reproduction [3–6]. In particular, testicular
organoids (TOs) have enabled the study of testicular development and have been used as a
model for assaying the effects of different experimental factors and treatments [7–9]. In this
regard, TOs may recreate conditions of the testicular niche, where spermatogenesis occurs
through the self-renewing and differentiation of spermatogonial stem cells (SSCs) [10].
Furthermore, TOs may be a useful tool for analyzing strategies for preserving fertility and
recovering sexual functionality [9,10]. This is especially important in the field of human
reproductive and regenerative medicine, where TOs may allow the discovery of new
treatments for infertility in men undergoing chemotherapy, azoospermia or trauma, among
other injuries [10,11]. In the field of cattle reproduction, TOs may provide an innovative
in vitro model for the study of spermatogenesis, factors associated with sperm production
and eventually to develop new biotechnological applications for genetic improvement or
wildlife conservation.

The testicular niche can be defined as the anatomical space where SSCs develop
under the effect of signals originating from both the surrounding cells and the extracellular
matrix [12,13]. In the case of testes, the SSC niche involves somatic cells including Leydig,
Sertoli and peritubular myoid cells and structural components such as the basement
membrane of the seminiferous tubule [14–16]. Sertoli cells are responsible for providing the
necessary mechanical and nutritional support for SSC differentiation, being the only somatic
cells in direct contact with SSCs [17]. Sertoli cells produce a variety of cytokines and growth
factors, including bone morphogenetic protein 4 (BMP4), fibroblast growth factor 2 (FGF2)
and glial cell line-derived neurotrophic factor (GDNF), that promote the proliferation and
differentiation of SSCs [18,19]. Peritubular myoid cells are separated from Sertoli cells by
the basement membrane, but together they make up the seminiferous tubules and produce
components of the basement membrane [14,18,20]. In addition, peritubular myoid cell
contraction promotes the expulsion of sperm during spermiation [21,22]. Leydig cells are
located in the interstitial space of the seminiferous tubules, and like Sertoli and peritubular
myoid cells, they produce several growth factors, including inhibin, insulin-like growth
factors 1 (IGF1), insulin-like peptide 3 (INSL3), interleukin 1α (IL1α) and transforming
growth factor β (TGFβ), that regulate SSC function [18]. In addition, Leydig cells are
the primary source of androgens, which are necessary for the formation of sperm and
reproductive function [23–26]. Nevertheless, SSC renewal and differentiation are complex
and dynamic processes, but TOs may constitute a valuable system to recreate the testicular
niche [26–28]. The organoid culture system could help to understand the interactions of
germ cells with neighboring somatic cells and to analyze the effects of external and internal
signals that control cell survival, differentiation and tissue development [29,30].

Despite the exponential increase in the number of reports on organoid derivation for
in vitro studies, limited information has been published on TOs. To date, TOs have been
mainly reported in humans, rodents and some domestic animal species including pigs
and monkeys [31–34]. Nevertheless, to the best of our knowledge, currently there are no
reports of TOs in the bovine species. The development of bovine TOs is not only relevant
for understanding how internal and external factors affect testicular function in this species,
but also as an alternative experimental model to study reproductive physiology in domestic
and wild ruminants [35–38]. Moreover, due to the ability to mimic the structure of the
testicular niche, bovine TOs may be used as a 3D culture system for in vitro SSC production,
germ cell or gamete derivation. However, the particularities in the isolation, culture and
long-term preservation of bovine testicular cells and the subsequent TO formation require
exhaustive analysis. Thus, in the present study, we sought to generate and characterize
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bovine TOs derived from primary somatic cell populations including Leydig, Sertoli and
peritubular myoid cells.

2. Materials and Methods
2.1. Ethics

All experimental procedures have been approved and were performed in accordance
with the guidelines and regulations of the Bioethical Committees of the Faculty of Veterinary
and Animal Sciences at the University of Chile.

2.2. Study Design

Testicular cells were isolated from bovine testes (n = 5) and cultured at a concen-
tration of 1 × 106 cells/well in Ultra Low Attachment (ULA) plates to form testicular
organoids. Organoids were cultured (3 replicates) in DMEM F12 supplemented with
10% FBS, 100 IU/mL penicillin, 100 µg/mL streptomycin and 100 µg/mL amphotericin
B. The culture medium from day 3 was supplemented with 100 ng/mL of BMP4 and
10 ng/mL of FGF2 and from day 7 with 15 ng/mL of GDNF. The testicular cell populations
(Leydig, Sertoli and peritubular myoid cells) at day 0 were analyzed by Q-PCR for gene
expression of STAR, WT1 and αSMA, and by flow cytometry and immunofluorescence for
immunodetection of STAR, WT1 and COL1A. TOs were collected at days 3, 7, 14 and 28
of culture and examined by phase contrast microscopy for morphological characteristics,
by Q-PCR for gene expression (10–12 TOs for each day) of STAR, WT1 and αSMA, and
by confocal immunofluorescence (10–12 TOs for each day) for immunodetection of STAR,
WT1 and COL1A.

