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Simple Summary: Machine learning (ML) offers new approaches for analyzing data and is particularly
interesting for large datasets. Dairy farmers implement a wide range of sensors, which create large
amounts of data, in farming. Therefore, they offer an interesting area for data-driven research. In this
review, we show how ML methods have already been used in the scientific literature and describe
the potential that these may offer for the future. We found that ML methods were applied to predict
data in a variety of areas in dairy farming such as milk yield or energy consumption; however, larger
integrated datasets are required to improve the reliability of the algorithms developed.

Abstract: Dairy farmers use herd management systems, behavioral sensors, feeding lists, breeding
schedules, and health records to document herd characteristics. Consequently, large amounts of dairy
data are becoming available. However, a lack of data integration makes it difficult for farmers to
analyze the data on their dairy farm, which indicates that these data are currently not being used to
their full potential. Hence, multiple issues in dairy farming such as low longevity, poor performance,
and health issues remain. We aimed to evaluate whether machine learning (ML) methods can solve
some of these existing issues in dairy farming. This review summarizes peer-reviewed ML papers
published in the dairy sector between 2015 and 2020. Ultimately, 97 papers from the subdomains of
management, physiology, reproduction, behavior analysis, and feeding were considered in this review.
The results confirm that ML algorithms have become common tools in most areas of dairy research,
particularly to predict data. Despite the quantity of research available, most tested algorithms have
not performed sufficiently for a reliable implementation in practice. This may be due to poor training
data. The availability of data resources from multiple farms covering longer periods would be useful
to improve prediction accuracies. In conclusion, ML is a promising tool in dairy research, which could
be used to develop and improve decision support for farmers. As the cow is a multifactorial system,
ML algorithms could analyze integrated data sources that describe and ultimately allow managing
cows according to all relevant influencing factors. However, both the integration of multiple data
sources and the obtainability of public data currently remain challenging.

Keywords: sensor; cluster; data analysis; big data; data integration; smart farming

1. Introduction

Economic pressure requires increased efficiency in dairy production, which has come along
with high-yielding dairy cows, large herds, and a strong movement toward loose housing systems.
Consequently, improving animal welfare on the farm can amplify profits, as it has the potential to
reduce costs related to healthcare and poor yields, and as such, improve the sustainability and efficiency
of dairying [1]. Only well-managed animals will meet the required production levels, while unhealthy
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animals will need early culling, and thus they will exhibit decreased longevity, not be as profitable,
and will accordingly be less sustainable [1,2]. Bell et al. [2] reported that 59% of Holstein Friesian
cows are culled before their fourth lactation. Culling is often the result of poor health, where the
main risk factors for culling are assisted calving, abortion and/or mastitis, higher age, fewer days in
milk, and poor conception rates [2]. It has further been reported that 55% of lactations are associated
with lameness-related health disorders, and 15% with mastitis or uterine infections [2]. This shows
that, despite advanced knowledge concerning the management of dairy cows, many unsolved issues
remain. Ensuring a healthy life for each individual cow has become a multifactorial challenge, which is
difficult to manage under current conditions, particularly because reproduction, feeding, milking,
and health aspects are considered separately (Figure 1). Novel methods in data analysis may now
offer new approaches to aid synthesizing the systematic structure of dairy farms and so boost future
management decisions.
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Agricultural production data are widely available, but they are not used enough to inform on
production-relevant tasks. To date, we can only estimate their potential, and thus utilizing these data
is challenging. Therefore, only a few farmers recognize data management as a chance to improve
their business. In human medicine, where the potential of machine learning (ML) algorithms has been
recognized, the application of these techniques has improved diagnostics in a number of diseases
such as heart disease, diabetes, dengue fever, and hepatitis [3]. Machine learning models such as
random forest can hold categorical data and are insensitive to missing values. Furthermore, they have
the power to analyze large datasets, which often are difficult to evaluate with traditional statistical
models [3]. This highlights the prospects that ML techniques could offer for dairy farming. Analyzing
large integrated datasets may allow providing farmers with better decision support systems, and as
such, assist them to increase the wellbeing and efficiency of their animals.

Advances in sensing technologies have led to an increased availability of sensors in farming [4].
Milking machines, which deliver daily milk yield data, are the most commonly implemented sensors in
dairy farming. Systems that monitor individual animal behavior, such as rumination, estrus, location,
or rumen pH, are also becoming available [5–7]. Furthermore, many farmers’ record data on the
cows’ individual concentrate feeding behavior. To date, however, only a few Swiss farmers use
such precision technologies in practice, whereas higher adoption rates can be found in Australia,
where particularly farms with larger herds implemented more technology [8,9]. Electronic cow
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identification and herd management software were the technologies with the highest adoption rates
in Switzerland [8]. In the future, farmers expected the largest adoption of technologies in automatic
sorting gates and estrus detection (72.9 and 76.4%), respectively [8]. In addition to these automatically
collected sensor data, milk testing is conducted, and feed advisors regularly perform laboratory analysis
on feed composition. Furthermore, weather stations provide continuous data on climatic conditions.
The farmer typically stores and processes some of these data in a feeding and herd management
software, but it is difficult to jointly analyze the different data.

ML algorithms, among other methods, present an approach to analyzing these datasets, which are
increasingly becoming available on many farms. Machine learning is a subfield of artificial intelligence [10].
According to Liu [11], ML intends to effectively reproduce human learning behavior, allowing for the
automatic detection and acquisition of new information. The algorithms are hereby capable of detecting
clusters in large datasets with numerous variables, predicting the onset of events, and learning from
the data provided [12]. These ML approaches fall into the categories of supervised, unsupervised,
and semi-supervised learning. Supervised learning requires labeling data and a training dataset, whereas
unsupervised learning evaluates the data independently without labeling or a clear target variable;
furthermore, semi-supervised learning approaches use datasets with only a small proportion of labeled
data [12]. To date, new tools, and more specifically statistical, packages to process data have become
available, making it easier to analyze data with artificial intelligence. While traditional statistical
models evaluate data according to a certain theory, in ML approaches, the evaluation is data driven [13].
Therefore, some statisticians suggest that ML algorithms will usually provide a better result because
they learn from the data provided, whereas traditional analysis methods are biased by the researcher’s
hypothesis [13].

The current review aims to evaluate how ML approaches can promote the processing of on-farm
sensor data to develop better decision support for farmers and ultimately improve their management.

2. Materials and Methods

A literature search covering the period between January 2015 and June 2020 was performed to
create an overview of ML-related studies published in the dairy sector over the past five years. Citing
additional literature was permitted if it appeared relevant to the field and indicated the potential of
ML algorithms. The literature search was performed using Google Scholar and Scopus; however,
due to its advanced search options, the analysis focused on Scopus searches. The Scopus search was:
“(TITLE-ABS-KEY/ (“Search String”) AND PUBYEAR > 2014 AND (LIMIT-TO (DOCTYPE, “ar”) OR
LIMIT-TO (DOCTYPE, “re”)).” See Table 1 for search strings.

