
animals

Article

Association between Udder and Quarter Level Indicators and
Milk Somatic Cell Count in Automatic Milking Systems

Maddalena Zucali , Luciana Bava * , Alberto Tamburini, Giulia Gislon and Anna Sandrucci

����������
�������

Citation: Zucali, M.; Bava, L.;

Tamburini, A.; Gislon, G.; Sandrucci,

A. Association between Udder and

Quarter Level Indicators and Milk

Somatic Cell Count in Automatic

Milking Systems. Animals 2021, 11,

3485. https://doi.org/10.3390/

ani11123485

Academic Editor: F. Javier Giráldez

Received: 1 November 2021

Accepted: 4 December 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20133 Milano, Italy;
maddalena.zucali@unimi.it (M.Z.); alberto.tamburini@unimi.it (A.T.); giulia.gislon@unimi.it (G.G.);
anna.sandrucci@unimi.it (A.S.)
* Correspondence: luciana.bava@unimi.it

Simple Summary: In dairy cattle herds milked by automatic systems, the absence of a human
milker originates the need for control systems to monitor the milking process and cow conditions.
Modern milking robots are equipped with a lot of sensors that, at each milking (2.5–3 times a day),
record data on milk yield and quality, milking efficiency, cow welfare, and health with particular
focus to udder conditions. Mastitis is one of the most frequent and serious diseases of dairy cow
that negatively affects milk quality and yield, reduces animal welfare, and often implies the use of
antimicrobial drugs. At the moment, the alerting systems for mastitis risk is generally based on
monitoring milk electrical conductivity, color, and/or temperature, but these indicators have limited
reliability. Other information gathered by automatic sensors, already implemented in commercial
robots, could be useful to early detect mastitis. Using a multivariate approach, our study showed that
the deviations over time of milk electrical conductivity, milk yield, and milk flow of single quarters
in comparison with the whole udder are potential indicators, alone or in combination, for altered
udder conditions. The results could be useful for the development of new algorithms more effective
in the early detection of mastitis.

Abstract: Automatic Milking Systems (AMS) record a lot of information, at udder and quarter level,
which can be useful for improving the early detection of altered udder health conditions. A total of
752,000 records from 1003 lactating cows milked with two types of AMS in four farms were processed
with the aim of identifying new indicators, starting from the variables provided by the AMS, useful to
predict the risk of high milk somatic cell count (SCC). Considering the temporal pattern, the quarter
vs. udder percentage difference in milk electrical conductivity showed an increase in the fourteen
days preceding an official milk control higher than 300,000 SCC/mL. Similarly, deviations over time
in quarter vs. udder milk yield, average milk flow, and milking time emerged as potential indicators
for high SCC. The Logistic Analysis showed that Milk Production Rate (kg/h) and the within-cow
within-milking percentage variations of single quarter vs. udder milk electrical conductivity, milk
yield, and average milk flow are all risk factors for high milk SCC. The result suggests that these
variables, alone or in combination, and their progression over time could be used to improve the
early prediction of risk situations for udder health in AMS milked herds.

Keywords: automatic milking system; dairy cows; somatic cell count; milk electrical conductivity

1. Introduction

Automated Milking Systems (AMS) are spreading rapidly in dairy cattle farms; at the
beginning of the 2000s there were about 1250 milking robots around the world [1], but in
2017, a total of about 38,000 AMS units installed globally was reported [2].

The spread of AMS and the parallel reduction in human presence have generated the
need to incorporate into the system automatic sensors for monitoring milk production,
milking efficiency, and animal conditions. AMS is integrated with a variety of sensing
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equipment for the detection of multiple indicators during the milking process (e.g., milk
yield, milk flow rate, milk electrical conductivity, incomplete milking, refusals, and con-
centrate intake). In recent years, a number of sensors has been developed for monitoring
additional variables, for example, milk composition, milk temperature, somatic cell count,
cow live weight, body condition score, lameness, etc. With a number of daily milkings at
herd level of about 2.5, the AMS enables farmers to collect a huge amount of real time data
on individual cows and their performances, in many cases at a quarter level, which allows
for a detail in the monitoring never achieved so far.

The big data generated by the multiple sensors implemented in the AMS can be
statistically managed for the development of algorithms for the real-time detection of
changes that can enable the farmer to implement timely and optimized management
actions. AMS can be considered not only as an alternative to traditional milking systems
but also as a new and general approach to manage dairy herd health and production
efficiency [3]. In particular, researchers have been working to integrate multiple data,
mainly related to milk quality and ejection at quarter and udder level, for overcoming the
limits of the indicators currently used in mastitis detection [4,5].