2.3. Bovine Testis Collection

Testes were obtained by orchiectomy from healthy Angus bulls aging 7 to 10 months.
Once collected, testes were washed and transported to the laboratory at 4 ◦C immersed
in ice cold Hanks balanced salt solution free of calcium and magnesium (HBSS; Hyclone
Laboratories, UT, USA) containing 100 µg/mL of streptomycin, 100 U/mL of penicillin and
100 µg/mL of amphotericin B (HBSS/P-E).

2.4. Isolation of Bovine Leydig, Sertoli and Peritubular Myoid Cells

The isolation of Leydig, Sertoli and peritubular myoid cells was performed according
to a previously reported sequential protocol with some modifications [39]. Briefly, the
tunica albuginea of each testis was removed and a piece of parenchyma (12–15 grams)
was excised and transferred to a beaker. Then, the parenchyma was vigorously sectioned
until small pieces of tissue were obtained, which were resuspended in 100 mL of ice cold
HBSS/P-E. The sectioned tissue was allowed to settle twice by gravity for 15 min and
the supernatant was removed. Subsequently, 300 mL of HBSS/P-E was added and the
suspension was placed in orbital agitation at 37 ◦C for 20 min. The supernatant was
removed, and the pellet was subjected to enzymatic digestion using 80 mL of HBSS/P-E,
10 mL of Type IV Collagenase (1%), 10 mL of 2.5% Trypsin-EDTA and 2 mL of DNAse
(1 mg/mL) under stirring for 15 min at 37 ◦C. The tissue was then passed through a metal
strainer into a new beaker and an equivalent volume of DMEM-F12 supplemented with
fetal bovine serum (FBS) was added to stop enzymatic digestion. The obtained solution
was centrifuged at 200× g for 5 min and the supernatant was removed. The obtained pellet
was resuspended in 200 mL of DMEM-F12 supplemented with 10% FBS, 100 µg/mL of
streptomycin and 100 U/mL of penicillin and allowed to settle for 30 min. The supernatant
was collected and the cells were allowed to settle for 20 min to later obtain Leydig cells.
Then, the pellet obtained was resuspended in 100 mL of PBS containing 1 M glycine and
2 mM EDTA (pH 7.4) for 10 min and then allowed to settle for 15 min. This step was
repeated twice, and the supernatant obtained was centrifuged at 200× g for 5 min to obtain
peritubular myoid cells. These cells were seeded in minimum essential medium (MEM)
supplemented with 10% FBS, 100 µg/mL of streptomycin, 100 U/mL of penicillin and
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100 µg/mL of amphotericin B. The pellet obtained, corresponding to Sertoli cells, was
resuspended in 10 mL of DMEM-F12 supplemented with 100 µg/mL of streptomycin,
100 U/mL of penicillin and 100 µg/mL of amphotericin B. Leydig cells obtained from the
supernatant by sedimentation and subsequent centrifugation for 5 min at 200× g were then
purified by centrifugation with discontinuous percoll gradients (100, 60, 34, 26 and 21%)
in PBS for 30 min at 1500× g. The cells obtained between the 26 and 34% and 34 and 60%
fractions were collected, centrifuged at 200× g for 10 min and then cultured in DMEM-F12
supplemented with 10% FBS, 100 µg/mL of streptomycin and 100 U/mL of penicillin. The
cell culture media was removed, and fresh media was added every 2–3 days.

2.5. Three-Dimensional Co-Culture of Testicular Cells

Testicular primary Leydig, Sertoli and peritubular myoid cells obtained by enzymatic
digestion and maintained for up to 5–6 passages were used to generate TOs. Leydig, Sertoli
and peritubular myoid cells (3 × 106 cells for each type) were resuspended together and
brought to a concentration of 1 × 106 cells/mL in culture medium containing DMEM-
F12 supplemented with 10% FBS, 100 IU/mL penicillin, 100 µg/mL streptomycin and
100 µg/mL amphotericin B. Then, 100 µL of the cell suspension was placed in each well
of a 96-well ULA U-shape button plate (Corning, NY, USA) for culture. On day 7 of
culture, cell aggregates in each well were transferred to 40 µL of Matrigel growth factor
reduced (Corning, NY, USA) and incubated for 10–20 min at 36 ◦C until solidification. Once
solidified, the TOs were transferred to 6-cm ULA plates. Cultures were maintained at 36 ◦C
under a humidified atmosphere with 5% CO2 for another 21 days.