Inclusion criteria were defined as peer-reviewed articles and review papers published in English.
Due to the high number of search results, only studies in which the search string was found either
in the “Title” or in the “Abstract, Title, or Key Words” were evaluated. Exclusion criteria comprised
conference proceedings and studies in languages other than English. While analyzing relevant papers,
the snowball method was used, and significant cited literature was included [14]. All studies were
screened for their relevance to the field and stored in the referencing software Endnote X8 (Clarivate
Analytics, Philadelphia, PA, USA). The relevance was defined as cow-related studies concerning
dairy science or agriculture, whereas studies concerning dairy products or other related topics were
considered as irrelevant. If the paper appeared valuable to the field by judgment of the author, it was
read in full and important aspects were highlighted. While the search results considered only those
studies that used or discussed ML as their main methodology, non-ML studies were additionally
cited in order to put the ML studies in a context. In total, 97 papers were included in the results and
discussion section of this review.
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Table 1. Search strings and results of peer-reviewed papers (articles/reviews) in Scopus and of all
articles in Google Scholar since 2015; searches last performed on 24.06.2020 and 25.06.2020 in Scopus
and Google Scholar, respectively. The indents in the column “search string” indicate the hierarchical
structure of the search strings.

Google Scholar Scopus

Search String In Title In Document Article Title Abstract Title
Keywords In Document

Machine learning agriculture 81 39,100 17
(13/4)

869
(808/61)

18,453
(17,133/1320)

Machine learning dairy 33 15,900 19
(19/0)

109
(102/7)

2192
(1861/331)

Random forest dairy 3 15,900 3
(3/0)

46
(46/0)

1055
(930/125)

Cluster* dairy 41 18,200 36
(35/1)

1174
(1143/31)

14,714
(12,075/2009)

Neural networks dairy 12 15,800 12
(12/0)

112
(108/4)

4,133
(3368/765)

Deep learning dairy 9 15,900 5
(5/0)

25
(21/4)

863
(654/209)

K-Nearest neighbor dairy 0 379 0 10
(10/0)

123
(114/9)

Bayesian models dairy 1 12,600 4
(4/0)

213
(209/4)

4318
(3920/398)

Support vector dairy 2 16,800 2
(2/0)

51
(49/2)

1803
(1464/339)

Decision tree dairy 3 16,600 3
(3/0)

68
(67/1)

1449
(1222/227)

Ensemble learning dairy 0 4010 0 13
(12/1)

298
(249/49)

3. Results and Discussion

The current review demonstrates the significance of ML in agriculture by finding 869 articles
mentioning the search string “machine learning agriculture” and 109 containing “machine learning
dairy” in their abstract, keywords, or title. The number of search results for our search strings reflect
the broad interest in the field of ML by the scientific community (Table 1). However, finding and
analyzing the most meaningful results within the search strings was difficult. We found 101 search
results that pointed to ML-related data evaluation methods in their title; of these, 84 papers concerned
dairy science (Table 1). There was considerable overlap of search results for some search strings, as they
presented subfields of other search strings.

Despite these results, finding and reviewing the most relevant papers is problematic because
numerous ML methods do not require mentioning these keywords in the document. In fact, it may
even be possible that the application of specific and relevant methods is less likely to be mentioned
under the search string “machine learning,” whereas less specific studies would be more likely to use
this general term. This makes it difficult to find and analyze the most relevant literature. This has
similarly been reported for a review on Big Data, which pointed out that, within the 613 peer-reviewed
articles that resulted from their Big Data-related search strings, only 20 were considered most relevant
and 94 were considered relevant to the topic, while the others only had little significance [15]. In the
current review, we accounted for this issue by including search strings addressing the most popular
ML methods. Although this strategy resulted in finding additional publications, we cannot conclude
that it enabled us to find all relevant papers, as there are too many methods that can be referred to
differently in each study. Within the search results, it became evident that most method-related hits
appeared for the ML method “cluster*” (Table 1). This could be because various clustering methods
employ the word “cluster”, while other methods do not use similar wordings. Therefore, the high
number of search results containing the word “cluster*” should not be overrated. Due to the large
number of articles published between 2015 and 2020, we were only able to screen articles in which the
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title, abstract, or keywords contained the search strings. In total, 97 articles were considered in this
review. The most research studies were performed on Irish and American data (Figure 2).
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Ultimately, it feels necessary to mention that ML methods are no more than an alternative approach
for data evaluation. Thus, many articles will feel no need to point out the general term ML in the title
of their paper, whereas authors would normally mention the specific method of data evaluation in the
abstract. Thus, we acknowledge that we may be missing relevant literature that did not fall into the
search strings, but we are confident that we can give an insightful outlook on current ML applications
in dairy science.

3.1. General Findings and Outlook

Data models have a great potential for agricultural farms. However, O’Grady and O’Hare [16]
evaluated the availability and implementation of models, sensors, and Internet of things devices in
agriculture and described that, despite the existence of numerous agricultural models, their implementation
in praxis is not satisfactory. This may be due to most models focusing on one subdomain, which will
possibly make them less effective [16]. None of the evaluated research improved their sensors’ outcomes
by combining their data with additional information [16]. Furthermore, the current perception of
sensor benefit in agriculture does not justify the cost [16]. In contrast, ML algorithms may potentially
be able to amplify the efficiency of these tools. Both Wolfert et al. [17] and Kamilaris et al. [18] stated
that Big Data in Smart Farming is currently in the stage of early development. However, only two years
later, Cabrera et al. [19] proposed their idea of the “dairy brain”, which would continuously apply ML
algorithms to existing data commonly produced on dairy farms. These data originate from feeding
schedules, herd management systems, and the milking parlor or automatic milking system software.
Integrating different data streams would allow for improved management decisions [19,20]. Models
like linear discriminant analysis or fuzzy logic can hereby detect events and initiate alarms [20].

3.2. Management

Farmers should be interested in their data and ML could aid their future management decisions.
The three main drivers that motivate farmers to implement Big Data applications are as follows: (1)
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moving their business to the next level, (2) managing the farm as a system where data from subsystems
can be used to improve the whole farm, and (3) enabling long-term and informed decision-making [21].
However, the infrastructure and tools to use such data are often still missing in the animal science
community, and, therefore, large integrated datasets, which are essential for the development of reliable
neural networks, are not available [22]. Farm management is possibly the primary source for data
on most dairy farms. Many farmers hereby continuously produce semi-labeled data, which would
be extremely valuable for the training of ML algorithms. An example is as follows: Reproduction
and activity data give the farmer an indication on the ideal timing of insemination. The farmer
inseminates the cow, documents this event in the herd management system, and, later on, labels the
data by confirming both the conception and the calving date, and thus defines if the estrus detected
by the monitoring system was true or false. Future prediction models could use this information to
improve estrus detection. Thus, farm management data could be evaluated with a variety of concepts
in mind, such as the classification of farms, estimation of energy and water requirements, or analysis of
yield data.

