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Simple Summary: Intramuscular fat (IMF) is a key factor affecting many meat quality traits of
pigs, such as pork tenderness, flavor, and many more. In this study, a systematic identification
and comparison of the expressed profiles of messenger RNA (mRNAs), long non-coding RNAs
(lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) with associated co-expression
networks longissimus dorsi muscle (LDM) in Large White ×Min pigs F2 resource population were
performed. The results contain high-throughput genomic data, which are helpful to clarify the
regulatory role of a variety of RNAs in regulating intramuscular fat formation and lipid metabolism
at the genomic level and provide new insights for studying the mechanism of fat formation and the
regulation of meat quality related genes at the molecular level.

Abstract: Intramuscular fat (IMF) content is a complex trait that affects meat quality and deter-
mines pork quality. In order to explore the potential mechanisms that affect the intramuscular fat
content of pigs, a Large white ×Min pigs F2 resource populations were constructed, then whole-
transcriptome profile analysis was carried out for five low-IMF and five high-IMF F2 individuals. In
total, 218 messenger RNA (mRNAs), 213 long non-coding RNAs (lncRNAs), 18 microRNAs (miR-
NAs), and 59 circular RNAs (circRNAs) were found to be differentially expressed in the longissimus
dorsi muscle. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes annotations
revealed that these differentially expressed (DE) genes or potential target genes (PTGs) of DE regula-
tory RNAs (lncRNAs, miRNAs, and circRNAs) are mainly involved in cell differentiation, fatty acid
synthesis, system development, muscle fiber development, and regulating lipid metabolism. In total,
274 PTGs were found to be differentially expressed between low- and high-IMF pigs, which indicated
that some DE regulatory RNAs may contribute to the deposition/metabolism of IMF by regulating
their PTGs. In addition, we analyzed the quantitative trait loci (QTLs) of DE RNAs co-located in high-
and low-IMF groups. A total of 97 DE regulatory RNAs could be found located in the QTLs related
to IMF. Co-expression networks among different types of RNA and competing endogenous RNA
(ceRNA) regulatory networks were also constructed, and some genes involved in type I diabetes
mellitus were found to play an important role in the complex molecular process of intramuscular
fat deposition. This study identified and analyzed some differential RNAs, regulatory RNAs, and
PTGs related to IMF, and provided new insights into the study of IMF formation at the level of the
genome-wide landscape.
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1. Introduction

Pork is one of the main sources of human protein and fat, accounting for more than
40% of global human meat consumption [1]. Meat quality is an important economic trait in
pig production, and it can be evaluated by multiple indicators, such as intramuscular fat
content (IMF), muscle tenderness, meat color, and water-holding capacity [2,3]. IMF is the
key meat quality trait affecting the tenderness, flavor, and juiciness of pork. Appropriate
intramuscular fat content can improve meat quality [4]. Due to the different genetic
backgrounds and breeding objectives, there are considerable differences in intramuscular
fat content between native Chinese pigs and Western pigs. One famous local pig breed in
China, the Min pig, has excellent meat quality, delicious flavor and a high intramuscular
fat content (>4%), which provides good research material for the study of gene regulation
related to intramuscular fat deposition in pigs.

In the past, many studies have used low-density microsatellite markers to identify QTL
associated with porcine IMF [5–7]. However, due to the low marker density, it is difficult to
accurately locate the target genes [8]. With the emergence of high-throughput genotyping
techniques, such as single nucleotide polymorphism (SNP) arrays, IMF-related genetic
variations and QTL of pigs can be found in a narrower gene region [9]. Combined with
genome-wide association study (GWAS), potential genetic molecules relating to intramus-
cular fat content can be identified. To date, 786 QTLs have been identified for IMF (https:
//www.animalgenome.org/cgi-bin/QTLdb/SS/traitsrch?tword=Intramuscular%20fat, re-
lease 44, accessed on 26 April 2021). At the same time, an increasing number of messenger
RNA (mRNAs) and regulatory RNAs such as long non-coding RNAs (lncRNAs), microR-
NAs (miRNAs) and circular RNAs (circRNAs) have been identified through sequencing as
candidate genes or important regulators of fat deposition or lipid metabolism in pigs [9–11].
However, combined analyses of all these types of RNA have rarely been reported [12], and
an in-depth functional analysis of regulatory RNAs for IMF development in pigs has not
yet been conducted.

In this study, we used whole-transcriptome sequencing to investigate the differences in
the expression of mRNAs, lncRNAs, miRNAs, and circRNAs between low- and high-IMF
in longissimus dorsi muscle (LDM) in a Large White ×Min pigs F2 resource population.
Functional analysis of mRNAs, regulatory RNAs, and the potential target genes (PTGs) of
regulatory RNAs was performed to analyze the function of differential expressed RNAs
(DERs). The differential expressed (DE) regulatory RNAs were then mapped onto the QTL
database to predict their function. Finally, the co-expression networks of regulatory RNAs
were also explored to filter the candidate RNAs related to IMF.

2. Materials and Methods
2.1. Ethics Statement

All animals used in this study were handled and kept according to the standard guide-
lines for experimental animals established by Ministry of Science and Technology (Beijing,
China). All animal experiments were carried out with the ethical approval (No. IAS2020-
109) of the Animal Ethics Committee of the Institute of Animal Science, Chinese Academy
of Agricultural Sciences.

2.2. Animal and Sample Preparation

In this study, 10 individuals were selected from the F2 population of Large White ×Min
pigs (at slaughter the average age was 240 ± 7 days). These pigs were raised in the same
environment with the same feeding conditions. Pigs were weighed and slaughtered in
a commercial slaughterhouse. Tissue samples were collected from the same position
(10th to 11th ribs) of the longissimus dorsi muscle of pigs, and then frozen in liquid
nitrogen and stored in a refrigerator at −80 ◦C for further analysis. The IMF content
was measured using Soxhlet extractor method following the standard guidelines of the
US National Pork Producers Council (NPPC). Ten individuals (five individuals in each
group) from two groups were selected according to their content for transcriptome analysis.

https://www.animalgenome.org/cgi-bin/QTLdb/SS/traitsrch?tword=Intramuscular%20fat
https://www.animalgenome.org/cgi-bin/QTLdb/SS/traitsrch?tword=Intramuscular%20fat
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Table 1 shows the carcass weight, IMF content and grouping of the research samples. The
average IMF content of F2 population was 2.85 ± 1.83 and the average carcass weight was
109.31 ± 16.07 kg. The individuals in the study were from the F2 population, the high-IMF
group: 4.07 < IMF < 5.43, low-IMF group: 1.05 < IMF < 1.60, and had an average carcass
weight of 101.72 ± 12.89 kg. There was significant differences of IMF content between the
two groups in this study (p < 0.01).