2.6. Testicular Organoid Culture Conditions

DMEM-F12 supplemented with 10% FBS, 100 IU/mL penicillin, 100 µg/mL strepto-
mycin and 100 µg/mL amphotericin B was used as the basic culture medium. The medium
was changed every 2 or 3 days. The basic culture medium was supplemented from day 3
of culture with 100 ng/mL of BMP4 and 10 ng/mL of FGF2 (R&D Systems, Minneapolis,
MN, USA) (refer as: BF medium) and from day 7 of culture with 15 ng/mL of GDNF (R&D
Systems) (refer as: BFG medium).

2.7. Testicular Organoid Whole-Mounting Staining

To examine the structure of TOs and the distribution of testicular cell types (Ley-
dig, Sertoli and peritubular myoid cells), these structures were fixed overnight in 4%
paraformaldehyde at 4 ◦C for 1 h. After fixation, antigen retrieval was performed in 10 mM
sodium citrate aqueous solution with 0.05% Tween-20 (P/N K38485272825, Merck, Frank-
furt, Germany) with pH 6 for 15 min at 95 ◦C. The samples were cooled down for 15–30 min
and then washed 3 times with PBS and 0.1% Tween-20. Permeabilization was performed
using Triton X-100 (P/N 9036-19-5, Merck) in 1X PBS for 2 h at RT. Blocking was performed
by incubation with 2% BSA in PBS for 1 h at RT. Proteins of interest were immunodetected
using primary antibodies diluted in 2% BSA (Table 1) for 3 days at 4 ◦C. Samples were
then washed 3 times with 0.1% Tween in PBS. Later, secondary antibodies diluted in 2%
BSA were incubated for 2 days at 4 ◦C. Samples were counter-stained using Pure Blu DAPI
Nuclear Staining Dye (P/N 135-1303, BioRad, Hercules, CA, USA).

Table 1. Antibodies used for testicular cell-specific marker detection.

Antibody Cell Marker Cat.# P/N Company Dilution

Anti-COL1 Peritubular SC293182 Santa Cruz Biotechonology 1:50
Anti-STAR Leydig AB96637 Abcam 1:100
Anti-WT1 Sertoli AB89901 Abcam 1:100
IgG FITC - AB97050 Abcam 1:100
IgG Alexa Fluor 488 - A32766 Thermo Fisher 1:500
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2.8. Digital Image Acquisition and Processing

Digital images were acquired using a contrast phase microscope connected to a digital
camera (Motic, Xiamen, China). To assess organoid size, their area was determined with
ImageJ software (National Institute of Health, Bethesda, MD, USA, v1.47). Digital 3D
images of TOs were obtained using a Zeiss LSM 700 confocal microscope (Carl Zeiss,
Oberkochen, Germany). The proportions of cells expressing STAR, WT1 and COL1A were
determined by dividing the number of marker-positive cells by the number of cells stained
with DAPI on three randomly selected sections.

2.9. Q-PCR Analysis

Cell samples and TOs were fixed in lysis buffer (Thermo Fisher Scientific, Waltham,
MA, USA) with 20 µL of β-Mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA). The
RNA from the cells was isolated using the GeneJet RNA purification kit (Thermo Fisher).
The total mRNA was quantified using a Qubit 3.0 Fluorometer (Thermo Fisher). For the
removal of genomic DNA, a DNAse I kit (Thermo Fisher) was used. The cDNA was
synthesized and amplified using an Affinity Script Q-PCR cDNA Synthesis Kit (Agilent
Technologies, Santa Clara, CA, USA), with 1000 ng of RNA as input and using a TC1000-G
thermocycler (DLab, PEK, Beijing, China). Samples were analyzed for the gene expression
of β-ACTIN (housekeeping), and cell-specific markers STAR (Leydig cells), WT1 (Sertoli
cells) and α-SMa (peritubular myoid cells) using Q-PCR (Table 2). The PCR reaction was
performed using a Brilliant SYBR Green QPCR Master Mix kit (Agilent Technologies). Each
RT-PCR reaction (10 µL) contained the following: 2X Brilliant II SYBR Green QPCR master
mix (5 µL), target forward primer (200 nM), target reverse primer (200 nM), cDNA synthesis
reaction (1 µL) and nuclease-free PCR grade water to adjust the final volume. The PCR
amplification was carried out in an Eco Real-Time PCR System (Illumina Incorporated,
San Diego, CA, USA). The thermal cycling conditions were 95 ◦C for 10 min, followed
by 40 repetitive cycles at 95 ◦C for 30 s, and 60 ◦C for 1 min. In each experiment, the
level of gene expression was recorded as CT values that corresponded to the number of
cycles where the fluorescence signal can be detected above a threshold value. The relative
quantification of the target gene expression across treatments was evaluated using the
comparative ∆∆CT method. The CT value was determined by subtracting the β-ACTIN
CT value (most stable endogenous gene CT value) from the target CT value of the sample.
The calculation of ∆∆CT involved using the target gene expression of untreated testicular
cells as an arbitrary constant to subtract from all other CT sample values.