3.2.1. Classification of Farms

Machine learning, or more specifically, k-means clustering, allowed to discriminate different levels
of farm mechanization by classifying conventional dairy farms [23]. This information is valuable for
both commercial companies, which can use this information to address the farmers’ requirements
and as such improve marketing activities, whereas federal offices can understand different levels of
mechanization and use this information to improve political measures. Analogous work used cluster
analysis (CA) to evaluate why farmers in Ireland were hesitant to adopt a spring rotation grazing
planner [24]. Principal component analysis (PCA) and CA allowed for determining high adopters and
low adopters and revealed that low adopters presented higher levels of constraint with specific regard
to resource planning [24]. Such additional information allows better addressing communication and
evaluating whether the farmers’ requirements are met by the applications offered [24].

3.2.2. Prediction Models for Water and Electricity Consumption

Machine learning algorithms were able to improve the prediction of water and electricity
consumption on pasture-based dairy farms [25]. The real-time prediction error was hereby enhanced
by 54% for water (support vector machine) and 23% for electricity consumption (artificial neural
network) compared with multiple linear regression models from previous studies [26]. This offered
a tool for dairy farmers and policymakers that allows analyzing environmental factors of pasture-based
dairy farming [25–27]. The previously developed support vector machine could predict the electricity
consumption of grassland-based dairy farms with a relative error of 10.4% at the farm level and 5.0%
across all farms included in the study [28]. The authors hereby also presented a practical approach of
reducing energy demands by 4% when groundwater was used to precool the milk [28]. This shows
how ML tools can quantify measures to improve efficiency, and therefore, aid the farmer in making
informed management decisions.

3.2.3. Performance Characteristics

Predicting the milk yield of individual dairy cows can help a farmer manage the herd more
efficiently, for example, by supporting the early detection of diseases. Automatic milking robots and
milking parlors offer continuous animal-specific data for this use case. Dynamic linear modeling was
able to forecast the cows’ individual milk yields per milking from automatically collected milking
robot data [29]. The study used a large dataset (n = 970,463 observations from 52 farms) of existing,
automatically generated data to predict management relevant yields. The model further demonstrates
the advantages of combined parameter evaluation, as both the somatic cell count (SCC) and the
interaction between SCC and lactation stage affected yield prediction. Machine learning techniques
also identified 15 variables from dairy herd improvement metrics that allowed to predict milk yield [30].
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Artificial neural networks were hereby able to predict the first test day milk yield of heifers with a mean
error below 4 kg. Furthermore, the authors showed a positive correlation between a high bodyweight
and days in milk with first-day test milk, which exhibited a higher predicted milk yield [30].

Brotzman et al. [31] published a further prime example for the potential of ML approaches.
The authors used PCA and CA to analyze dairy herd improvement data from 557 dairy herds with
more than 200 cows each, including 319,934 cows and 22 variables (preselected from 992 measured
variables). A PCA was applied to evaluate the 16 most important parameters from this dataset [31].
The average distance method for CA then allowed for an automatic classification of herd performance
without a preconceived outcome [31]. Such a classification can help farmers to make informed feeding,
culling, and breeding decisions as they learn more about the individual cows’ health, performance,
and reproductive characteristics.

3.3. Physiology and Health

Sensors that monitor dairy cow physiology and health are commercially available [32,33]. However,
due to a lack of publications on the performance of the underlying algorithms, it is not clear how
well the decision support offered by these sensors currently performs. Regardless, scientists are now
increasingly applying ML algorithms to use processed raw data from such sensors to develop decision
support models.

3.3.1. Body Condition Scoring

One way to observe the physiological state of cows is to monitor their body condition score (BCS).
Advisors recommend regular BCS scoring to monitor both the individual cows and the herds’ health
status [34]. The BCS (on a scale of 1–5 or 1–10) reflects the cows’ fat reserves, and can therefore indicate
the requirement of changes in feeding or reproduction management [35,36]. Visual BCS scoring is
time-consuming and requires expert training. Therefore, researchers aim to automate the scoring
procedure. Machine vision has been used to automatically extract BCS via two-dimensional (2-D),
three-dimensional (3-D), and thermal imaging, although these systems consider fewer body regions
than are scored during direct observation BCS scoring [37–39]. Song et al. [34] addressed this issue
and evaluated top-view images from two cameras that captured multiple areas of the cows’ body and
successfully used the nearest neighbor classification model to classify BCS from an expanded selection
of body regions. With this approach, the researchers achieved a classification sensitivity of 0.72 [34].
Furthermore, BCS was obtained from depth images using transfer learning where the best model
achieved prediction accuracies of up to 96.82% (with a human error range of 0.5) [35]. However, larger
and better distributed datasets are needed to evaluate the true prediction quality [35]. The application
of DenseNet allowed for producing a model with fewer parameters, which performed better on BCSs
below three [40]. Furthermore, adapting the AlexNet architecture to perform BCS and using a 19 layer
deep convolutional neural network (VGG19 model) to classify the data resulted in a 67.39% success
rate [41].

This set of research showed that ML methods can already be used to extract information from
images and thus be employed within the management of dairy cows, for example, to adapt feeding
strategies. However, the performance of such algorithms can still be improved. To achieve reliable ML
predictions or classifications, decent quality of labeled data is important. It has recently been reported
that the interobserver agreement of human BCS scorings (considered as the gold standard) is poor
(concordance of correlation: 0.67), whereas the automatic system (BodyMatF, Ingenera, Switzerland)
was more consistent in measuring the same score for a cow in another month than the human
observer [42]. Therefore, future research needs to ensure high quality and consistency of their gold
standard prior to the application of ML algorithms. In order to offer systematic decision support to
the farmer, BCS data should be analyzed with feeding, milk yield, behavioral, or even meteorological
data. It should be evaluated how these parameters can be best adjusted to improve the cows’ overall
performance. An example: Environmental temperatures affect energy demand, which makes it sensible
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to adapt the feeding strategy to the climatic conditions. If this is not done, it is likely that the cow
will react with lower milk yields, a drop in BCS or a change in behavior. This information could be
implemented to create direct feedback to the farmer.