Table 1. Description of IMF content between the two groups.

Sample Carcass Weight (kg) IMF (%) Group

H1 82.6 4.07 High IMF
H2 113 4.40 High IMF
H3 113 4.56 High IMF
H4 97.4 4.98 High IMF
H5 96.8 5.43 High IMF
L1 92 1.05 Low IMF
L2 113 1.18 Low IMF
L3 125.6 1.28 Low IMF
L4 89.4 1.57 Low IMF
L5 94.4 1.60 Low IMF

2.3. Construction and Sequencing of cDNA Libraries

Total RNA from the longissimus dorsi muscle tissue of each individual was extracted
using TRIzol reagent (Invitrogen, Waltham, MA, USA). Bioanalyzer 2100 (Agilent Tech-
nologies, Inc., Santa Clara, CA, USA), Nano 6000 Assay Kit (Agilent Technologies, Inc.,
Santa Clara, CA, USA) and 1% agarose gel electrophoresis were used to determine the
quality and integrity of the RNA. The OD 260/280 ratio of the samples was between
1.9 and 2.0, and the RNA integrity of all samples exceeded 7.4. The Ribo-Zero Gold kit
(Epicentre, Madison, WI, USA) was used to remove ribosomal RNA from each sample. Two
libraries were designed for whole-transcriptome sequencing, miRNAs analysis was used
to construct a small RNA library, and lncRNA/circRNA analysis was used to construct
a ribosome-removed library. The Agilent DNA 1000 kit on a Bioanalyzer 2100 (Agilent
Technologies, Inc.) was used to examine the size and purity of each cDNA library. Finally,
these libraries were sequenced on the Illumina HiSeq 4000 (Illumina, San Diego, CA, USA)
platform to obtain paired-end reads.

2.4. Data Mapping and Transcriptome Assembly

Content that contained poly-N or adapters and low-quality reads was deleted from
the sequenced row data, and the remaining reads were called clean data. The clean data
were mapped to the pig reference genome (Sus scrofa 11.1) using the default parameters of
HISAT (v2.0.4) software [13], and the mapped reads of each sample had at least one of two
replicates. The transcripts were assembled and annotated using the default parameters in
StringTie (v1.3.1) software [14]. Using Bowtie (v1.0.0) software [15], sequence alignment
was performed for the Silva database (http://www.arb-silva.de/, version: 138.1, accessed
on 2 June 2021), the GtRNAdb database (http://lowelab.ucsc.edu/GtRNAdb/, version:
SGSC Sscrofa9.2, accessed on 5 June 2021), the Rfam database (http://rfam.xfam.org/, ver-
sion: Rfam 14.6, accessed on 6 June 2021) and the Repbase database (http://www.girinst.
org/repbase/, version: RepBase26.10, accessed on 6 June 2021). Non-codingRNAs (ncR-
NAs) and repeat sequences such as ribosomal RNA (rRNA), transfer RNA (tRNA), small
nuclear RNA (snRNA), and small nucleolar RNA (snoRNA) were screened to construct the
small RNA (sRNA) sequence information.

2.5. Identification of lncRNAs, miRNAs, and circRNA

The basic screening conditions of transcript information were as follows: (1) we
selected the transcripts whose class code was ‘i’, ‘x’, ‘u’, ‘o’, or ‘e’; (2) we selected the

http://www.arb-silva.de/
http://lowelab.ucsc.edu/GtRNAdb/
http://rfam.xfam.org/
http://www.girinst.org/repbase/
http://www.girinst.org/repbase/
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transcripts whose length was ≥200 bp with an exon number ≥ 2; and (3) we selected the
transcripts with a Fragments per kilobase of exon model per million mapped fragments
(FPKM)≥ 0.1. CPC2 (CPC2-beta) [16], CNCI (v2) [17], and CPAT [18] software were used to
predict the coding potential from the basically screened transcripts. The lncRNA retained
in the four databases was defined as new lncRNAs, and the predicted lncRNAs were
classified. The reads of the reference genome were compared with the mature sequences
of known miRNAs in the miRBase database (https://www.mirbase.org/search.shtml,
version: Release 22.1, accessed on 22 July 2021) and the range from 2 nt upstream to 5 nt
downstream to identify known miRNAs. In addition, the miRDeep2 (v2.0.5) software
package [19] was used to predict new miRNAs based on the distribution information of
reads on the precursor sequences and the energy information of the precursor structure. The
Sam alignment was scanned twice by CIRI (v2.05) [20] software based on the BWA-MEM
algorithm to detect junction reads with paired chiastic clipping signals. These comparisons
were then scanned again using dynamic programming algorithms to filter the false positive
candidates caused by error mapping reads. Finally, circRNA was identified by reading at
least two connections.

2.6. Differentially Expressed RNA Analysis

The expression levels of the transcripts were calculated using StringTie and Ballgown
software, and standardized using FPKM (fragments per kilobase of transcript per million
fragments mapping) and RSEM (splicing reads per billion mapping). StringTie uses
FPKM as an indicator to measure the expression level of transcripts or genes (mRNA
and lncRNA). SRPBM (splicing reads per billion mapping) was used to estimate the
expression level of circRNA. MiRNA expression quantification was normalized by the
TPM algorithm. DEseq2 (v1.6.3) R package [21] was used to screen DERs with a fold
change ≥ 1.5 and a p-value < 0.01 (mRNA, lncRNA, and circRNA), or a fold change ≥ 1.5
and p-value < 0.05 (miRNA).