Table 2. Sequence of primers used for Q-PCR analysis.

Gene Nucleotide Sequence (5′-3′) Accession Number

β-ACTIN Forward CGCACCACTGGCATTGTCAT
Reverse TCCAAGGCGACGTAGCAGAG NM_173979.3

WT1 * Forward AACCACACCACACCCATCC
Reverse ACGCCGCACATCCTGAAT XM_015466595.1

STAR * Forward GACACGGTCATCACTCACGA
Reverse TACGCTCACAAAGTCTCGGG NM_174189.3

αSMA ** Forward CAGCCGAGAACTTTCAGGGAC
Reverse GGTGATGATGCCGTGCTCTA NM_001034502.1

* Wilms tumor. ** Steroidogenic acute regulatory protein.

2.10. Fluorescence Activated Cell Sorting (FACS) Analysis

The quantification of the populations of Leydig, Sertoli and peritubular myoid cells
was performed by the determination of the proportions of cells positive for the expression
of STAR, WT1 and COL1A markers, respectively. The cells were detached after incubation
with Trypsin for 10–20 min at 38 ◦C. The cells were then fixed with 4% paraformaldehyde
in PBS for 15 min at 4◦C, washed with PBS and stored at 4 ◦C overnight. Later, cells were
permeabilized in PBS with 1% Triton X-100 for 15 min at room temperature after fixing and
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incubated with primary antibodies (Table 1) overnight at 4 ◦C. The cells were then stained
in the dark with a fluorescent secondary antibody for 1 h at room temperature. After
incubation, the cells were washed with PBS and centrifuged to remove unbound antibody.
The cells were resuspended in 1 mL of PBS and analyzed in a FACSCalibur (BD Biosciences,
Erembodegem, Belgium) using FlowJo v10 (Tree Star, Ashland, OR, USA) software.

2.11. Testosterone Production Assay

Testosterone production in the TO culture medium was measured at 8, 11, 14, 18, 21
and 27 days of culture using enhanced chemiluminescence technology (Vitros Immunodi-
agnostic Product Testosterone kit, Ortho-Clinical Diagnostics, Bridgend, UK) following
manufacturer instructions. The bound horseradish peroxidase (HRP) conjugate was deter-
mined by a luminescence reaction using luminol reactive. An electron transfer reagent was
present to enhance the level of light produced prolonging its emission spectra. The amount
of HRP conjugate bound is in direct proportion to the concentration of testosterone present
in the sample and was analyzed with VITROS Immunodiagnostics testosterone calibrators.

2.12. Statistical Analysis

Statistical analyses were performed on relative gene expression, TO diameter and
percentage of cells positive for testicular cell-specific markers using InfoStat software
(Infostat, Version 2018; Córdoba, Argentina). The means values for each replicate were
analyzed by one-way ANOVA. Gene expression values between days of culture, TO
diameter and percentage of positive cells were analyzed using Tukey’s multiple comparison
test (p < 0.05).

3. Results
3.1. Isolation and Characterization of Bovine Leydig, Sertoli and Peritubular Myoid Cells

In order to determine the purity of the testicular cell populations used for TO for-
mation, primary cell cultures were analyzed by using phase contrast microscopy, Q-PCR,
immunofluorescence and FACS analyses. All testicular cells were plastic-adherent and
while Leydig and peritubular myoids cells showed an epithelioid and slightly elongated
form, Sertoli cells displayed a more rounded or cubical shape (Figure 1A). Gene expression
levels of STAR, WT1 and α-SMA were detected in all cell cultures and no significant differ-
ences were detected among cell types (Figure 1B–D). The respective proportions of cells
positive to STAR, WT1 and COL1A1 were analyzed in Leydig, Sertoli and peritubular my-
oid cell cultures on the total number of DAPI-stained nuclei for each culture (Figure 1E,G).
The results revealed that 45.8% ± 5 of cells expressed STAR, 89.5% ± 2.6 of cells expressed
WT1 and 69.1% ± 4.4 of cells expressed COL1A in Leydig, Sertoli and peritubular myoid
cell cultures, respectively. Testicular cells were also characterized by FACS and 30.1% ± 4.5
of Leydig cell cultures were positive for STAR, 70.9% ± 3.4 of Sertoli cell cultures were
positive for WT1 and 12.3% ± 2.2 of peritubular myoid cell cultures were positive for COL1
(Figure 1F).