3.3.2. Lameness

Lameness is one of the largest health-related issues in dairy farming, presenting one of the
three main reasons for culling [43]. Therefore, researchers have attempted to detect lameness in
dairy cows [44]. Most studies do not report on the efficiency of lameness detection, but rather give
indications on behavioral changes, which makes it difficult to implement the findings in early warning
systems [44], yet combining behavioral and gait parameters would offer the best approach for early
lameness detection. Another approach is to fit deep learning algorithms, which detect lame dairy cows
from video material [45]. This approach offers a low-cost and contactless alternative to sensors that
need to be fixed to the animal [45]. The authors achieved a detection accuracy of 98.7% and a false
positive rate of only 0.03. However, they only categorized “lame” and “not lame” cows in their dataset
without specifying the score of lameness; the latter information is important for data interpretation,
and as such, early detection [45]. Hudson et al. [46] looked at lameness from a different angle and used
a dataset from 12,515 dairy cows in 39 herds to evaluate the effect of clinical lameness on reproductive
success. Despite a discrete time survival analysis revealing a large correlation of the two parameters,
a probabilistic sensitivity analysis exposed that the overall lameness occurrence would hardly affect
the herds’ reproductive performance [46,47]. It is also possible to use standard management data
to predict herds at risk of developing lameness [48]. A standard decision tree performed best in
predicting herds at risk (sensitivity = 0.56, specificity = 0.89) [48]. Implementing herd management
data for decision-making, without the requirement to apply additional sensors, would offer a great
and low-cost opportunity to supply farmers with better management strategies.

3.3.3. Heat Stress

Environmental factors, such as heat stress, can cause physiological changes in dairy cows that
impact their affective state, biological functioning, as well as the natural living behavior [49]. Therefore,
evaluating the effect of heat stress on cows presents another interesting application for the use of ML
models. Although the relationships between heat stress and its physiological effects on dairy cows
have been well documented, ML now allowed predicting and ranking physiological responses to
environmental heat stress [13,49]. Nonlinear models (neural networks and random forest) hereby
performed best in predicting the respiration rate, skin temperature, and vaginal temperature (R2: 0.61,
0.85, and 0.472, respectively) [13]. Furthermore, the ranking of environmental stressors showed that air
temperature affected these physiological responses of dairy cows most, whereas wind speeds played
a minor role [13]. These algorithms allow calculating thresholds of environmental parameters and can
support farmers to decide when it is appropriate to implement heat stress reduction measures.

Cluster analysis further detected that physical activity of cows milked in automatic milking
systems depended on temperature and humidity [50]. Physical activity was hereby lower in winter,
whereas lower humidity levels increased the cows’ physical activity [50]. Future studies should include
additional parameters reflecting the physiological state, yields, and interindividual interaction [50].
Furthermore, they should cover either a full lactation period or a full calendar year [50]. Genetic
selection for high yielding dairy cows is linked to a lower tolerance to heat stress [51]. This in turn
means that ML models could consider these aspects to ensure that genetic selection is not performed at
the cost of tolerance to such stressful situations.

These findings are particularly interesting if we consider their significance in terms of being able
to monitor any interference of environmental parameters during the analysis of studies with a different
focus. As an example, this information could be used to analyze whether feeding strategies should be
adapted to humidity levels, temperature, or even airspeed. It becomes evident that ML established
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first results that are not yet directly applicable in praxis, but researchers can now use these results in
further analysis.

3.3.4. Mastitis

Detecting diseases, such as mastitis, early would favor both economics and the cow’s welfare.
Autoregressive integrated moving average models and CA were able to detect seasonal trends of
mastitis pathogens in quarter milk samples, which are regularly assessed for microbial examination [52].
These classification models further detected that mastitis pathogens can be classified into both
contagious and environmental categories, whereas previously, it has been reported that they could
only be either one or the other [52]. The best marker for mastitis is the SCC. Being able to predict this
marker from existing, automatically collected data, would aid the farmers decisions to prevent the
onset of this particular disease. Data from a farm with 2,400 dairy cows and a total of 364,249 milking
instances were recently analyzed to accurately predict SCC (percentage of accuracy: 84.9–82.23%) [53].
This data was automatically collected by an electronic inline monitoring system, where electronic
conductivity, followed by lactose and fat content, had the largest weight in the prediction of subclinical
mastitis [53]. The sensitivity rate for all tested models was over 93%, whereas the specificity was not
satisfying, where naive Bayes had the highest specificity (39.7%) [53].

3.3.5. Metabolic Status

Dairy cows are most susceptible to metabolic disorders, especially during early lactation. Detecting
these conditions while they are only just developing would allow reacting before the disease could have
a major effect, and thus reduce costs. Decision tree and random forest models were able to distinguish
milk fever and displaced abomasum as the primary culling reason during the transition period of dairy
cows in early lactation (up to 120 days in milk) [54]. Such algorithms could be implemented in practice
to detect farm-specific risk factors [54].

Further, hyperketonemia is often used to detect poor metabolic adaptation syndrome in dairy
cows, but it does not always prove reliable [55]. Therefore, Tremblay et al. [55] evaluated common
metabolic health parameters with PCA and CA to define alternative separation values to better detect
the onset of the syndrome. Future research should use this information to develop a prediction model
for poor metabolic adaptation syndrome [55]. Cows’ metabolic health was also derived from cows’
plasma levels by applying CA [56]. In addition, it was possible to predict the cows’ metabolic status
from standard farm data by applying random forest and support vector machines [56].

Attempts to detect subacute ruminal acidosis by analyzing behavioral anomalies with ML
algorithms have failed [57]. Although it was possible to detect 83% of cases using k-nearest neighbor
regression, the results were not useful in practice due to a false positive rate of 66% [57].

3.3.6. Infectious Diseases and Spatial Analysis

Machine learning approaches can be useful to inform on the spread of infectious diseases.
The Mycobacterium avium subspecies paratuberculosis causes paratuberculosis disease in dairy cows
and presents a large economic threat to farmers [58]. In terms of infectious disease, research has
particularly addressed the spread of infection. Clustering methods were able to detect seasonal
clustering of paratuberculosis and revealed that animals born in summer were most likely to be infected
by the highly contagious mycobacterium [59]. This information directly allows amending management
decisions that minimize the risk of infection by timing calving accordingly. Further static and temporal
networks were able to evaluate the role of direct and indirect contact networks in the spread of the
disease [60]. This study was able to evaluate integrated datasets from the Italian national bovine
database, as well as veterinarians’ farm visit data in a new context [60]. The analysis hereby revealed
that the indirect spread of the disease by veterinarians visiting multiple farms played a much larger role
than initially anticipated [60]. Geospatial mapping allowed to map hotspots of the disease outbreak [60].
The concept of spatial analysis is relatively new to precision livestock farming, although it has become
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part of daily life in other sectors. Google has implemented the utilization of Big Data; for instance, if
increasing searches in Google address symptoms that include fever, cough, or illness, chances are high
that flu season has started, and thus, it makes sense to advertise flu medication. Selemetas et al. [61]
adapted this approach for risk mapping Fasciola hepatica infection in Irish dairy cows. Commonly
known as liver flukes, Fasciola hepatica cause the parasitic worm infection fasciolosis [62]. Currently, the
Ollerenshaw index, which considers a combination of rainfall, days of rainfall, and evapotranspiration,
is used to predict Fasciola hepatica outbreaks in Ireland [62]. Milk samples from 500 farms were now
combined with 108 variables covering environmental parameters such as soil, climate, and geospatial
data to determine risk factors [62]. A random forest model showed that average rainfall was the
most important predictor for the disease, followed by temperature, where temperature and rainfall
were predictors in different constellations of means [61]. Furthermore, a strong prevalence of positive
tests was detected in the southern regions of Ireland [61]. In this context, spatial analysis could offer
a wide range of potential to limit the spread of diseases, including those transmitted by insects, such as
blue tongue.