Mastitis is the most important disease that affects dairy herds both in terms of preva-
lence and economic costs: it causes production losses, milk quality alterations, medication
and extra labour costs, discarded milk, and early culling of animals [6]. Moreover, mastitis
has long-term detrimental effects on animal welfare [7] and increases the environmental
impact of milk production [8]. Lastly, the use of antimicrobial agents for the prevention
and control of mastitis is related to the risk of the development of antimicrobial-resistant
bacteria, which is a global concern for human health and food safety [9]. In clinical mastitis,
the cow has evident physical manifestations, which can be easily noticed by the milker,
favouring prompt intervention. The diagnosis is much more difficult for subclinical masti-
tis, which is the predominant form of bovine mastitis, and is characterised by the absence
of visible alterations in either the udder or in the milk. Microbiological examination of
milk is considered to be the gold standard for diagnosing bovine mastitis, but costs and
the time needed for culturing limit its use. Among the indirect methods for diagnosing
bovine mastitis, automatic somatic cell counting (SCC) is considered the most reliable
but individual somatic cell count is usually provided on a monthly basis by the National
Breeders’ Association controls and the time intervals are too long for early diagnosis.
Both conventional and automatic milking systems generally do not measure somatic cell
count: their alerting systems are based on milk electrical conductivity and milk colour [4,5].
Khatun et al. [10] suggested that milk electrical conductivity alone is not likely to achieve
the required sensitivity and specificity and that mastitis detection can be improved by
using multiple measurements. At the moment some questions are open on the possibility
and the reliability of using automatically collected data by AMS to assess udder health
problems in dairy cow.

In this context, the aim of the study was to examine the variables automatically
recorded by the AMS sensors, and some new derivative indicators, studying their asso-
ciation, changes over time, and ability to predict the risk of increasing milk somatic cell
count.

2. Materials and Methods
2.1. Dataset

Four dairy cattle farms located in Lombardy (northern Italy), equipped with auto-
matic milking systems of two different brands (VMS, DeLaval, Tumba, Sweden and AMS,
Lely Industries NV, Maassluis, the Netherlands), were involved in the study. DeLaval’s
Milking Robots is labelled “A AMS” and Lely’s Milking Robots is labelled “B AMS”. The
dataset included information recorded by the AMSs in the period 2016-2019. A total of
602,000 records of 720 cows from the two farms using type A AMS, and 150,000 records of
283 cows from the two farms using type B AMS were collected. All the cows were kept in a
free-stall housing, without access to pasture; lying cubicles were bedded with straw and
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sawdust. Cows were fed a partial mixed ration integrated by concentrate in the AMS stall.
In Table 1, the main characteristics of the farms are reported (Table 1).

Table 1. Main farm characteristics (no. cows, milk yield, and days open are obtained from the report of the official controls
of the National Breeders’ Association for years 2016 and 2019, respectively).

Farm Brand of
AMS AMS Model Year of

Installation
No. Robotic

Units
Cow

Traffic
No. Cows

(2016–2019) Breed
Average Milk Yield

per Head (kg/y;
2016–2019)

Days Open
(dd;

2016–2019)

1 DeLaval VMS Classic 2017 1 free 38–40 Italian
Holstein 10,974–10,452 142–128

2 DeLaval VMS Classic 2019 2 free 130–145 Italian
Holstein 10,178–11,793 197–156

3 Lely A4 2013 1 free 61–66 Italian
Holstein 11,839–13,067 149–129

4 Lely A4 2017 3 free 161–208 Italian
Holstein 10,410–11,944 134–127

From Table 1, it can be noted that between 2016 and 2019 three out of four farms
increased milk yield per cows by approximately 10 to 16% and all the farms improved cow
fertility reducing days open by 5 to 21%.

The two types of AMSs slightly differed for the data recorded and made available.
In particular, B AMS registered a lot of variables on milking efficiency such as number of
daily refusals, failures, and downtimes. Moreover, B AMS captured indicators of udder
milk composition (fat, protein, and lactose) and somatic cell count by sensors, based on
NIR spectroscopy and viscosity, respectively. On the contrary, A AMS made available a lot
of information per quarter such as milk yield and milk flow. Both systems measured milk
electrical conductivity per quarter, but in the case of B AMS, conductivity was expressed as
a score out of 100, instead of mS/cm. Consequently, variables studied were partly different
for the two AMSs. Table 2 reports the variables analysed, their units and acronym.

Table 2. Variables analysed for the two types of AMS, their acronyms and units.

Acronym Units Variable

BOTH AMSs
Yc kg/d Daily milk yield from official controls
Fc % Milk fat from official controls
Pc % Milk protein from official controls

SCCc cells/mL Milk somatic cell count from official controls
LSc Linear Score from SCC of official controls

YMams kg Udder milk yield per milking from AMS
MI h Milking interval
nM no./d Daily milkings

MPR kg/h Udder milk production rate
Yams kg/d Daily udder milk yield from AMS

A AMSs
Yq kg Quarter milk yield per milking

AMFq kg/min Quarter average milk flow
PMFq kg/min Quarter peak milk flow
ECq mS/cm Quarter milk electrical conductivity
∆Yq % Difference in milk yield of single quarter vs. udder

∆AMFq % Difference in average milk flow of single quarter vs. udder
∆EC % Difference in milk electrical conductivity of single quarter vs. udder

B AMSs
AMFams min Udder average milk flow from AMS

Fams % Udder milk fat indication from AMS
Pams % Udder milk protein indication from AMS
Lams % Udder milk lactose indication from AMS

SCCams cells/mL Udder milk somatic cell count indication from AMS
Tq min Quarter milking time

ECSq % Quarter milk electrical conductivity score
∆Tq % Difference in milking time of single quarter vs. udder

∆ECSq % Difference in electrical conductivity score of single quarter vs. udder
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In addition to the information obtained by the AMSs, milk production and quality
data from individual monthly official milk controls performed by the National Breeders’
Association were included in the dataset. Milk samples were analysed for fat and protein
contents (MilkoScan FT6000; Foss Analytical A/S, Hillerod, Denmark) and milk somatic cell
count (Fossomatic). Somatic cell count was log-transformed as Linear Score (LS), using the
equation suggested by Wiggans and Shook [11]: LS = log2 ((somatic cell count/mL)/12,500).