3.2. Formation and Morphological Characterization of Multicellular Bovine TOs

In order to establish a method to reproducibly generate uniform bovine TOs, we followed
previously reported protocols for producing TOs with modifications [30–33]. Organoids were
generated from primary cell cultures, harvested after 3, 7, 14 and 28 days of culture and
examined for morphological characteristics and internal organization (Figure 2A). TOs ap-
peared uniform and tightly packed, were spherical in shape and formed external branches
(Figure 2B,C). The diameter used for TO size determination included both branched and
unbranched areas. The mean diameter of TOs were 578 µm ± 12.7 at day 3, 794 µm ± 27.6
at day 7, 1096 µm ± 38.3 at day 14 and 1245 µm ± 14.2 at day 28 (Figure 2D). Once the
organoids were transferred to Matrigel growth factor reduced and were treated with FGF2,
BMP4 and GDNF, they presented a branched structure (black arrows in Figure 2C). By day
9 and 14, more branches were visible within the structure and by day 28, TOs increased
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the size of the branches, most probably due to extracellular matrix (ECM) production
(Figure 2C). The proportion of branched in comparation to non-branched area increased
during culture from 15% (Day 9) to 72% (Day 14) and 73% (Day 28).
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Figure 1. Characterization of primary bovine testicular cell types including Leydig, Sertoli and
peritubular myoid cells used for TO formation. (A) Phase contrast representative images of Leydig,
Sertoli and peritubular myoid primary cell cultures. (B–D) Gene expression analysis of STAR (Leydig
cells), WT1 (Sertoli cells) and α-SMA (peritubular myoid cells) detected no significant differences
among cell cultures. Data were expressed as the mean ± SEM (n = 3). (E) Percentages of STAR,
WT1 and COL1A immune-positive cells in respective Leydig, Sertoli and peritubular myoid cell
cultures. (F) Representative histograms of testicular cell populations positive for each marker:
STAR, WT1 and COL1A (Leydig, Sertoli and peritubular cells, respectively). (G) Representative
immunofluorescence analysis of STAR, WT1 and COL1A markers in Leydig, Sertoli and peritubular
myoid cells. Superscript (a) indicates no significant (p > 0.05) differences in gene expression among
cell types. Scale bar = 100 µm.
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A B

D E

C

Figure 2. Generation and morphological evaluation of bovine TOs derived from primary bovine tes-
ticular cells. (A) Schematic diagram depicting the main steps for bovine TO production. (B) Spherical
TO after 3 days of culture in ULA plates. (C) Representative bright-field images of morphological
changes and differences in cellular reorganization in TOs. Arrows indicate branch formation from
days 7 to 28 after treatment with FGF2, BMP4 and GDNF. (D) Average diameter of TOs at different
days of culture. (E) Percentage of branched and non-branched area on TOs at 9, 14 and 28 days of
culture. Bright field at day 0 (Scale bar = 100 µm). Data were expressed as the mean ± SEM (n = 3).
Days 1, 7, 9 and 28 (Scale bar = 500 µm). Different superscripts (a, b, c and d) indicate significant
(p < 0.05) differences in diameter among days of culture.

3.3. Testicular Cell Marker Evaluation by QPCR in Bovine TOs

The gene expression of Leydig, Sertoli and peritubular myoid cell markers (STAR,
WT1 and α-SMA, respectively) were also evaluated in TOs at 3, 7 and 28 days of the culture
(Figure 3). The levels of mRNA of STAR, WT1 and α-SMA were detected in all days of
organoid culture and were not significantly different among days of culture (Figure 3A–C).

3.4. Confocal Immunofluorescence Analysis of Cell-Specific Testicular Markers in Bovine TOs

On day 3 of culture, we observed a patch of STAR-positive cells on a section of the
peripheral region of the TOs (Figure 4A,B). From day 7, the STAR-positive cells migrated to
the peripheral and partially to the central region of the organoid. Thereafter, these cells
were found almost exclusively in the peripheral areas and branches from day 14 to day
28 of culture. The percentages of STAR-positive cells in TOs were 76% ± 22.9 (day 3),
58% ± 21.8 (day 7), 61%± 2.0 (day 14) and 34%± 4.8 (day 28) (Figure 4C). The percentages
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of STAR-positive cells on days 14 and 28 were lower (p < 0.05) compared to days 3 and 7
(Figure 4C).

Animals 2022, 12, x 9 of 17 
 

 
Figure 3. Gene expression analysis of testicular cell-specific markers in bovine TOs. (A–C) The gene 
expression levels of STAR (Leydig cells), WT1 (Sertoli cells) and α-SMA (peritubular myoid cells) 
were not different (p > 0.05) in TOs at days 3, 7 and 28 of the culture. β-ACTIN was used as a house-
keeping gene. Gene expression values were normalized (fold-change) with respect to values in tes-
ticular cells isolated prior to the formation of TOs (control). Data were expressed as the mean ± SEM 
(n = 3). Superscript (a) indicates no significant (p > 0.05) differences in gene expression among days 
of culture. 