3.4. Reproduction

High-yielding dairy cows often come at the cost of poor fertility, leading to a greater number
of calving to conception days, which is associated with high culling rates in Holstein Friesian dairy
cows [2]. Recognizing estrus is vital for good conception rates, but this can be difficult, as only 50% of
cows show the behavior “standing to be mounted”, which is considered the gold standard for estrus
detection [63].

3.4.1. Herd Management

Machine learning may be able to offer new approaches, as large labeled datasets are available
at a transnational level through central herd management systems. Cook and Green [64] followed
this approach and used a dataset from 8750 cows in 33 herds to perform multilevel logistic regression
model analysis; they found that the conception rate depended on the cows’ production characteristics.
Furthermore, the value of different multivariate models in terms of predicting conception rates were
compared in Irish dairy cows [65]. Logistic regression models were the most promising to predict
reproductive success for implementation in decision support systems [65,66].

Hudson et al. [67] stressed the importance of putting the results of data models into context,
which is why they applied probabilistic sensitivity analysis to a dataset in which they investigated
whether routine milk yield data could explain conception rates. Despite multiple studies describing
a correlation between mastitis and reproductive success, these researchers found that this could hardly
influence fertility rates at the herd level [47,67].

3.4.2. Behaviors Associated with Reproduction

Aungier et al. [68] created activity clusters to examine the potential for estrus detection and
successfully detected estrus in 90% of cows, while 10% of estrus events were missing and 17% were
false positive. The authors described that their results were better than those of former studies as
their dataset only included data from cows that were visually observed in standing estrus; therefore,
further analysis would be necessary to determine the significance of activity clusters during estrus [68].
Abel et al. (2017) used a random forest classifier to identify lying, standing, walking, and mounting
behavior in bulls on pasture from accelerometer data and found high correlations for lying and
relatively high correlations for standing, walking, and mounting behavior compared with camera
observations. The study shows that implementing ML can give further insight for reproduction
management in bulls by providing additional information on the bulls’ behavior through automated
monitoring. Commercial sensors currently available on the market as animal monitoring systems have
already implemented some of these algorithms; however, the underlying algorithms have not been
published. The advantage of successfully utilizing reproduction data would be twofold; improving
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conception rates can, first, reduce costs, and second, increase the longevity of cows. It is evident that,
before becoming useful to farmers, these models need to be further developed.

3.4.3. Genetic Selection

The first approaches of genetic selection evolved near the turn of the twentieth century. Since then,
numerous statistical approaches were implemented to evaluate dam–sire performance [69]. Machine
learning now offers the opportunity to predict outcomes from messy data even when explanatory
variables are missing, yet at the disadvantage of performing as a “black box” [69]. Unbiased and reliable
genomic predictions of Holstein sires’ lifetime merit were made by applying boosting algorithms from
weak learners, where it was possible to predict genomic outcome [70]. Furthermore, if a PCA was used
for variable selection and the genomic matrix was used as input, neural networks were able to predict
milk yields (r = 0.67) [71]. Additionally, a random forest model was able to predict genomic regions
that were associated with residual feed intake [72].

3.4.4. Dystocia and Calving

Dystocia is a multifactorial problem in dairy cattle, especially at first calving. To respond to it
appropriately, it is valuable to detect the condition early. Zaborski et al. [73] noted that ML offered
new ways to detect dystocia and compared the performance of random forest and boosted tree
models. Between the two models, boosted trees showed a higher sensitivity for detecting dystocia,
but the specificity of the model was too poor to be used in praxis, as it would create too many
false alarms [73]. Therefore, to date, we can see potential opportunities but cannot give reliable
practical recommendations.

Calving prediction is an additional area where sensors can aid management decisions. Previous
research has retrospectively been able to establish clear connections between animal behavior
(rumination and lying bouts) and the onset of calving [74]. ML now offers the opportunity to
predict calving events. Borchers et al. [75] used a variety of ML approaches to predict calving and
found a high sensitivity and promising specificity. The authors used activity, lying behavior, and
rumination time in neural networks and were able to create alerts 8 h before calving with a specificity
and sensitivity of 80.4% and 82.8%, respectively. In contrast, the prediction of the 8-h period prior to
calving was successful without including rumination data at specificity and sensitivity levels of 83.8%
and 79.2%, respectively. Although this indicates good predictive values, the sample size included
only n = 53 calving instances, thus, it would make sense to test the trained model on a larger dataset.
Furthermore, Fenlon et al. [76] correctly predicted 75% of calving instances using a neural network and
multinomial regression models, with 3.7% and 4.5% errors of the predicted probability, respectively.
To date, some sensors that promise early warnings for calving detection are available on the market;
however, little research defining the reliability of such alarms is available. The reviewed studies
indicated that the prediction of both estrus and calving can be improved through ML algorithms.
However, the prediction outcome is not yet satisfactory. The field of anomaly detection offers a wide
range of potential for future research. Particularly, the combination of different parameters could add
new insights and may increase the reliability of predictions.

3.5. Behavior Analysis

The affective state of animals has recently gained attention, as it could be the key to assess
animal welfare [77]. Although numerous methods for the assessment of the affective state, or feelings,
of the animals are available, they are at risk of producing false positive results [77]. Behavioral
analysis provides direct feedback on animals’ physiological state; therefore, sensors that measure these
behaviors have become available.
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3.5.1. Sensor-Based Behavior Classification

Sensors in dairy farming are often based on the classification of accelerometer data. The ultimate
idea bringing value to these sensors is providing decision support to the farmer. In 2013, Rutten et al. [33]
reviewed sensors in dairy farming and reported that although a number of sensors were available
to monitor the behavior of dairy cows, none of them were able to provide decision support for the
farmers. Since then, the systems have evolved. Machine learning now offers the opportunity to
utilize additional, more indirect data sources. However, only little is known about the quality of
decision support systems in praxis. Determining behavior during grazing, for example, has been highly
challenging due to connectivity issues that make it difficult and costly to install sensors and receive their
information outside of the barn [32]. Behavioral models were now able to distinguish between grazing,
walking, and resting behavior from global positioning system (GPS) data in pasture-based dairy cows
through temporal positioning [78]. All classifiers hereby distinguished walking with a classification
accuracy of 0.94 or more [78]. JRip, J48, and random forest classified resting with an accuracy of 0.85 or
more, whereas all models classified grazing behavior rather poorly (accuracy: 0.16–0.72). The best
classifier, JRip, reached a weighted average classification accuracy of 0.85 with a false positive rate
of 0.1 [78]. This research was continued to predict cow behavior from GPS locations at a 5-s logging
frequency and successfully identified the change points from the behaviors of walking, grazing,
and resting (for walking and standing, 90.2% of change points were identified within 4.45 min of the
true changepoint) [79]. This analysis was performed by applying the R package “changepoint” [79,80].
The application can monitor animal behavior with a very low sampling frequency, allowing for
prolonged battery life, although the monitoring time still indicates potential for improvement.