Individual cow data as days in milk (DIM, d), stage of lactation (STAGE: <100; 100–200;
>200 DIM) and number of lactation (nLACT: 1, 2, ≥3) were included in the dataset.

Each individual cow record was classified as a function of somatic cell count obtained
from official controls as LOW (≤300,000 cell/mL) or HIGH (>300,000 cell/mL). Moreover,
cows with more than 80% of the official milk analyses characterized by LSc ≤ 5 (SCCc ≤
100,000 cells/mL) were classified as low SCC (LSCC); cows with more than 80% of the
official milk analyses characterized by LSc > 5 (SCCc > 100,000 cells/mL) were classified as
high SCC (HSCC); in all the other cases cows were classified as fluctuating SCCc (FSCC).

A number of new additional variables were calculated starting from the data recorded
by the AMSs: for all the herds milk production rate at udder level, as rate of milk secretion
per hour (MPR = YM/MI; kg/h); for the herds milked with A AMS, the within-cow within-
milking percentage differences between individual quarters and the average of the four
quarters of the minimum milk yield (∆Yq, %; ∆Yq = (minYq − meanYq)/meanYq * 100),
the minimum average milk flow (∆AMFq, %), the maximum milk electrical conductivity
(∆ECq, %); for the herds milked with B AMS, the within-cow within-milking percentage
differences between the individual quarters and the average of the four quarters of the
minimum milking times (∆Tq, %); and the maximum milk conductivity score (∆ECSq, %).

2.2. Statistical Analyses

The whole dataset was analysed using SAS software (Version 9.4, SAS Institute, Inc.,
Cary, NC, USA, 2012) always separately for the two types of AMS. Descriptive statistics
and Pearson’s correlation analyses were obtained using Proc MEANS, Proc FREQ and Proc
CORR. Differences between front and rear quarters and between right and left ones were
evaluated using a GLM procedures.

A GLM analysis was performed to test the differences among the three SCC cow
classes in terms of ∆ECq, ∆Yq, ∆AMFq for the A AMS herds and in terms of ∆ECSq and
∆Tq for the B AMS herds. Number of lactation, stage of lactation, and farm effects were
included in the models.

Two types of multivariate analyses were performed: a Principal Component Analysis
(PROC PRINCOMP), and a Logistic Analysis (PROC LOGISTIC).

Through the Principal Component Analyses, the relationships among data from
official controls, data recorded by the AMSs, and the additional variables calculated were
studied for each AMS type.

Class variables were created to perform the Logistic Analyses with the aim of identi-
fying the main categorical variables associated with high level of milk SCC in the official
controls (SCC > 300,000 somatic cells/mL). Dependent variables were MPR (<1.5; 1.5 ÷
1.7; >1.7 kg/h), ∆ECq (≤2.5%; >2.5%), ∆AMFq (≤−15.0%; >−15.0%), ∆Yq (≤−24.0%;
>−24.0%), ∆ECSq (≤2.2%; >2.2%), and ∆Tq (≤−25.0%; >−25.0%).

In the Logistic Analyses, variables or combinations of variables (interaction terms)
were excluded through a stepwise backward multiple regression method based on a
0.2 significance level. The results of the analyses built, for each AMS type, a final model
including variables (risk factors) that were significantly associated with SCC > 300,000/mL.
The final models were described in terms of odds ratios and 95% confidence intervals.

3. Results and Discussion
3.1. Descriptive Statistics

The general descriptive statistics of the herds milked with the two AMS (A and B)
are reported in Table 3. The main characteristics of the two couples of herds were similar
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in terms of herd traits, milk production, and composition. In the A AMS milked herds,
LS was higher than in the herds milked with B AMS, suggesting slightly poorer udder
health conditions. Herds milked using A AMS showed lower milking efficiency with lower
number of milkings per day, longer interval between milkings and slightly lower milk
production rate, MPR. The low average value of daily milkings of the A AMS herds is
probably related to farm management problems and to the production disciplinary of the
Protection Consortium Grana Padano PDO that, until the end of 2019, imposed a maximum
number of daily milkings per cow not exceeding two.

Table 3. Descriptive statistics of the herds milked with the two automatic milking systems (A and B AMS).

A AMS B AMS

Variable n Mean SD n Mean SD

Lactation-nLACT * no. lactation 74,732 1.89 1.08 253,949 1.78 1
Days in milk-DIM * d 74,732 156 108 253,618 148 92

Daily milk yield-Yc * kg/d 74,732 37.5 8.78 253,460 39.9 8.94
Milk fat-Fc * % 73,523 3.74 0.81 248,386 3.66 0.89

Milk protein-Pc * % 73,523 3.32 0.35 248,386 3.39 0.36
Linear Score-LSc * 74,732 3.10 1.89 250,770 2.50 1.56

Milk yield per milking-YMams $ kg/milking 144,208 14.0 4.69 602,471 13.0 3.85
Daily milkings—nM $ no./d 144,208 1.88 0.85 602,468 3.05 0.69
Milking interval-MI $ h 144,007 9.40 2.88 602,471 8.29 2.59

Daily milk yield-Yams $ kg/d 134,441 37.5 10.7 602,471 39.4 9.6
Milk Production Rate-MPR kg/h 144,208 1.56 0.75 602,471 1.64 0.44

* From official control records; $ from AMS.