3.4. Confocal Immunofluorescence Analysis of Cell-Specific Testicular Markers in Bovine TOs 
On day 3 of culture, we observed a patch of STAR-positive cells on a section of the 

peripheral region of the TOs (Figure 4A,B). From day 7, the STAR-positive cells migrated 
to the peripheral and partially to the central region of the organoid. Thereafter, these cells 
were found almost exclusively in the peripheral areas and branches from day 14 to day 28 
of culture. The percentages of STAR-positive cells in TOs were 76% ± 22.9 (day 3), 58% ± 
21.8 (day 7), 61% ± 2.0 (day 14) and 34% ± 4.8 (day 28) (Figure 4C). The percentages of 
STAR-positive cells on days 14 and 28 were lower (p < 0.05) compared to days 3 and 7 
(Figure 4C). 

 
Figure 4. Confocal immunofluorescence analysis of STAR expression in whole mounted bovine 
TOs. (A,B) Immunofluorescence associated with STAR in whole TOs (A) and branched areas of TOs 
(B). (C) The percentages of STAR-positive cells on days 14 and 28 were significantly lower compared 
to days 3 and 7. Data were expressed as the mean ± SEM (n = 3). Cell nuclei were stained blue with 
DAPI. Scale bars = 500 μm (A) and 25 μm (B). White arrow = Matrigel area. Superscripts (a,b) indi-
cate significant (p < 0.05) differences in proportions of cells positive for STAR between days of cul-
ture. 

Figure 3. Gene expression analysis of testicular cell-specific markers in bovine TOs. (A–C) The
gene expression levels of STAR (Leydig cells), WT1 (Sertoli cells) and α-SMA (peritubular myoid
cells) were not different (p > 0.05) in TOs at days 3, 7 and 28 of the culture. β-ACTIN was used
as a housekeeping gene. Gene expression values were normalized (fold-change) with respect to
values in testicular cells isolated prior to the formation of TOs (control). Data were expressed as the
mean ± SEM (n = 3). Superscript (a) indicates no significant (p > 0.05) differences in gene expression
among days of culture.
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Figure 4. Confocal immunofluorescence analysis of STAR expression in whole mounted bovine TOs.
(A,B) Immunofluorescence associated with STAR in whole TOs (A) and branched areas of TOs (B).
(C) The percentages of STAR-positive cells on days 14 and 28 were significantly lower compared to
days 3 and 7. Data were expressed as the mean ± SEM (n = 3). Cell nuclei were stained blue with
DAPI. Scale bars = 500 µm (A) and 25 µm (B). White arrow = Matrigel area. Superscripts (a,b) indicate
significant (p < 0.05) differences in proportions of cells positive for STAR between days of culture.



Animals 2022, 12, 2283 10 of 17

Clumps of WT1-positive cells were observed mainly in the peripheral area of the TOs
at 3, 7, 14 and 28 days of culture (Figure 5A,B). WT1 was also immunodetected in the
branched area of TOs at days 14 and 28 of culture. The percentage of cells positive for WT1
were 39% ± 9.4, 56% ± 2.6, 54% ± 3.5, and 59% ± 1.8 (Days 3, 7, 14 and 28, respectively)
(Figure 5C). The percentage of WT1-positive cells increased (p < 0.05) from days 3 and 7
to 28.
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Figure 5. Confocal immunofluorescence analysis of WT1 expression in whole mounted bovine TOs.
(A,B) Immunofluorescence associated with WT1 in whole TOs (A) and specific areas (B). (C) The
percentages of WT1-positive cells on days 14 and 28 were significantly higher compared to days 3
and 7. Data were expressed as the mean ± SEM (n = 3). Cell nuclei were stained blue with DAPI.
Scale bars = 500 µm (A) and 25 µm (B). Superscripts (a,b) indicate significant (p < 0.05) differences in
proportions of cells positive for WT1 between days of culture.

COL1A was immunolocalized at day 3 of culture in the central region of the TOs.
COL1A-positive cells were decreasing during culture and cells immunoreactive to COL1A
were not observed at day 28 of culture (Figure 6A,B). The percentages of COL1A-positive
cells were 44% ± 9.9, 38% ± 9.8, 35% ± 5.9, and 19% ± 1.6 at days 3, 7, 14 and 28,
respectively (Figure 6C). The percentage of COL1A-positive cells decreased (p < 0.05) from
days 3 and 7 to days 14 and 28.