As proposed in previous research, a team of scientists recently applied ML algorithms to improve
behavior analysis based on data from an accelerometer that was mounted to the cow’s neck and leg [81].
When the accelerometer was mounted on the neck, they achieved good results for the classification of
feeding behavior (95–98% sensitivity and 88–92% specificity), but when it was mounted on the leg,
they reached good classifications of lying behavior (sensitivity and specificity > 93%) [81]. Support
vector machines performed better than the other tested algorithms and are additionally advantageous
in that they require few computing resources with reduced energy needs after the model training
is complete [81]. A good prediction of both behaviors was achieved using data from both the neck-
and leg-mounted sensor [81]. Data from radiofrequency identification (RFID) sensors, which are
implemented in dairy farms with automatic milking systems in a standard capacity, were employed
within a neural network to track cows [82]. The authors tracked cows for up to 20 min after passing
the RFID recognition [82]. Although this approach shows some potential, further work remains before
we can conclude the practicality of use in a standard application.

The analysis of social networks also became possible through ML methods. Boyland et al. [83]
applied a number of ML approaches, including supervised learning and clustering, to examine the
social structures of dairy cows in commercial housing systems from proximity logger data. They found
that animals only formed clusters within the specific animal and showed only little social stability
within the herd structure. Contrarily, Foris et al. [84] demonstrated that cows formed relatively stable
contact networks, and that these contact networks can influence the individual cows reactions within
the group [85]. ML could offer the opportunity to continuously monitor the stability of such groups
and their effect on affective state or physiological parameters.

3.5.2. Vision-Based Behavior Monitoring

Analyzing behavior and social networks from video material would offer the advantage that
it is not required to install sensors to the animal. Vision-based analysis of dairy cows has proven
challenging in the past due to the difficulties of identifying the individual cow. Shen et al. [86] recently
addressed this issue by applying convolutional neural networks and implementing the Yolo model,
as well as the AlexNet model for individual cow identification. Cows were identified with an accuracy
of 96.65% [86]. However, it must be pointed out that these algorithms only work well for colored cows
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and have problems identifying black cows [86]. This is also a problem in the identification of other
breeds with uniform markings and colors or both, such as Aubrac, Grey, Angus, Limousine, or Brown
Swiss cattle. Jiang et al. [87] further classified cows’ heads, backs, and legs from images by training
a FLYOLOv3 model; they achieved an accuracy of 99.18%, a recall rate of 97.51%, and an average
precision of 93.73%. Particularly, the combination of animal identification with additional algorithms,
such as the combination with BCS, offers novel ways of using physiological and behavioral traits for
management decisions [40]. The capabilities of neural networks are expanding rapidly, as shown by
Salau et al. [88] that were able to implement social network analysis from dairy cows by analyzing
video data from multiple cameras. To date, the authors had to mark the cows by hand, but this could
be solved through improved neural networks in the future. Information on social networks in dairy
cows could not only allow learning more about their social structures and behaviors but may also allow
advancing development of dairy housing systems; it could further be used to detect abnormalities in
behavior that could be integrated into decision support systems.

Guo et al. [89] recently developed a machine vision model for the recognition of calf behavior by
combining background subtraction and inter-frame difference models. They managed to distinguish
behaviors of calves housed in igloos with detection rates of over 90% (pen entering: 94.38%, pen leaving:
92.86%, standing or laying in a static position: 96.85%, and turning: 93.51%), as well as feeding and
drinking behaviors, at near 80% (79.69% and 81.73%, respectively) [89]. Transferring this study to
a loose housing dairy barn would remain challenging, as it requires the installation and combined
evaluation of multiple cameras within the barn.

3.5.3. Anomaly Detection

Measuring behavior of cows offers a great opportunity to quantify the animals’ normal behavior,
and therefore, detect anomalies of this behavior when the animal has altered its behavior due to a health
issue. Machine learning methods can predict the normal behavior of the animal and create an alert
when actual and predicted behaviors differ from a defined threshold. A variety of systems using
this approach are already implemented in commercial products. The Data Driven Dairy Decisions
for Farmers (4d4f) framework created an overview of sensors currently available to monitor animal
behavior [4]. For instance, Smartbow is an eartag-based accelerometer that detects anomalies of
rumination behavior and activity levels that inform the farmer about problems or detect estrus,
as well as locate animals in the barn [6], while the SmaxTec Rumen PH bolus can be used to detect
ruminal acidosis [7]. False positive alerts are a significant issue for some systems, as too many such
alerts will be annoying to the farmer in praxis.

3.5.4. Behavior Related to Metabolic Status

Behavior monitoring offers additional fields of application as the cows’ behavior gives indications
of their physiological state. Farmers could use this information to detect and react to physiological
changes. A modification in feeding behavior, for example, can indicate the onset of health disorders at
an early stage [90]. González et al. [90] detected 80% of acute health disorders in dairy cows one day
before their diagnosis by applying an algorithm that creates an alert if a cow’s feeding behavior drops
below its seven-day average minus 2.5 standard deviations [90]. Particularly, rumination and feeding
behavior are possible indicators for improving dairy cow management. Wagner et al. [57] evaluated
whether ML algorithms could be useful to predict subacute ruminal acidosis from positioning data
that reflect cows’ activity. They reported that, among the tested ML algorithms, k-nearest neighbor
performed best, with 83% true positives; unfortunately, the false positive alert rate was 66%. This shows
that it is still necessary to solve these issues for anomaly detection.

Data acquisition of animal behavior in research trials is often linked to installing sensors on the
animal, followed by a data export and analysis procedure, making it difficult to actually use these
data for early warning systems. Ultimately, the investigated studies showed that the predictions of
metabolic health exhibit high potential but are currently not satisfactory for implementation in practice.
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This raises questions about commercially available products that use, but have not published studies
evaluating the performance of such algorithms.

3.6. Feeding

Precision feeding of dairy cows presents an opportunity to improve the herds’ efficiency as the
feeding regime directly affects the cows’ milk yield [91]. Therefore, animal-specific feeding regimes
have been discussed, where intake predictions have become more relevant. Dorea et al. [92] predicted
dry matter intake of silage in dairy cows using milk spectral data from infrared spectroscopy and
applying partial least squares and artificial neural networks. However, adapting the feeding method
did not affect the performance of high-yielding dairy cows in recent research, indicating that concentrate
use could be handled more efficiently [93,94].