The A AMS provides a lot of information on milk ejection at a quarter level. In particu-
lar average milk flow (1.13 ± 0.32 kg/min), peak milk flow (1.61 ± 0.38 kg/min), milk yield
per milking (3.63 ± 1.22 kg/milking), and milk electrical conductivity (4.12 ± 0.35 mS/cm).
According to Juozaitienė et al. [12], the average milk electrical conductivity (EC) of healthy
cows milked with AM systems ranges from 4.6 to 5.8 mS/cm. Norberg [13] reported that
the maximum milk electrical conductivity of healthy quarters within cow and within milk-
ing was 4.87 mS/cm, whereas subclinically and clinically infected quarters had maximum
values of 5.37 mS/cm and 6.44 mS/cm, respectively. As pointed out by Penry et al. [14]
and Kathun et al. [4], cisternal milk has a higher EC compared with alveolar milk. Once
alveolar milk ejection starts, EC decreases as a consequence of mixing alveolar and cisternal
milk. This is a confounding factor that influences milk EC recorded by automatic sensors
and makes it impossible to fix a threshold value as an early signal of altered quarter health.

The B AMSs, in addition to some information at a quarter level, provide a lot of
information on milking efficiency and indications about milk components and somatic cell
count at udder level from the AMS sensors. The most important variables registered at
quarter level were milking time (2.70 ± 1.17 min) and milk electrical conductivity expressed
as score (69.2 ± 3.61). At udder level, average milk flow was 3.57 ± 1.10 kg/min and
indications of whole udder milk components from sensors were 3.9 ± 0.83%, 3.4 ± 0.21%,
and 5.00 ± 0.11% for milk fat, protein, and lactose, respectively. Milk somatic cell count
from AMS sensors was 225,695 ± 451,540 cell/mL and the milk temperature was on average
39.1 ± 0.64 ◦C.

For the herds milked with A AMS, the average % difference within-cow and within-
milking of milk yield of the least productive individual quarters compared to the mean of
the four quarters (∆Yq) was −24.2 ± 15.6%; the average % difference in average quarter
milk flow (∆AMFq) was −16.9 ± 10.7%; and the average % difference in quarter milk
conductivity (∆ECq) was 3.73 ± 4.24%.

For the herds milked with B AMS, the average % difference in milking time of individ-
ual quarters compared to the average of the four quarters (∆MTq) was −25.1 ± 16.4%, and
the average difference in electrical conductivity score (∆ECSq) was 2.22 ± 3.14%.
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3.2. Quarter Position

In A AMS herds, rear quarters showed significantly higher milk yield in comparison
to front quarters (4.01 vs. 3.03 kg/milking; P < 0.0001; 57% vs. 43%), higher average milk
flows (1.15 vs. 1.07 kg/min; P < 0.0001), and higher peak milk flows (1.63 vs. 1.52 kg/min;
P < 0.0001) in agreement with previous studies [5,15–18]. In B AMS herds, rear quarters
showed significantly higher milking time than front ones (3.11 vs. 2.56 min; P < 0.0001).
Milk electrical conductivity was significantly different between rear and front quarters
in all the four herds but the differences were very small, inconsistent between the herds
milked with the two AMS types, and not of biological relevance.

In comparison to the left quarters, right quarters produced significantly more milk
(3.57 vs. 3.48 kg/milking; P < 0.0001) and had slightly higher average and peak milk flows
in A AMS herds. In B AMS herds, right quarters showed significantly lower milking time
(2.81 vs. 2.85 min; P < 0.0001). Differences in milk ejection among left and right quarters
were noted also by Tancin et al. [19]; this could be a consequence of the teat cup attachment
order and the different levels of circulating oxytocin; although, some authors have denied
variations in the levels of oxytocin and alteration of milk ejection due to the attachment
sequence and possible delays in AMS [20,21].

3.3. Pearson’s Correlation Analyses

Pearson’s correlation coefficients are shown in Tables 4 and 5. In the A AMS herds
(Table 3) daily milk yield (from official controls, Yc) was positively correlated with MPR
(r = 0.42) and negatively with milking interval (MI; r = −0.30). Milk electrical conductivity
at quarter level (ECq) did not show any correlation with LSc at udder level (r = 0.03 ÷
0.09 for the different quarters) but it was positively correlated with official daily milk yield
(Yc; r = 0.20 ÷ 0.27 for the different quarters; data not shown in the table). Juozaitienė
et al. [12] reported a polynomial relationship between udder milk electrical conductivity
and milk yield: the best productivity was observed in the milk electrical conductivity class
of 4.5-5.5 mS/cm. MPR showed a negative correlation with milking interval (MI; r = −0.39),
in agreement with the findings of Penry et al. [16], who observed an MPR decrease of 2%
per hour when increasing the MI for multiparous cows and 1.5% per hour for primiparous
ones; although, in that case, MPR was determined at quarter level.