3.5. Testosterone Measurements in Testicular Organoids

The steroidogenic activity in the TOs was quantified by measuring testosterone concen-
trations in the culture media throughout the culture period (Figure 7). Fresh culture medium
was used as control. Testosterone levels were higher (p < 0.05) at days 8 (0.26 ± 0.061) and
27 (0.31 ± 0.09) compared to the other days of culture and control.
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Figure 6. Confocal immunofluorescence analysis of COL1A expression in whole mounted bovine
TOs. (A,B) Immunofluorescence associated with COL1A was observed in whole TOs (A) and specific
areas (B). (C) The percentage of COL1A-positive cells decreased (p < 0.05) on days 14 and 28 compared
to days 3 and 7. Data were expressed as the mean ± SEM (n = 3). Cell nuclei were stained blue
with DAPI. Scale bars = 500 µm (A) and 25 µm (B). Superscripts (a,b) indicate significant (p < 0.05)
differences in proportions of cells positive for COL1A between days of culture.
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Figure 7. Chemiluminescence analysis of testosterone concentrations in culture medium of TOs
during culture period. Higher (p < 0.05) levels of testosterone were detected at days 8 and 27 of
culture. Fresh culture medium was used as control. Data were expressed as the mean ± SEM (n = 3).
Superscripts (a–c) indicate significant (p < 0.05) differences in testosterone concentrations in TO
culture media between days of culture.
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4. Discussion

Organoids allow the replication of physiological and pathological processes under
in vitro conditions through the recreation of cell-to-cell and matrix-to-cells interactions nor-
mally found in tissues and organs [40–42]. Cell organization and processes, however, may
differ according to the methodology used for cell isolation and organoid culture [43–47]. In
the present study, bovine Leydig, Sertoli and peritubular myoid cells were isolated from
testes and cultured separately, mixed at a concentration of 1 × 106 cells/mL, cultured for
7 days and then transferred to Matrigel for further 3D organization. This protocol differs
from those commonly used in 3D testicular models, where testicular cells are obtained
through enzymatic digestion and the remotion of connective tissue [6,8,30,32,34,48]. These
cell isolation protocols may unintentionally provide other cell types to the testicular cell
mix, including endothelial-like or uncharacterized cell types that may interfere with fur-
ther experiments [8,30–32,49]. Following our testicular cell isolation method, we obtained
cultures with populations of 21–37% of Leydig cells, 65–77% of Sertoli cells and 10–16%
of peritubular myoid cells. These values are similar for Leydig and Sertoli cells to those
obtained in a previous study that used a similar cell isolation protocol [39]. However, the
proportions of peritubular myoid cells obtained here were lower (10–17%) compared to
those previously reported (30–60%) [39]. The differences between these studies may be
associated with the methodology used for cell detection, since COL1A immunodetection
by FACS used in our study may be more specific for the identification of peritubular
myoid cells compared to alkaline phosphatase staining and visual counting used in the
previous study.

Previous studies focused on the generation of TOs have reported the resuspension
of testicular cells directly in Matrigel or agarose [6,31,50–52]. In these studies, the time
reported for TO formation varies between 2 and 9 days depending on the substrate or
culture method and the number of cells used [30–33,40]. In comparison, our bovine TOs
were initially produced by culturing dissociated cells on ULA well plates, where they
aggregated at the center of the well, maximizing cell-to-cell contact and facilitating the
formation of 3D cell aggregates. Accordingly, the time of bovine TO formation using this
protocol was only 24 h, indicating that increasing cell proximity may result in improved
efficiency for the production of TOs. A similar time period for TO formation could be
obtained using the hanging drop method; however, these TOs also display highly variable
sizes and shapes [30,32,33,53,54].

Cell density is one of the most critical aspects for organoid formation. Low cell
density may result in failure to generate the organoid and in comparison, high density
may predispose the formation of a necrotic core as a consequence of the lack of nutrient
or oxygen diffusion to the center of the organoid [54–57]. In TOs, high cell density is
important because it allows the tubulogenic formation; thus, cell number is a critical aspect
for successful TO formation and must be chosen correctly [8,31,55]. The cell densities used
in previous studies ranged from 1 × 103 to 44 × 106 and were effective for the formation of
TOs [8,10,30–33,58]. We used 1 × 105 cells per organoid, which allowed high efficiency for
TO production and avoided the presence of necrotic cores in the formed TOs.

The use of Matrigel during culture increases the area where cells can reorganize and
permits the formation of larger TOs. Despite the fact that the comparison of diameters
and areas of TOs among studies is difficult due to the lack of measurements reported,
previous studies have indicated diameters between 100 and 600 µm and average areas
around 2966–4628 µm2 [7,33,34,50,59]. In our study, TOs presented diameters that ranged
between 555.15 µm and 1272.88 µm. Diameters similar to ours have been observed in brain
organoids; however, these structures have been designed to display larger diameters to
better recreate the complexity of the brain tissue [60–63]. The increased diameters observed
in our TOs could be attributed to the high proliferative or migratory activity of testicular
cells; however, further analyses are required to elucidate these properties in bovine TOs [64].