2.7. Prediction of the Potential Target Genes of DE lncRNAs, miRNAs, and circRNAs

In this study, two strategies were used to predict lncRNA target genes: (1) cis-target
gene prediction based on the position of the lncRNA and the target gene located upstream
or downstream (<100 Kb) from the lncRNAs; (2) trans-target gene prediction based on the
correlation analysis of lncRNA and mRNA expression, with the genes identified as PTGs of
lncRNAs when these distant protein-coding genes were positively or negatively correlated
with the expression of lncRNAs. The absolute Pearson’s coefficient (r) between each
lncRNA and protein-coding gene pair was ≥0.95, and the p-value was <0.01 [22]. MiRNA
target genes were predicted using miRanda (v3.3a) [23] and Targetscan [24] software; the
intersection of the two target prediction results was taken as the miRNA target gene. The
gene corresponding to the longest transcriptional fragment that accurately matched both
ends (5′ end or 3′ end) of the circRNA was used as the host gene of the circRNA.

2.8. Gene Ontology Enrichment and KEGG Pathway Analyses

Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed for all DERs between the
two groups. GO (http://www.geneontology.org/, version: Release 2021-10-26, accessed
on 28 July 2021) is the international standard classification of gene functions. It classifies
gene functions according to three aspects: molecular function, biological processes and cell
composition. The KEGG (http://www.genome.jp/kegg, version: Release 99.1, accessed
on 28 July 2021) database is the main public database for metabolic analysis and regula-
tion network research. In order to explore the main biological functions of differentially
expressed genes on the basis of hypergeometric distribution, clusterProfiler (v3.10.1) [25]
was used for GO and KEGG signal pathway enrichment analysis of mRNA. GO terms and
pathways with p < 0.05 were considered to be significantly enriched.

https://www.mirbase.org/search.shtml
http://www.geneontology.org/
http://www.genome.jp/kegg
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2.9. Co-Construction of Gene Expression Networks

According to the RNA expression data, Pearson’s correlation analysis was used to
construct a co-expression network of mRNA–lncRNA, mRNA–circRNA, circRNA–lncRNA,
and circRNA–miRNA pairs with thresholds |r| > 0.8 and p < 0.05. In addition, the
competing endogenous RNA (ceRNA) regulatory network was constructed on the basis
of the pairwise expression results of the different RNAs. At the same time, a one-step
neighbor network of differential RNA was extracted from each differential combination in
the ceRNA relationship pair, and the differential ceRNA relationship pair was obtained.
Based on a random walk, the key nodes in the ceRNA network were sorted, and the top
5% RNAs in the network were screened as key genes. Functional annotation, pathway
enrichment analysis, and network construction of the key genes were carried out.

2.10. Association Analysis between QTL Sites and the Locations of Differentially Expressed RNA

For the combined analysis of DERs and QTLs, the data containing the location of the
DERs were compared with the filtered pig QTL data. Bedtools (v2.27.1) [26] software was
used and the ‘intersection’ command was used: intersectBed-a-b-wa-wb.

2.11. Validation of the RNA Sequencing Results Using qRT-PCR

Three RNA samples each from the two groups were used for qRT-PCR to verify
the data of the RNA-seq sequencing results. The cDNA chain was synthesized using
the PrimeScript RT reagent Kit with the gDNA Eraser (Takara, Otsu, Japan), and the
concentration and quality were determined using a Nanodrop 2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Next, TB Green Premix Ex Taq (Takara)
was used for qRT-PCR, which was performed on an Applied Biosystems 7300 Real-Time
PCR System (Thermo Fisher Scientific). The thermal cycle parameters used were as follows:
Stage 1: 95 ◦C for 30 s; Stage 2: 95 ◦C for 5 s and 60 ◦C for 34 s for 40 cycles; and Stage
3: 95 ◦C for 15 s, 60 ◦C for 1 min and 95 ◦C for 15 s. The glyceraldehyde-3-phosphate
dehydrogenase gene (GAPDH) was used as an endogenous control gene. The average ∆Ct
of the low-IMF group individuals was used as sample controls. All qRT-PCR verifications
were performed using three biological replicates and with three replicates for each sample.
The relative abundance of transcripts was calculated by the 2−∆∆Ct method. The primers
(Table S1) used for qRT-PCR were designed using Oligo7 software and synthesized by
Invitrogen Inc. (Shanghai, China).

2.12. Statistical Analyses

The software packages SPSS (v22.0) [27] and GraphPad Prism (v8.0) [28] were used
for data analysis and mapping. The results were expressed as means ± standard deviation
(SD). One-way ANOVA was used to determine the statistical differences between any
two groups, followed by Tukey’s test for multiple comparisons. p < 0.05 was considered
to indicate a significant difference; p < 0.01 and p < 0.001 indicated extremely significant
differences.

3. Results
3.1. Overview of RNA Sequencing

After quality control, 228.75 Gb of clean data were obtained from 10 samples; for
each sample, the clean data reached 18.24 Gb, and the Q30 base percentage was above
94.07%. The clean reads of each sample were aligned with the pig reference genome
(Sus scrofa Sscrofa11.1_102). The total percentage of mapped reads of mRNA and lncRNA
in the genome was between 96.28% and 97.21%, and the specific comparison results were
between 87.45% and 92.61%. In addition, the matching rate of miRNA was 68.51–76.29%,
and the matching rate of circRNA was more than 99%. This is basically consistent with the
data in other porcine muscle transcriptome studies. It indicates that the data sequencing
quality and comparison rate were high, the data utilization rate was normal, and the data
met the needs of subsequent analyses. Details are shown in Supplementary Table S2.
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3.2. Differential Expression Profiles ofmRNAs lncRNAs, miRNAs, and circRNAs

A global display of the differentially expressed RNAs on the chromosomes and the
quantitative statistics of the DERs are shown in Figure 1. Top DE genes and ncRNAs are
shown in Table 2. The top DE genes, such as secreted phosphoprotein 1 (SPP1), myosin
heavy chain 7B (MYH7B), calcium and integrin binding family member 2 (CIB2), and
other DE genes, such as secreted frizzled-related protein 4 (SFRP4), Glycerol-3-phosphate
ethyltransferase (GPAT), Acetyl-CoA Acyltransferase 2 (ACAA2), Acyl-CoA oxidase 2
(ACOX2), thrombospondin 4 (THBS4), C-C Motif Chemokine Ligand 4 (CCL4), C-C motif
chemokine ligand 10 (CCL10), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif
chemokine ligand 10 (CXCL16), and transforming growth factor beta 3 (TGFB3), have
known functions associated with muscle or fat traits.
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Table 2. Summary of top up-regulated and down regulated DE circRNAs, miRNAs, lncRNAs, and
mRNAs between high- and low-IMF groups.