Lyons et al. [22] found a non-linear association between MPR and MI, with reduced
MPR when the milking interval was more than 16 h. Average milk flow and peak milk
flow at quarter level were highly positively correlated (r = 0.95 ÷ 0.96 for the different
quarters; data not shown in the table) as observed by Penry et al. [23]. Although there
was not any correlation between milk electrical conductivity of single quarters (ECq) and
LSc, the % difference in electrical conductivity between quarter and udder (∆ECq) was
positively correlated to LSc (r = 0.26). ∆ECq was also negatively related to the % difference
between quarter and udder of milk yield (∆Yq; r = −0.39) and average milk flow (∆AMFq;
r = −0.26).

In the B AMS herds (Table 5), similar to what has been observed in A AMS herds, daily
milk yield (from official controls, Yc) was highly positively correlated with MPR (r = 0.85)
and negatively correlated with the duration of MI (r = −0.41).
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Table 4. Pearson’s correlation coefficients among variables in the A AMS milked herds.

nLACT DIM Yc Fc Pc LSc YM nM MI Yams MPR ∆Yq ∆AMFq ∆ECq

nLACT 1
DIM 0.01 1
Yc 0.28 −0.29 1
Fc 0.05 0.09 −0.33 1
Pc 0.05 0.39 −0.46 0.37 1

LSc 0.15 0.13 −0.20 0.26 0.27 1
YMams 0.30 −0.12 0.40 −0.06 −0.18 −0.04 1

nM −0.05 −0.05 0.13 −0.08 0.18 −0.04 −0.28 1
MI 0.12 0.13 −0.30 0.18 0.19 0.14 0.6 −0.41 1

Yams 0.23 −0.25 0.77 −0.25 −0.38 −0.19 0.41 0.23 −0.27 1
MPR 0.12 −0.16 0.42 −0.13 −0.22 −0.11 0.21 0.09 −0.39 0.42 1
∆Yq −0.15 −0.23 0.13 −0.07 −0.18 −0.14 0.09 0.03 −0.05 0.11 0.02 1

∆AMFq −0.03 −0.08 0.01 −0.01 −0.02 0.00 0.06 0.00 0.02 0.03 −0.03 0.49 1
∆ECq 0.14 0.07 −0.11 0.07 0.11 0.26 −0.03 −0.04 0.10 −0.12 0.02 −0.39 −0.26 1

All correlation coefficients were statistically significant (P < 0.001); nLACT = number of lactation; DIM = days in milk; Yc = daily milk yield
from official controls, Fc = milk fat percentage from official controls; Pc = milk protein percentage from official controls; LSc = Linear Score
from Somatic cell count determined by official controls; YMams = milk yield per milking from AMS; nM = number of daily milkings; MI
= milking interval; Yams = daily milk yield from AMS; MPR = milk production rate; ∆Yq = % difference quarter vs. udder milk yield;
∆AMFq = % difference quarter vs. udder average milk flow; ∆ECq = % difference quarter vs. udder milk electrical conductivity.

Table 5. Pearson’s correlation coefficients among variables in the B AMS milked herds.

nLACT DIM Yc Fc Pc LSc YM nM MI Yams MPR AMFams SCCams Fams Pams Lams

nLACT 1.00
DIM −0.08 1.00
Yc 0.40 −0.45 1.00
Fc 0.01 0.22 −0.37 1.00
Pc 0.02 0.49 −0.43 0.50 1.00

LSc 0.06 0.18 −0.16 0.27 0.27 1.00
YMams 0.28 −0.08 0.37 −0.12 −0.14 −0.03 1.00

nM 0.01 −0.27 0.50 -0.25 −0.25 −0.13 −0.25 1.00
MI 0.00 0.26 −0.41 0.20 0.21 0.11 0.53 −0.70 1.00

Yams 0.36 −0.40 0.93 −0.36 −0.41 −0.15 0.39 0.54 −0.46 1.00
MPR 0.33 −0.37 0.85 −0.33 −0.37 −0.14 0.44 0.50 −0.48 0.92 1.00

AMFams 0.18 0.08 0.21 −0.04 −0.03 0.14 0.28 0.00 0.05 0.22 0.24 1.00
SCCams 0.11 0.07 −0.13 0.16 0.21 0.38 −0.07 −0.11 0.08 −0.16 −0.15 0.05 1.00

Fams 0.02 0.33 −0.38 0.45 0.49 0.11 −0.19 −0.22 0.18 −0.4 −0.37 −0.09 0.15 1.00
Pams 0.11 0.06 −0.2 0.32 0.41 0.06 −0.02 −0.23 0.19 −0.23 −0.22 −0.05 0.11 0.30 1.00
Lams −0.08 0.10 −0.07 0.09 0.09 −0.09 −0.07 0.07 −0.04 −0.06 −0.06 0.05 −0.09 0.05 0.01 1.00

All correlation coefficients were statistically significant (P < 0.001); nLACT = number of lactation; DIM = days in milk; Yc = daily milk
yield from official controls, Fc = milk fat percentage from official controls; Pc = milk protein percentage from official controls; LSc = Linear
Score from Somatic cell count determined by official controls; YMams = milk yield per milking from AMS; nM = number of daily milkings;
MI = milking interval; Yams = daily milk yield from AMS; MPR = milk production rate; AMFams = average udder milk flow from AMS;
SCCams = SCC indication from AMS; Fams = milk fat percentage indication from AMS; Pams = milk protein percentage indication from
AMS; Lams = milk lactose percentage indication from AMS.