3.6.1. Group Feeding

Cluster analysis can improve the analysis of animal-specific data. Cluster graph models were
successfully used on time series data of cows milked in automatic milking systems to categorize
herd characteristics and classify cows based on five different parameters (number of daily milking
procedures, parity, average daily activity, milking regularity, and cow body weight) [95]. To analyze
behavioral and production features, k-means clustering models were implemented for each of these
parameters [95]. This information can be processed to automatically group the animals into individual
feeding groups.

The idea of using existing farm data—more specifically, herd management, milking system,
genetic and genomic, monthly milk testing, feed, and milk processor data—for real-time continuous
decision making was recently introduced [19]. Machine learning methods were applied to large
datasets, successfully deriving nutritional groups, detecting cows at risk of clinical mastitis, as well as
continuously predicting the onset of clinical mastitis, with relatively high levels of sensitivity and
specificity [19]. Knowing and implementing this information can aid to improve both the health of the
individual cow and the entire herds’ fitness.

Glatz-Hoppe et al. [96] further used linear regression models to evaluate a dataset consisting
of 7.3 million milk recordings and were able to show that traditional feeding strategies were not
ideal. The data showed that, based on a breed-specific threshold of fat:protein ratio and a protein
minimum value, it was possible to estimate a lack of energy and thus estimate the risk of ketosis [96].
This shows how large datasets that are produced irrespectively of experimental research questions can
create immense advances in informed feeding strategies. Evaluating such datasets with predictive ML
models could allow integrating further parameters, such as behavior or climatic conditions, to create
an even more advanced and adapted feeding regime.

3.6.2. Grazing

Consumers’ demand for grazing dairy cows increased with their awareness of animal welfare;
research has correspondingly aimed to improve the efficiency of grazing dairy systems by implementing
sensor technologies. Shalloo et al. [32] stressed that grassland-based dairy systems have economic
advantages, as the direct utilization of grassland strongly reduces production costs. This hypothesis
is supported by Gazzarin et al. [97] that reported a significantly higher income in grazing systems
through a noteworthy reduction of labor costs. Grazing systems are further beneficial, due to calving,
and thus peak energy demands being better synchronized with peak grass growth [98]. Efficient
grass utilization and cow health, and within cow health fertility, are the most important drivers of
efficiently managed pasture systems [32]. Those sensors monitoring the animals physiological state
should be combined with sensors that measure biomass, as their interaction could aid informed pasture
management decisions [32].

This approach has been implemented, where feeding time correlated with feed intake, which can
be useful for estimating intake rates on pasture [99]. Hills et al. [100] also describe that sensors can
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potentially give indications to optimize nutritional demands through individualized feeding strategies,
and thus improve the management of grazing cows. However, finding the right parameter or the
right combination of parameters remains challenging [100]. Shafiullah et al. [101] have taken their
research a step further and were able to detect herbage shortages in the feeding and activity behaviors
of grazing dairy cows and found that rumination chews per day and grazing bites per minute were
the best predictors for insufficient grazing [101]. Machine learning models (support vector machine,
random forest, and extreme gradient boosting) hereby performed better than the general linear model
did in cross-validation [101]. To evaluate their potential for practice, it is necessary to validate these
ML models with novel data.

3.7. Constraints of Data Availability

Beyond the capability of ML algorithms, the availability of large datasets plays a vital role in
enhancing data-driven management decisions, as ML approaches depend on large, high-quality
datasets, yet data availability is poor. Wolfert et al. [17] described that stakeholder networks are
organized into two particular extreme scenarios. Either the networks use open-source solutions to
keep their resources open and allow for interoperability of data or they are closed and proprietary.
Most sensors or sensor systems currently aim to fit one specific purpose, implying that they are
manufacturer-specific, and as such, encourage vendor lock-in. Linking different data sources from
different farms would offer the most promising potential to develop better algorithms that could
improve farm management [102]. Unfortunately, the data are difficult to integrate with additional
data sources as companies restrict access to their records [103]. This not only leads to farmers having
to input the same data in multiple software programs but also prevents linking the data to optimize
dairy cow management on a multifactorial level. Research has introduced the idea of integrating data
streams, highlighting the potential of integrating general farm data to improve automated monitoring
of dairy cows over 10 years ago, when researchers implemented a fuzzy logic approach for abnormality
detection [20], yet with current issues on data restrictions and availability, it is difficult to move forward.
Equally, when applying ML algorithms in the farming environment, we must keep in mind specific
issues, such as cybersecurity and defense mechanisms [104].

3.8. Robustness of Models, Cross Validation, and the Risks of Machine Learning in Dairy Science

With the powerful outcomes of ML algorithms in mind, it is essential to understand the underlying
algorithms, and is therefore necessary to properly split training and testing datasets, tune parameters
appropriately, avoid overfitting, and ensure that the conclusions drawn are realistic [105].

If dairy scientists apply ML techniques, we face the difficulty that not everyone has acquired the
same level of understanding of the underlying algorithms. The scientific peer review systems ensures
quality through expert evaluation [106]. As ML methods are now increasingly being applied it may be
difficult for some supervising bodies, or reviewers, to evaluate the quality and scientific integrity of ML
studies. This can develop into a potential pitfall for young scientists, their supervisors, the reviewers,
and, therefore, the scientific peer review system. Therefore, it is valuable to point to a few important
studies, which demonstrate critical aspects in evaluating the performance of ML research.

Flach [107] points out that the performance of ML models can be measured by indicators such as
accuracy, true and false positive rate, precision and recall F-score, Area Under the Curve, and Brier
score. Each of these evaluation indicators serves a different use case where it is considered bad practice
to over-report [107]. The author further stresses the need for a responsible performance evaluation in
ML and describes good and bad practices with a suggested way forward [107]. Particularly important
aspects from this study: 1. Researchers should set a clear objective for their study and from this
perspective justify the chosen evaluation method. 2. There is a need for a measurement theory of ML
models, of which there is currently much less knowledge than on ML technology itself [107].

Additionally, it is particularly important to test the robustness of ML models, because they are at
risk of overfitting, where the model is not only fitted to the data, but also to the underlying noise [108].
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It is therefore necessary to test the validity of the trained model, to evaluate its true performance on
novel data [108]. One way to do this is by splitting the data into training (70%) and testing (30%)
datasets or with larger datasets into training 60%, testing 20%, and validation 20% [108]. One split of
the dataset is used to train model, while the other split is used to test the model on a novel testing
dataset. Splitting the datasets into three folds results in smaller datasets, which makes it more feasible
to use cross-validation in the case of small datasets [108]. In general, it is vital to recognize scientific
errors and so ensure the quality of research developed with these methods.