RNA Regulated log2FC p-Value Type

MSTRG.19330.20 up 6.573623 5.41 × 10−62

lncRNAs

MSTRG.40179.2 up 3.10731 1.32 × 10−10

MSTRG.44176.8 up 1.908359 2.75 × 10−5

MSTRG.39829.10 up 1.710734 4.15 × 10−4

MSTRG.38601.10 up 1.476951 1.54 × 10−6

MSTRG.29140.1 down −1.94114 2.37 × 10−5

MSTRG.25219.1 down −1.99459 2.95 × 10−5

MSTRG.9199.1 down −2.01282 4.72 × 10−6

MSTRG.5761.2 down −2.50226 3.96 × 10−8

MSTRG.44725.16 down −2.71452 1.45 × 10−10
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Table 2. Cont.

RNA Regulated log2FC p-Value Type

novel_miR_118 up 1.459799 1.07 × 10−2

miRNAs

ssc-miR-208b up 1.310524 7.14 × 10−3

novel_miR_398 up 1.297012 3.44 × 10−2

novel_miR_278 up 1.272563 3.34 × 10−2

ssc-miR-190b up 1.198435 1.12 × 10−2

ssc-miR-499-5p up 1.185263 1.01 × 10−2

novel_miR_185 down −1.54969 1.09 × 10−2

novel_miR_45 down −1.74161 3.76 × 10−3

novel_miR_476 down −1.78496 3.59 × 10−3

novel_miR_45 down −1.74161 3.76 × 10−3

novel_miR_476 down −1.78496 3.59 × 10−3

12:39408156|39428231 up 9.005799 1.98 × 10−6

circRNAs

14:71348983|71349948 up 6.965969 4.78 × 10−4

3:44121881|44122061 up 6.819521 3.29 × 10−4

9:125732918|125735258 up 6.586107 1.03 × 10−3

13:71794794|71797638 up 6.346968 1.25 × 10−3

1:108385212|108386218 down −5.96632 1.61 × 10−3

12:59320434|59323398 down −6.16306 1.81 × 10−3

7:68514625|68532510 down −6.37264 1.20 × 10−3

9:66405629|66409132 down −6.57113 8.32 × 10−4

4:50433434|50447885 down −6.83942 4.52 × 10−4

RDH16 up 0.993121 1.20 × 10−4

mRNAs

ENSSSCG00000045560 up 0.928328 2.29 × 10−4

KCNRG up 0.856391 6.58 × 10−4

ENSSSCG00000045892 up 0.844323 8.67 × 10−4

RABL2B up 0.831953 1.16 × 10−3

SPP1 down −0.92796 2.69 × 10−4

CIB2 down −0.93599 8.18 × 10−5

PTPMT1 down −0.96233 5.00 × 10−5

MYH7B down −0.99074 1.05 × 10−5

GPNMB down −1.15542 1.07 × 10−5

RDH16: retinol dehydrogenase 16; KCNRG: potassium channel regulator; RABL2B: RAB, member of ras oncogene
family similar to 2B; SPP1: Secreted Phosphoprotein 1; CIB2: calcium and integrin binding family member
2; PTPMT1: protein tyrosine phosphatase mitochondrial 1; MYH7B: myosin heavy chain 7B; and GPNMB:
glycoprotein nmb.

Using a fold change ≥ 1.5 and p < 0.01 as the standard for screening DE lncRNA
circRNA, and mRNA, 218 differentially expressed genes were found between the high- and
low-IMF groups, of which 100 were upregulated and 118 were downregulated. Among the
213 differentially expressed lncRNAs, 148 were upregulated and 65 were downregulated,
and of the 59 circRNAs, 36 were upregulated and 23 were downregulated. In addition,
according to the criteria of fold change ≥ 1.5 and p < 0.05, 18 DE miRNAs were identified
between the two groups (Supplementary Table S3).

3.3. Prediction of the Potential Target Genes (PTGs) of DE lncRNAs, circRNAs, and miRNAs

In order to reveal the potential function of the screened DE lncRNAs in the IMF,
independent cis- and trans-algorithms were used to predict the target genes. We predicted
the cis-regulated PTGs and obtained 692 PTGs that corresponded to 213 DE lncRNAs;
17 of the 692 PTGs were differentially expressed between the two groups (Figure 2A). We
then predicted 6663 PTGs of 209 DE lncRNAs via the trans mode: 166 of the 6663 PTGs
corresponded to 40 lncRNAs which were differentially expressed between the two groups
(Figure 2B). In addition, 21 of the 40 DE lncRNAs upregulated most of their DE PTGs, and
19 DE lncRNAs downregulated the majority of their DE PTGs. For target gene prediction
of the DE miRNAs, 15 of 18 DE miRNAs obtained 8775 PTGs. The number of target
genes of known miRNAs was very different from the target genes of novel miRNAs. The
known miRNAs ssc-mir-190b and ssc-mir-194a-5p had two and four PTGs, respectively,
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but the novel miRNA_100 had 1585 PTGs. Moreover, 90 of 8775 PTGs were differentially
expressed between the two groups. CircRNA has a unique closed-loop mode, and each
circRNA had its corresponding PTG. In total, 59 PTGs were obtained, of which only 52 were
annotated. Only one of the 59 PTGs was DE between the two groups. Details are shown in
Supplementary Table S4.
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3.4. GO and KEGG Analysis of the DERs

GO analysis showed that the DE mRNAs, lncRNAs, miRNAs, and circRNAs were
mainly involved in the cell part of the cellular component category. In the biological process
category, cell process, single biological process, and biological regulation were the most
abundant. DE mRNA and miRNAs were significantly enriched in cell differentiation system
development and animal organ development, involving muscle cell differentiation, system
development, and tissue and organ development (Figure 3A,B). The target genes of DE
circRNAs were mainly in plasma membrane repair, cerebellar Purkinje cell differentiation,
N-glycan processing, skeletal muscle contraction, muscle system processes, etc., in muscle
development and cell differentiation, and biological signal responses (Figure 3C).