Milk electrical conductivity score of each quarter (ECSq) was negatively correlated
with lactose indication (Lams; r = −0.76 ÷ −0.77 for the different quarters), but similar
to what has been observed in A AMS herds, it did not show any correlation with LSc
(r = 0.04 ÷ 0.07 for the different quarters) and SCCams (r = 0.11 ÷ 0.14 for the different
quarters; data not shown in the table). Number of daily milkings (nM) was positively
correlated with MPR (r = 0.50) and negatively correlated with MI (r = −0.70). MPR showed
a positive correlation with number of lactation (nL; r = 0.33) and a negative correlation
with MI (r = −0.48), similar to what was seen in the A AMS and in agreement the findings
of other authors [16,22].

Correlation coefficients between milk components from official controls and indica-
tions provided by the B AMS sensors were 0.45 and 0.41 for milk fat and milk protein
percentages, respectively. Somatic cell count provided by the B AMS (SCCams) showed a
positive correlation with LSc (r = 0.38). The r coefficient values for milk component and
SCC show a medium degree of correlation between the results provided by the AMS and
the lab. This may depend on a limit of the AMS sensors but also on the fact that the official
control provides only monthly values that may not necessarily be representative of the
trend.
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Although there was not any correlation among milk electrical conductivity score
of single quarters (ECSq) and both LSc and SCCams, the % difference in milk electrical
conductivity score between single quarters and udder (∆ECSq) was positively correlated
to LSc (r = 0.27) and SCCams (r = 0.44).

3.4. Principal Component Analyses

The results obtained from the PCA are plotted in Figure 1a,b AMS herds.

Figure 1. Principal Component Analyses: (a) A AMS herds—nLACT = number of lactation;
DIM = days in milk; Yc = daily milk yield from official controls, Fc = milk fat percentage from
official controls; Pc = milk protein percentage from official controls; LSc = Linear Score from somatic
cell count determined by official controls; YMams = milk yield per milking from AMS; nM = number
of daily milkings; MI = milking interval; Yams = daily milk yield from AMS; MPR = milk production
rate; ∆Yq = % difference quarter vs. udder milk yield; ∆AMFq = % difference quarter vs. udder
average milk flow; ∆ECq = % difference quarter vs. udder milk electrical conductivity; (b) B AMS
herds—nLACT = number of lactation; DIM = days in milk; Yc = daily milk yield from official controls,
Fc = milk fat percentage from official controls; Pc = milk protein percentage from official controls;
LSc = Linear Score from Somatic cell count determined by official controls; YMams = milk yield
per milking from AMS; nM = number of daily milkings; MI = milking interval; Yams = daily milk
yield from AMS; MPR = milk production rate; AMFams = average udder milk flow from AMS;
SCCams = SCC indication from AMS; Fams = milk fat percentage indication from AMS; Pams = milk
protein percentage indication from AMS; Lams = milk lactose percentage indication from AMS;
∆Tq = % difference quarter vs. udder milking time r; ∆ECSq = % difference quarter vs. udder milk
electrical conductivity.
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The PCA on A AMS herds’ data (Figure 1a) confirmed the positive association among
daily milk yield (from both AMS recordings, Yams, and official controls, Yc) and MPR:
they are in the same quadrant and very close each other on the axis 1 that explains a good
portion of the variance. Milk yield and MPR are in the opposite quadrant of milking
interval (MI) in agreement with the findings of Penry et al. [16] and Lyons et al. [22]. As
stated by Penry et al. [16], MPR can be considered a more appropriate way to measure milk
yield in AMS where milking is voluntary and the MI is not uniform within or across days.
On the other hand, milking interval (MI) is close to DIM on the axis 1. Penry et al. [16]
reported a growth in MI with increasing lactation days: in multiparous cows, from 30 to
300 DIM, the average MI rose from approximately 8 to 10.2 h.

The analysis confirmed the positive association among LSc and % difference in milk
conductivity (∆ECq) of single quarters vs. udder. These variables are in the opposite
quadrant of the % difference in milk yield (∆Yq) and % difference in average milk flow
(∆AMFq) of single quarters vs. the whole udder.

Similar results were obtained from the PCA on B AMS data (Figure 1b). Daily milk
yield (both from AMS recordings, Yams, and from the official controls, Yc), number of
daily milkings (nM) and MPR are in the same quadrant. They are close each other on the
axis 1 that explains 29.7% of the variance. The analysis confirmed the positive association
among LSc, SCCams and % difference in milk conductivity score (∆ECSq) of single quarters
compared to the whole udder. These variables are in the opposite quadrant of % milking
time difference (∆Tq).

The indication of somatic cell count from AMS (SCCams) and linear score from official
controls are very close on axis 1. Similar closeness emerges for milk fat and protein
indications from AMS and milk fat and protein from official controls. These results suggest
that the sensors for milk quality currently installed on many AMSs could be considered
reliable enough for these parameters.

The results from the PCA suggest that the distancing of a single quarter from the
condition of the whole udder in terms of milk electrical conductivity (∆ECq or ∆ECSq),
milk yield (∆Yq), average milk flow (∆AMFq), and milking time (∆Tq) is well related to
SCC and LS and can be useful as indicators of udder health problems.