Due to the multicellular nature of the 3D organoid cultures, we evaluated cell-specific
gene and protein expression using testicular cell-specific markers. We compared changes in
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gene expression at days 3, 7 and 28 of culture to determine the location and fate of Leydig,
Sertoli and peritubular myoid cells in the bovine TOs. The Q-PCR analysis revealed that
mRNA levels of STAR, WT1 and α-SMA remained unchanged during the culture period.
The relative expression of these genes could indicate that the 3D structure was able to
maintain viable bovine testicular cells of each cell type during the entire culture period.
STAR (steroidogenic acute regulatory protein) marker expression in bovine TOs suggests
the presence of steroidogenic capacity of Leydig cells because this molecule is critically in-
volved in testosterone biosynthesis [65,66]. STAR participates in the transfer of cholesterol
from the outer to the inner membrane of mitochondria in Leydig cells [65]. Furthermore,
the continuous expression of STAR and the increased concentration of testosterone in the
culture medium indicates that Leydig cells present in bovine TOs display steroidogenic
activity during TO formation and culture. Testosterone production in Leydig cells, cultured
in vitro without LH stimulation, can vary between 0.4–0.8 ng/mL in rats, 0.68–5.7 ng/mL
in humans and 0.7–0.11 ng/mL in cattle [33,48,67]. According to several studies, testos-
terone production in TOs, without LH stimulation, can vary between 0.07–1.5 ng/mL in
humans, 2–5 ng/mL in pigs and 8.65–10.09 ng/mL in mice [6,8,33,50]. In our study, the
concentration of testosterone in TO culture media ranged from 0.17 to 0.31 ng/mL, values
that are similar to those previously reported. These results indicate that bovine TOs are
able to exert steroidogenic activity, which is a fundamental property of the testis, especially
for spermatogenic function.

One of the main objectives in the production of organoids is to generate structures that
are biomimetic, so cell-specific location is crucial for the recreation of a functional testicular
tissue. Confocal immunolocalization of testicular somatic cells in the bovine TOs revealed
that STAR+ Leydig cells located in the periphery of TOs during the 28 days of culture.
In previous studies, Leydig cells in TOs have been detected in the periphery and center
as well as being randomly distributed within the organoid structure [30,32,54,55]. The
specific cell location may be associated with the interaction with other cell types. In vivo
Leydig cells are located in the interstitial space outside of the seminiferous tubules and
they lack close interaction with Sertoli or peritubular myoid cells. Sertoli cells positive for
WT1+ were localized in the periphery of TOs until day 28 of the culture, when cells were
located in the central area. Despite the use of WT1 for Sertoli cell detection having not been
previously reported in TOs, the location of Sertoli cells in our TOs is consistent with other
studies [6,8]. Tubulogenic ability is defined as the capacity of the cells to self-assemble
into testis cord-like structures and is considered as one of the three principal criteria to
evaluate TO formation [8,33,49,68]. The degree of maturity of Sertoli cells is directly related
to organoid assembly and tubulogenic ability [67,68]. In our study, we used Sertoli cells
from bulls aging 7 to 10 months that are considered adult cells, so this could influence the
testicular cytoarchitecture detected in bovine TOs and may determine the differences with
other studies [8,31,42,48,55,68].

In the present study, COL1A+ peritubular myoid cells were located in the central
area at day 3 and randomly distributed with lower intensity from days 7 to 28 of culture.
The main marker used for the detection of peritubular myoid cells is α-SMA; however,
COL1A is usually used as a complement for the detection of these cells [8,30–34,40,58,59,69].
However, some reports have used only COL1A as a marker for the detection of peritubular
myoid cells in TOs [70]. Sertoli cells and peritubular myoid cells release components of
the basement membrane; therefore, the deposition of ECM proteins is indicative of the
function of these cells. In this regard, the protein expression of COL1A and gene expression
of α-SMA mRNA could be indicators of the activity of peritubular myoid and Sertoli cells
in the initial formation of the basal membrane; however, further characterization of basal
membrane formation may be required [6,48,70].

Despite testicular cells in the bovine TOs being unable to reorganize into the typical
testicular architecture, the generated TOs displayed clearly delineated central and exterior
areas and showed branched-like peripheral structure. According to the different studies
reported, the formation of a testicular architecture in TOs is highly variable. It has been
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reported that TOs formed from neonatal or prepubertal cells display more desirable out-
comes than pubertal/adult testicular cells [30–32,47,48]. The reason for this difference
is not entirely clear; however, it is believed that immature Sertoli cells may have higher
morphogenic potential and may induce a stronger tubulogenic effect in TOs compared to
other testicular cell types that have more passive or complementary roles [8,42,49,68].

5. Conclusions

Testicular cells isolated from bovine testes were able to generate TOs under in vitro
conditions that included culture in ULA dishes and further disposition in Matrigel. Leydig,
Sertoli and peritubular myoid cells displayed specific locations and changed in number
in TOs. These bovine TOs have steroidogenic activity characterized by the production
of testosterone into the culture media. The present method for TO generation could be
used to track the location and fate of various cell populations and to examine the impact of
exogenous factors in the physiology of testis formation.
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