For DE mRNA, the KEGG pathway analysis showed that these DE mRNAs were
mainly related to lipid metabolism, such as the cytokine–cytokine interaction receptor, focal
adhesion, and the Toll-like receptor signaling pathways. Genes in the cytokine–cytokine
receptor interaction, chemotherapeutic factors (such as CCL4), transforming growth factor
(such as TGFB3), and chemokines (such as CXCL10 and CXCL16) pathways were highly
expressed in low-IMF individuals. CCL4, CCL10, and SPP1 were enriched in the Toll-like
receptor signaling pathway and were all expressed in low-IMF pigs. In addition, primary
bile acid biosynthesis included the fatty acid oxidation gene ACOX2, which is involved in
the lipid synthesis pathway. These genes had the opposite expression trend in high-IMF
individuals (Figure 3A).

For DE miRNAs, the KEGG pathway analysis showed that these DE miRNAs were
significantly enriched in aminoacyl-tRNA biosynthesis and axon guidance, and the analysis
also found pathways closely related to lipid metabolism, including the glucagon signaling
pathway and the mTOR signaling pathway, which were also significantly enriched in lipid
metabolism, such as glycerol metabolism. The MAPK signaling pathway, the PI3K-Akt
signaling pathway, and the insulin signaling pathway are closely related (Figure 3B). In these
two pathways, there were seven new miRNAs, of which novel_miR_398, novel_miR_118, and
novel_miR_278 were upregulated, and novel_miR_100, novel_miR_476, and novel_miR_7
were downregulated in both pathways. Novel_miR_434 and novel_miR_45, play unique
roles in these pathways (Supplementary Table S5).
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For the circRNAs, the KEGG pathway analysis showed that these DE circRNAs
were highly enriched in inflammatory bowel disease (IBD), hypertrophic task (HCM), etc.
In addition, in the tight junction, the adherens junction was also significantly enriched.
Functional annotation found that these pathways were associated with lipid metabolism
(such as the MAPK signaling pathway, the TGF-beta signaling pathway and cytokine–
cytokine receptor interaction). These pathways play a key role in lipid metabolism and
synthesis (Figure 3C).

3.5. Functional Analysis of the DE PTGs

The dot-plot analysis showed the results of the top 20 GO analysis results with p-values
from smallest to largest, as well as the results of KEGG pathway analysis (Figure 4A,B).
Most of the PTGs were related to cell density biological processes, but were also significantly
enriched in lipid metabolism processes including lipid transport (Figure 4A). Most KEGG
pathways which the PTGs were involved in were autoimmune diseases and hormone signal
regulation, among which the cGMP-PKG signaling pathway and the estrogen signaling
pathway were closely related to IMF content (Figure 4B).



Animals 2021, 11, 3212 10 of 20

Animals 2021, 11, x  10 of 20 
 

3.5. Functional Analysis of the DE PTGs 

The dot-plot analysis showed the results of the top 20 GO analysis results with p-

values from smallest to largest, as well as the results of KEGG pathway analysis (Figure 

4A,B). Most of the PTGs were related to cell density biological processes, but were also 

significantly enriched in lipid metabolism processes including lipid transport (Figure 4A). 

Most KEGG pathways which the PTGs were involved in were autoimmune diseases and 

hormone signal regulation, among which the cGMP-PKG signaling pathway and the es-

trogen signaling pathway were closely related to IMF content (Figure 4B).  

 

Figure 4. GO and KEGG pathway analysis of the PTGs of DE lncRNAs. (A) GO biological process analysis for all DE 

lncRNAs. (B) KEGG pathway analysis for all DE lncRNAs. (C) Gene network of PTGs enriched in fatty acid metabolism 

via cis-regulation. 

GO results based on cis-regulation showed that the fatty acid metabolism process, 

the regulation of lipid catabolic process, the muscle cell apoptosis process, myotube dif-

ferentiation involved in skeletal muscle regeneration, and regulation of skeletal muscle 

fiber development were significantly enriched, and were mainly involved in fatty acid 

metabolism, the lipid catabolic process, myotube differentiation, and muscle fiber devel-

opment regulation. In our study, several lncRNA target genes were involved in lipid me-

tabolism: MSTRG.1611.1, MSTRG.35593.1, MSTRG.77761.1, MSTRG.22650.3, 

MSTRG.2132.1, and MSTRG.20935.1 were highlighted. MSTRG.1611.1 and its target gene, 

acetyl-CoA acyltransferase 2 (ACAA2), were downregulated between the two groups, in-

dicating that MSTRG.1611.1 may regulate fatty acid metabolism by negatively affecting 

ACAA2. The top five significantly enriched biological processes were the fatty acid meta-

bolic process, the allantoin metabolic process, the isoleucine metabolic process, the valine 

metabolic process and the creatine metabolic process. These terms are linked to genes in-

volved in the network (Figure 4C and Supplementary Table S6). 

KEGG analysis showed that the cis-regulated PTGs of lncRNAs were significantly 

annotated in glycerophospholipid metabolism, the phospholipase D signaling pathway 

and the cGMP-PKG signaling pathway; the latter was involved in lipid and carbohydrate 

metabolism-related pathways, such as the MAPK signaling pathway and fatty acid bio-

synthesis. The trans-regulated target genes of lncRNAs were enriched in 59 pathways, 

some of which are associated with lipid metabolism, such as the cGMP-PKG signaling 

pathway, the regulation of lipolysis in adipocytes and the PPAR signaling pathway, but 

these were not the most significantly enriched (Supplementary Table S6). 

Figure 4. GO and KEGG pathway analysis of the PTGs of DE lncRNAs. (A) GO biological process analysis for all DE
lncRNAs. (B) KEGG pathway analysis for all DE lncRNAs. (C) Gene network of PTGs enriched in fatty acid metabolism
via cis-regulation.