3.5. GLM Analyses

In the A AMS herds, % difference milk electrical conductivity of quarter vs. the
whole udder (∆ECq) was significantly influenced (P < 0.001) by the SCC cow class (LSCC,
FSCC, and HSCC, respectively), nLACT, DIM, and SCCc. Percentage difference in quarter
vs. udder milk yield (∆Yq) was significantly affected (P < 0.001) by the SCC cow class
(LSCC, FSCC, and HSCC, respectively), nLACT, DIM, and herd. Similarly, in the B AMS
herds, % difference in quarter vs. udder milk conductivity score (∆MCSq) was significantly
influenced (P < 0.001) by the SCC cow class, nLACT, DIM, herd, and SCCc.

Figure 2 shows the trend of the % difference in milk electrical conductivity (∆ECq for
A AMS herds and ∆ECSq for B AMS ones) in the 14 days before the official milk controls
performed by the breeders’ association. Cows characterized by different SCC level in their
production history (LSCC, FSCC, and HSCC, respectively) showed different trends for the
variables in approaching the official milk control. In particular, in A AMS herds (Figure 2B),
∆ECq showed increasing values approaching the day of official milk control when the SCC
at the control was higher than 300,000 cell/mL, either in cows characterized by constant
high milk SCCc (HSCC) or in cows with fluctuating SCCc (FSCC). Similar findings were
obtained in B AMS herds (Figure 3) for ∆ECSq; although, the trends were less clear.
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Figure 2. Difference in milk electrical conductivity of single quarters in (A) AMS herds, expressed as percentage of the
average values within cow and within milking of the four quarters (Least Squares Means) in the 14 days before official milk
control (≤300,000 cells/mL, (A); >300,000 cells/mL, (B)) on the basis of cow SCC classification (LSCC—green; FSCC—orange;
HSCC—red).

Figure 3. Difference in milk conductivity score of single quarters in B AMS herds expressed as percentage of the average
values within cow and within milking of the four quarters (Least Squares Means) in the 14 days before official milk control
(≤300,000 cells/mL, (A); >300,000 cells/mL, (B)) on the basis of cow SCC classification (LSCC—green; FSCC—orange;
HSCC—red).

This is in agreement with the results of the PCA where increasing ∆ECq, where
associated to higher LS al the official control. This result suggests that the increase in
difference between the milk EC of a single quarter and the mean values of the four quarters
in the days before the official milk control could be a good indicator of the risk to have a
result of high SCC and can be useful as an early predictor of altered mammary health.

In A AMS herds (Figure 4), % difference in quarter vs. udder milk yield also revealed
decreasing trends approaching the day of milk control when the SCC value at the control
was higher than 300,000 cells/mL, either in cows characterized by constant high milk SCC
or in cows with fluctuating SCC.

Inzaghi et al. [5] noted that positive indications of clinical mastitis were apparent well
before confirmation of visual signs both for quarter milk electrical conductivity and MPR:
from 5 to 12 milking sessions prior to confirmation of clinical mastitis depending on the
number of lactation. In the same study average milk flow (AMF) at quarter level showed a
downward trend prior to clinical mastitis confirmation.
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Figure 4. Difference in milk yield of single quarters in A AMS herds, expressed as percentage of average values within cow
and within milking of the four quarters (Least Squares Means) in the 14 days before milk control (≤300,000 cells/mL, (A);
>300,000 cells/mL, (B)) on the basis of cow SCC classification (LSCC—green; FSCC—orange; HSCC—red).

3.6. Logistic Analysis

Logistic analyses were performed to identify the main risk factors for having a somatic
cell count at the official control (SCCc) higher than 300,000 cells/mL. Table 6 shows that
in the A AMS herds, In addition to the influence of DIM and number of lactation, the
most important factor for high SCC was the MPR class: if the MPR is <1.5 kg/h the risk
to have high SCC (>300,000/mL) is 2.26 times higher than the case of MPR > 1.7 kg/h.
This result suggests that when MPR is low, for reducing milk yield or increasing milking
interval, an udder health problem may be present. Inzaghi et al. [5] reported that quarters
affected by clinical mastitis had consistently lower MPR than uninfected quarters. The
reduction in MPR at udder level is probably an indicator of both the direct effect of disease
in the infected quarter, as well as a systemic effect resulting in MPR reduction in healthy
quarters of the same udder due to decreased lying, ruminating, and drinking time, and
lower feed intake for cows with clinical mastitis. The second most important factor is the
% difference in quarter vs. udder milk electrical conductivity: when ∆ECq is ≤ 2.5% the
risk to have high SCC (>300,000/mL) is more than halved (0.45) compared with the case of
∆ECq > 2.5%. This result confirms what emerged from the GLM: when the milk electrical
conductivity of single quarter deviates excessively from the mean of the four quarters,
udder health problems can be suspected. In a recent study, Kathun et al. [4] explored the
ability of % variation of quarter milk electrical conductivity to predict the onset of clinical
sign of mastitis, but they did not obtain satisfying levels of Sensitivity and Specificity.

Table 6. Logistic analysis of risk factors associated to >300,000/mL somatic cell count from official controls for A AMS
herds.

Effect Odds Ratio 95% Confidence Interval P

DIM < 100 vs. >200 0.63 0.604 0.665 <0.0001
DIM 100–200 vs. >200 0.72 0.686 0.754 <0.0001

nLACT 1 vs. ≥3 0.46 0.439 0.485 <0.0001
nLACT 2 vs. ≥3 0.80 0.766 0.844 <0.0001

MPR < 1.5 vs. MPR > 1.7 2.26 2.145 2.376 <0.0001
MPR 1.5–1.7 vs. MPR > 1.7 1.31 1.243 1.377 <0.0001

∆ECq ≤ 2.5% vs. >2.5% 0.45 0.437 0.473 <0.0001
∆Yq ≤ −24% vs. >−24% 1.18 1.135 1.231 <0.0001

∆AMFq ≤ −15% vs. >−15% 0.80 0.768 0.829 <0.0001

DIM = Days in milk; nLACT = Number of lactation; MPR = Milk Production Rate; ∆ECq = % difference quarter vs. udder milk electrical
conductivity; ∆Yq = % difference quarter vs. udder milk yield; ∆AMFq = % difference quarter vs. udder average milk flow.
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The logistic analysis showed also that when milk yield of the single quarter sensibly
diverges from the mean value of the four quarters (∆Yq ≤ −24%) the risk of having high
SCCc (>300,000/mL) at the milk control increases by 1.18 times in comparison with the
case of ∆Yq > −24%. Lastly, a lower risk (0.80) of high SCCc is associated with % difference
in quarter vs. udder average milk flow (∆AMFq) higher than −15%.

The relationship between the risk of mastitis or high somatic cells and average or peak
milk flow is controversial. Grindal et al. [24] suggested that cows with greater quarter peak
milk flows are more susceptible to mastitis. Average and peak milk flow give different
information, but as reported before, they are highly correlated. In a study on conventional
milked herds, peak milk conductivity and LS increased (P < 0.01) from the second (3
to 4 kg/min) to the third class (>4 kg/min) of peak milk flow rate [25] On the contrary,
according to Tancin et al. [19], quarters with high SCC (>500 × 103 cells/mL) had lower
peak flow rate compared with quarters with low SCC (<200 × 103 cells/mL). For AMS
herds, Hammer et al. [26] reported an increased risk of clinical mastitis associated with low
average peak milk flow at quarter level (<1.0 kg/min) occurring 7 to 14 d before occurrence
of mastitis. However, analysis of quarter peak milk flow 0 to 7 d before onset of clinical
signs indicated the risk of mastitis was associated with both low- and high-average quarter
peak milk flow. As suggested by Inzaghi et al. [5], a wider teat canal favours bacterial entry
and may slow down the refolding of the teat canal in the few minutes postmilking. On the
contrary, the reduction in milk yield as a consequence of emerging mastitis can have the
effect of reducing peak and average milk flow.

In the B AMS herds (Table 7), besides the effects of DIM and number of lactation,
the most important factor for high SCCc was the indication for SCC from the sensors
of AMS (SCCams): the risk of having high somatic cell count at the official milk control
(SCCc) is about one-tenth when SCCams is ≤300,000 cell/mL than in the case of SCCams >
300,000 cell/mL. The second most important factor affecting the risk of SCCc higher than
300,000 cell/mL at the milk control is % difference in quarter vs. udder milk electrical
conductivity score: if ∆ECSq is <2.2% the risk to have high SCCc (>300,000/mL) is about
halved (0.56) in comparison with the case of ∆ECSq > 2.2%. Moreover, the analysis
confirmed that when MPR is <1.5 kg/h the risk to have high SCCc (>300,000/mL) is higher
(1.59 times) than the case of MPR > 1.7 kg/h. Lastly, lower protein indication from AMS
sensors (Pams) is associated to lower risk of high SCC at the official control (SCCc).

Table 7. Logistic analysis of risk factors associated to >300,000/mL somatic cell count in the lab milk monthly control for B
AMS herds.

Effect Odds Ratio 95% Confidence Interval P

DIM < 100 vs. >200 0.94 0.874 1.008 <0.0001
DIM 100–200 vs. >200 1.36 1.273 1.445 <0.0001

nLACT 1 vs. ≥3 0.41 0.380 0.439 <0.0001
Pams < 3.4 vs. >3.6 0.70 0.650 0.751 <0.0001

Pams 3.4–3.6 vs. >3.6 0.97 0.911 1.037 <0.0001
MPR < 1.5 vs. >1.7 1.59 1.478 1.718 <0.0001

∆ECSq ≤ 2.2% vs. >2.2% 0.56 0.528 0.590 <0.0001
SCCams ≤ 300,000 vs. >300,000 0.11 0.105 0.117 <0.0001

4. Conclusions

The big data generated by the multiple sensors implemented in the automatic milking
systems can be statistically managed to develop algorithms for the real-time detection of
changes that may be indicative of mastitis or impaired health and welfare conditions of
dairy cows. The results of the study showed that some variables automatically recorded
by the AMSs at a quarter level can be used as good indicators of high SCC risk, when the
deviation among the single quarters and the average of the four quarters is considered.
Looking at the temporal patterns, the quarter vs. udder percentage difference in milk
electrical conductivity showed an increase in the fourteen days preceding an official milk
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control higher than 300,000 cells/mL. Similarly, deviations over time in quarter vs. udder
milk yield, average milk flow, and milking time emerged as potential indicators for high
somatic cell count. The Logistic Analysis showed that Milk Production Rate (kg/h) and the
within-cow within-milking percentage variations of single quarter vs. udder milk electrical
conductivity, milk yield, and average milk flow are all risk factors for high milk somatic
cell count.

The result suggests that these variables, alone or in combination, and their progression
over time, could be used to improve the early prediction of risk situations for udder health
in AMS milked herds.
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