GO results based on cis-regulation showed that the fatty acid metabolism process, the
regulation of lipid catabolic process, the muscle cell apoptosis process, myotube differenti-
ation involved in skeletal muscle regeneration, and regulation of skeletal muscle fiber de-
velopment were significantly enriched, and were mainly involved in fatty acid metabolism,
the lipid catabolic process, myotube differentiation, and muscle fiber development reg-
ulation. In our study, several lncRNA target genes were involved in lipid metabolism:
MSTRG.1611.1, MSTRG.35593.1, MSTRG.77761.1, MSTRG.22650.3, MSTRG.2132.1, and
MSTRG.20935.1 were highlighted. MSTRG.1611.1 and its target gene, acetyl-CoA acyl-
transferase 2 (ACAA2), were downregulated between the two groups, indicating that
MSTRG.1611.1 may regulate fatty acid metabolism by negatively affecting ACAA2. The top
five significantly enriched biological processes were the fatty acid metabolic process, the
allantoin metabolic process, the isoleucine metabolic process, the valine metabolic process
and the creatine metabolic process. These terms are linked to genes involved in the network
(Figure 4C and Supplementary Table S6).

KEGG analysis showed that the cis-regulated PTGs of lncRNAs were significantly
annotated in glycerophospholipid metabolism, the phospholipase D signaling pathway
and the cGMP-PKG signaling pathway; the latter was involved in lipid and carbohydrate
metabolism-related pathways, such as the MAPK signaling pathway and fatty acid biosyn-
thesis. The trans-regulated target genes of lncRNAs were enriched in 59 pathways, some
of which are associated with lipid metabolism, such as the cGMP-PKG signaling pathway,
the regulation of lipolysis in adipocytes and the PPAR signaling pathway, but these were
not the most significantly enriched (Supplementary Table S6).

3.6. Overlapping Analysis between QTL Sites and the Location of DE RNAs

In order to explore the function of DE RNAs more accurately, we combined DE RNAs
with QTLs. The results showed that 208 DE lncRNAs were related to 13,302 QTLs, and
3275 QTLs related to fat deposition were found. These QTLs were distributed on porcine
autosomal and X chromosomes, among which chromosomes 1, 7, 2, and 6 were the most
distributed, mainly related to backfat, such as average backfat thickness, final rib backfat
and subcutaneous shoulder fat thickness. Moreover, 10.63% (348/3275) of the QTLs were
associated with intramuscular fat and distributed on chromosomes 2,3, 4, 6, 7, 8, 9, 13,
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15, 17, and X, of which chromosome 3 had the most QTLs (223) and was associated with
72 lncRNAs (Figure 5A).
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Figure 5. Quantitative trait locus analysis of DE RNAs. (A) The number distribution of QTLs related to fat deposition, the
number of QTLs related to fat deposition, and the chromosome distribution of the QTLs related to fat deposition of the
DE lncRNAs. (B) The number distribution of QTLs related to fat deposition, the number of QTLs related to fat deposition,
and the chromosome distribution of the QTLs related to fat deposition of the DE miRNAs. (C) The number distribution of
QTLs related to fat deposition, the number of QTLs related to fat deposition, and the chromosome distribution of the QTLs
related to fat deposition of the DE circRNAs.

There were 17 DE miRNAs distributed in 1083 QTLs, of which 252 QTLs were related
to fat deposition and were mainly distributed on chromosomes 1, 2, 4, and 7. Most of
these QTLs were related to average backfat thickness, final rib backfat, and subcutaneous
shoulder fat thickness. At the same time, the newly predicted miRNA novel_miR_45
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and the mature miRNA ssc-miR-190b on chromosome 4 and chromosome 17 were closely
related to the QTLs for intramuscular fat content (Figure 5B). For DE circRNAs, 58 circR-
NAs matched a total of 3970 QTLs, 1028 of which were QTLs related to fat deposition,
which were distributed on the autosome and X chromosome, except for chromosome 17.
About one-third of the fat deposition QTLs were distributed on chromosome 7 and were
mainly involved in the average backfat thickness, final rib backfat, tenth rib backfat, and
subcutaneous shoulder fat thickness, which was basically consistent with the previous
results. In addition, 8.3% (85/1028) QTLs were associated with intramuscular fat, and
these QTLs were mainly located on chromosome 3 and distributed on chromosomes 2,
4, 6, 7, 9, 15, and X (Figure 5C). The above results show that the QTLs corresponding to
DERs have abundant diversity at the chromosome level and the DERs are associated with
intramuscular fat (Supplementary Table S7).

3.7. Expression Regulation Analysis of DE lncRNAs, miRNAs, and circRNAs, and Their
DE PTGs

The results of gene co-expression showed that there are 23 DE lncRNAs and 18 DEGs
in the lncRNA–mRNA network between the two groups. There were 9 DEGs and 11 DE
miRNAs in the miRNA–mRNA network, and there was only one DEcircRNA and DEG
between the two groups. The circRNA–lncRNA, circRNA–miRNA, and circRNA–mRNA
networks are shown in Supplementary Table S8.

Based on the ceRNA hypothesis, we analyzed the total transcriptome data and con-
structed the ceRNA regulatory network. The ceRNA network contained 4032 lncRNAs,
6785 mRNAs, and 815 circRNAs. By using a one-step neighbor network to construct
different ceRNA combinations, we found that nine known miRNAs (ssc-miR-4334-3p,
ssc-miR-339, ssc-miR-339-5p, ssc-miR-4331-3p, ssc-miR-671-5p, ssc-miR-874, ssc-miR-671-
5p, ssc-miR-7138-3p, and ssc-miR-370) were involved in more relationship pairs in the
mRNA–miRNA–lncRNA network, and may play a central role in the regulatory net-
work. Similarly, we found nine miRNAs (ssc-miR-1343, ssc-miR-671-5p, ssc-miR-4331-3p,
ssc-miR-328, ssc-miR-874, ssc-miR-9785-5p, ssc-miR-370, ssc-miR-1224, and ssc-miR-330)
in the mRNA–miRNA–circRNA network that may play a central role in the regulatory
network. There were 10 miRNAs in circRNA–miRNA–lncRNA network (ssc-miR-339,
ssc-miR-339-5p, ssc-miR-4334-3p, ssc-miR-4331-3p, ssc-miR-370, ssc-miR-874, ssc-miR-574-
5p, ssc-miR-1343,2320-5p, and ssc-miR-6782-3p). Thus, multiple miRNAs participate in a
common regulatory role in the ternary regulatory network. CircRNA plays an important
role in regulating gene expression by interacting with miRNA in mammals. We compared
the relationships between DEmRNA and miRNA to obtain the DE circRNA–miRNA–DE
mRNA interaction network (Figure 5A).

We compared the relationships between DE mRNA and miRNA to obtain the DE
circRNA–DE mRNA interaction network. Similarly, by using the DE lncRNA–miRNA rela-
tionship network, we obtained the DE lncRNA–miRNA–DE mRNA and the DE circRNA–
miRNA–DE lncRNA interaction networks (Figure 6B,C). Nevertheless, the miRNAs in the
ceRNA networks we constructed were not differentially expressed between the two groups.

Based on the integration analysis of key gene pathways in different ceRNA networks,
Gene network analysis showed mitogen-activated protein kinase 10 (MAPK10), Janus
kinase 1 (JAK1), signal transducer and activator of transcription 1 (STAT1), and other genes
associated with fat deposition were enriched in the pathway; tyrosine kinase 2 (TYK2),
interferon regulatory factor 9 (IRF9), fas associated via death domain (FADD), and other
key genes are shown in Figure 6D.
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networks of DE mRNAs and DE circRNAs with the targeted miRNAs. (C) Co-expression networks of DE lncRNAs and DE
circRNAs with the targeted miRNAs. (D). The networks of genes in the top five pathways, and the integration analysis of
key gene pathways in different ceRNA networks.

3.8. RNA Sequencing Results Validation Using qRT-PCR

To validate the accuracy of the RNA-Seq data, according to their expression levels, five
RNAs were screened from the DEmRNAs and DE lncRNAs in low- and high-IMF groups.
The genes Potassium Channel Regulator (KCNRG), HUS1 Checkpoint Clamp Component
(HUS1), and lncRNA MSTRG.5761.2 were highly expressed in the high IMF group, while
the genes ACAA2 and lncRNA MSTRG.40179 were lowly expressed. We designed different
primers and used cDNA as amplification template. QRT-PCR results showed that the
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expression levels of these candidate RNAs did not change significantly between low- and
high-IMF group, which was consistent with our sequencing analysis, indicating that our
estimation of abundance was accurate (Figure 7).
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4. Discussion

IMF content is one of the polygenic traits in animals and is an important determinant
of meat quality. Increasing the accumulation of intramuscular fat can promote the forma-
tion of meat marble patterns and improve the taste, flavor, color, and other characteristics
of meat [2,3,29,30]. Therefore, in view of the importance of IMF to livestock production
economics, it is of great significance to clarify the molecular mechanisms of IMF depo-
sition [30,31]. Even in the same breed and under the same breeding conditions, genetic
factors leading to individual accumulation of IMF content are different. Moreover, the
association between genomic markers and IMF deposition is not always consistent, so
it is essential to explore the potential molecular mechanisms related to IMF [32]. Up to
now, some studies have identified candidate genes (protein-coding and noncoding genes)
related to meat quality traits and used them in practical production [33–35]. Intramuscular
fat is highly complex and metabolically active, which involves complex metabolic processes
and pathways, and also involves multiple genes. However, the regulatory mechanism of
fat deposition is poorly understood.

RNA-seq technology was used for transcriptome analysis of porcine LDM samples
with different IMF contents. In total, 218 DEGs were identified between the two groups,
many of which have known functions in lipid metabolism. For example, the adipogenic
gene SFRP4 can positively regulate the expression of adipogenic genes through the Wnt/β-
catenin signaling pathway, thereby promoting the formation of fat [36,37]. GPAT is a
rate-limiting enzyme involved in triglyceride synthesis [38]. GPAT3 is the main form of
GPAT expressed in adipocytes and plays a crucial role in fat formation [39]. ACAA2 is
a key enzyme in the fatty acid oxidation pathway, which regulates cell apoptosis and
triglycerides, and plays an important role in fatty acid metabolism. At the same time,
ACAA2 can also promote the differentiation of preadipocytes into adipocytes through
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PPAR, thereby regulating intramuscular fat content [40]. TGFB3 is a regulator of the
number of adipocytes, which can increase the number of adipocytes in white adipose tissue
(WAT) and reduce glucose tolerance [41]. ACOX2 can also involve in the regulation of
chicken IMF with different growth rates though PPAR pathway [42]. Significantly, we
found that SPP1 and THBS4 were enriched in the PI3K-Akt signaling pathway involved
in lipid metabolism [43,44]. CXCL16 can participate in lipid metabolism by triggering
downstream PI3K, Akt, and IKK signal transduction events. It can be seen that DEGs
participate in multiple pathways at the same time, forming a complex regulatory network
involved in fatty acid biosynthesis and metabolism. It is also noteworthy that among these
known genes, SFRP4, GPAT3, and ACAA2 were consistent with IMF content trends and
play a positive regulatory role in intramuscular fat deposition. However, ACOX2 showed
the opposite trend, and the inconsistent expression trend may be related to some other
potential gene regulation or gene tissue-specific expression. These are worthy of further
study for understanding the complex regulatory mechanisms of intramuscular fat.

In this study, the number of lncRNAs identified in our results was significantly
different from that in Duroc and Luchuan pigs (4868 lncRNAs) [45], Jinhua and Landrace
pigs (4910 lncRNAs) [46], and Songliao and Landrace pigs (1071 lnRNAs) [47], which may
be due to the rich genetic diversity of F2 resource pigs. The identified lncRNAs showed
typical characteristics, such as a shorter transcript length, fewer exons, a longer exon length,
and a lower expression level compared with protein-coding transcripts, which is consistent
with previous studies [48]. In total, 274 PTGs were differentially expressed between low-
and high-IMF pigs, and this indicated that some DE regulatory RNAs may contribute to the
deposition and metabolism of IMF by regulating their PTGs. In addition, although muscle
is an important metabolic tissue in pigs and is involved in a variety of muscle development
events, such as muscle growth and lipid metabolism, we infer that some DERs in the LDM
are related to muscle to a certain extent, but our research focus was on IMF-related RNA.
The QTL analysis results of the DE lncRNAs showed that these were mostly located in the
QTLs for IMF content, which further proved our speculation to some extent. This result
is also consistent with a previous study [49]. Previous studies have shown that lncRNA
can regulate gene expression in some ways, including cis- and trans-regulation [50–52].
In our study, we found that lncRNA and its adjacent genes showed a strong correlation.
Functional annotation and network analyses showed that MSTRG.16111.1 and its target
gene, ACAA2, were significantly downregulated. ACAA2 can participate in PPAR signaling,
and that the primary bile acid biosynthesis pathway was involved in lipid metabolism in
muscle [53].

The DE miRNAs and DE circRNAs identified for IMF showed that they were signif-
icantly enriched in the lipid-related pathways, such as the glucagon signaling pathway,
the mTOR signaling pathway and adherens junction. They were mainly involved in the
insulin signaling pathway, the MAPK signaling pathway, the PI3K-Akt signaling pathway,
and the TGF-β signaling pathway. Studies have shown that ssc-miR-208b may be essential
for IMF metabolism [54], and ssc-miR-499-5p is associated with type I muscle fibers [55].
Ssc-miR-190b regulates lipid metabolism and insulin sensitivity by targeting IGF-1 and
ADAMTS9 [56].

Although recent studies have reported that miRNAs are involved in the development
of intramuscular preadipocytes [57,58], the molecular regulation mechanism of miRNAs in
porcine IMF development remains largely unknown. Studies have shown that inhibition of
ssc-miR-499-5p expression in nonalcoholic fatty liver disease (NAFLD) cells reduces lipid
deposition and of triglyceride (TG) content [59]. However, in this study, ssc-miR-499-5p
was upregulated in high-IMF animals, which may be due to the high conservation and
tissue specificity of miRNA, which plays different roles in different tissues.

We constructed a ceRNA regulatory network using co-expressed and targeted RNAs.
Although we constructed the DE circRNA–miRNA–DE mRNA, DE lncRNA–miRNA–DE
mRNA, and DE circRNA–miRNA–DE lncRNA networks based on the “sponge adsorption”
theory, the results showed that the genes were mainly involved in immune regulation and
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anti-infection. According to previous research results, these signaling pathways and key
genes are also widely involved in lipid metabolism and fat deposition [60–62]. These may
play an important role in the complex molecular process of intramuscular fat deposition.
In this study, a key gene integration analysis of different combinations of ceRNA pairs
was carried out. According to previous research results, these signaling pathways and key
genes are also widely involved in lipid metabolism and fat deposition, but the enriched
genes, including the MAPK10 and JAK/STAT pathways, were related to lipid metabolism
including fat deposition and fatty acid β oxidation [63]. At the same time, studies have
shown that decreased TYK2 and STAT1 promoted the expression of PPARγ and FAS in
adipose tissue [64,65]. FADD was recently reported as a key regulator of lipid metabolism,
and FADD is a master regulator of glucose and fat metabolism [66].

5. Conclusions

In our study, we identified and analyzed mRNAs, miRNA, lincRNAs, and circRNAs
between low- and high-IMF samples from the longissimus dorsi muscle (LDM) in a Large
White ×Min F2 resource population of pigs. In total, 290 RNAs and 527 PTGs were found
to be differentially expressed between low- and high-IMF pigs. Function analysis indicated
that many regulatory RNAs, such as MSTRG.1611.1, MSTRG.35593.1, MSTRG.77761.1,
ssc-miR-208b, and ssc-miR-190b, may have contributed to the differences in the IMF-
related processes. However, the function and molecular regulatory mechanisms between
regulatory RNAs and their PTGs remain unclear and require further exploration.
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CCL10 C-C Motif Chemokine Ligand 10
CIB2 calcium and integrin binding family member 2
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circRNAs circular RNAs
CXCL10 C-X-C motif chemokine ligand 10
CXCL16 C-X-C motif chemokine ligand 16

https://www.mdpi.com/article/10.3390/ani11113212/s1
https://www.mdpi.com/article/10.3390/ani11113212/s1


Animals 2021, 11, 3212 17 of 20

DE Differential expression
DERs differentially expressed RNAs
FPKM Fragments per kilobase of exon model per million mapped fragments
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GO Gene ontology
GPAT Glycerol-3-phosphate ethyltransferase
GPNMB glycoprotein nmb.
GWAS genome-wide association study
HUS1 HUS1 Checkpoint Clamp Component
IMF Intramuscular fat
KEGG Kyoto Encyclopedia of Genes and Genomes
KCNRG Potassium Channel Regulator
lncRNAs long non-coding RNAs
LDM longissimus dorsi muscle
mRNAs message RNA
miRNAs microRNAs
miRNAs microRNAs
MYH7B myosin heavy chain 7B
Novel novel gene
NPPC National Pork Producers Council
PTGs potential target genes
PTPMT1 protein tyrosine phosphatase mitochondrial 1
qRT-PCR Reverse transcription quantitative polymerase chain reaction
QTLs quantitative trait loci
RABL2B RAB, member of ras oncogene family like 2b
RDH16 retinol dehydrogenase 16
rRNAs mitochondrial ribosomal RNAs
SFRP4 secreted frizzled-related protein 4
sRNA small RNA
snRNAs small nuclear RNAs
snoRNA small nucleolar RNA
SPP1 secreted phosphoprotein 1
TGFB3 transforming growth factor beta 3
THBS4 thrombospondin 4
tRNA transfer RNA
MAPK10 mitogen-activated protein kinase 10
JAK1 janus kinase 1
STAT1 signal transducer and activator of transcription 1
TYK2 tyrosine kinase 2
IRF9 interferon regulatory factor 9
FADD fas associated via death domain
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