Within peer-reviewed papers, authors are often responsible for a specific topic within the paper.
For example, a data scientist or statistician may be responsible for the data analysis, whereas the dairy
scientist will cover the aspects of dairy science. The reviewers within the peer review systems are
however expected to be experts in both, despite perhaps now being familiar with the methodology.
To prevent this from becoming a problem, it might make sense to reorganize the peer review strategy,
where reviewers are only responsible for reviewing the part of the paper, which addresses their specific
area of expertise.

3.9. Synthesis

ML algorithms have become common research tools in dairy science, and they can advance
knowledge, particularly in areas where predictions are required. Although traditional statistical
methods in the dairy sector evolved an inevitable foundation of information, ML algorithms provide
new opportunities for further advanced data-driven discoveries. The studies in this review show
that ML is commonly applied in most sectors of dairy science, such as reproductive and feeding
management, BCS scoring, health monitoring, and behavioral analysis. However, despite ML having
become a substantial part of data analysis, the advantages of these algorithms have not managed to
solve the open issues.

Currently, the average age of Holstein dairy cows is 3.3 years, with 2.45 lactations [109]. To improve
this situation, integrating various data sources could offer new approaches to farm management.
To be more specific, we recognize that estrus is detectable through increased activity levels, but we
also know that activity levels increase with a change in herd structure or drop with rising humidity
levels. Therefore, in the future, the thresholds for estrus detections could be adapted to the baseline
behavior recovered from integrated data to improve the accuracy of estrus prediction and decrease
false positive results.

ML algorithms could improve feeding strategies. To date, farmers feed cows according to lactation
curves, primarily focusing on the lactation stage and milk yields. However, the scientific community
acknowledges that the feed content and structural composition can affect both the behavior of the cow
and their individual daily milk yields. In addition, feed advisors recommend feeding cows according
to their BCS. Linking these various data sources and analyzing them could promote new strategies for
animal individual feeding that may even continuously account for the cows’ physical state.

This raises the question of why ML methods are not being fully exploited in dairy farming today.
One reason could be the lack of availability of multiparameter datasets. Well-described, multifactorial,
high-quality, and freely accessible datasets would allow for development of better algorithms and
possibly reduce false positive alerts in monitoring systems. To address this, data on animal-specific
behavior and yields from a variety of farms would be particularly interesting. However, smaller
animal-specific datasets could also be interesting for specific research questions. Although sensors
that continuously collect data are available, hardly any will provide their data in a useful manner to
create a platform between sensors, allowing the consideration of multiple parameters for advanced
prognosis, categorization, or anomaly detection. Thus, two recently initiated projects, “Dairy Brain”
and “Smart Dairy Tracer,” have addressed multiparameter continuous data analysis and are currently
working toward demonstrating the chances of integrated datasets [110,111].
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4. Conclusions

The reviewed literature shows that wide varieties of parameters determine the performance and
health of dairy cows, and these must be managed appropriately to improve the efficiency of dairy
farms. Therefore, multiple data sources need to be interlinked. This often fails due to the restricted
availability of public datasets, commercial sensors not providing standardized data infrastructure,
and vendor lock-in. Improving these data sources is essential to aid the development of data-driven
dairy farm management and would allow developing reliable and multifactorial models, which could
provide better guidance on the appropriate management of feeding, reproduction, health, milking, or
resources. In addition, we conclude that many researchers have recognized the potential of ML, and it
is now time to start implementing these powerful tools in multidisciplinary collaborations between
dairy and data scientists, to realize their potential impact.
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73. Zaborski, D.; Proskura, W.S.; Grzesiak, W.; Różańska-Zawieja, J.; Sobek, Z. The comparison between random
forest and boosted trees for dystocia detection in dairy cows. Comput. Electron. Agric. 2019, 163, 104856.
[CrossRef]

74. Fadul, M.; Christopher, B.; Alsaaod, M.; Hasler, J.; Alexander, S.; Adrian, S.; Hirsbrunner, G. Prediction of
calving time in dairy cattle. Anim. Reprod. Sci. 2017, 187, 37–46. [CrossRef]

75. Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M.
Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle.
J. Dairy Sci. 2017, 100, 5664–5674. [CrossRef]

76. Fenlon, C.; O’Grady, L.; Mee, J.F.; Butler, S.T.; Doherty, M.L.; Dunnion, J. A comparison of 4 predictive models
of calving assistance and difficulty in dairy heifers and cows. J. Dairy Sci. 2017, 100, 9746–9758. [CrossRef]

77. Ede, T.; Lecorps, B.; von Keyserlingk, M.A.G.; Weary, D.M. Symposium review: Scientific assessment of
affective states in dairy cattle. J. Dairy Sci. 2019, 102, 10677–10694. [CrossRef]

http://dx.doi.org/10.1016/j.compag.2020.105233
http://dx.doi.org/10.1016/j.cvfa.2011.07.012
http://www.ncbi.nlm.nih.gov/pubmed/22023831
http://dx.doi.org/10.1016/j.prevetmed.2013.07.016
http://dx.doi.org/10.1371/journal.pcbi.1005301
http://dx.doi.org/10.4081/gh.2015.350
http://dx.doi.org/10.3168/jds.S0022-0302(02)74177-5
http://dx.doi.org/10.3168/jds.2015-10264
http://dx.doi.org/10.3168/jds.2014-8984
http://dx.doi.org/10.1016/j.tvjl.2015.01.024
http://dx.doi.org/10.3168/jds.2013-7405
http://www.ncbi.nlm.nih.gov/pubmed/25529424
http://dx.doi.org/10.3168/jds.2017-13120
http://www.ncbi.nlm.nih.gov/pubmed/29290435
http://dx.doi.org/10.1017/S0016672310000261
http://www.ncbi.nlm.nih.gov/pubmed/20667166
http://dx.doi.org/10.1186/s12711-015-0097-5
http://www.ncbi.nlm.nih.gov/pubmed/25886037
http://dx.doi.org/10.3168/jds.2012-6237
http://dx.doi.org/10.1016/j.compag.2019.104856
http://dx.doi.org/10.1016/j.anireprosci.2017.10.003
http://dx.doi.org/10.3168/jds.2016-11526
http://dx.doi.org/10.3168/jds.2017-12931
http://dx.doi.org/10.3168/jds.2019-16325


Animals 2020, 10, 1690 21 of 22

78. Williams, M.L.; NParthaláin, M.; Brewer, P.; James, W.P.J.; Rose, M.T. A novel behavioral model of the
pasture-based dairy cow from GPS data using data mining and machine learning techniques. J. Dairy Sci.
2016, 99, 2063–2075. [CrossRef] [PubMed]

79. Williams, M.L.; James, W.P.; Rose, M.T. Variable segmentation and ensemble classifiers for predicting dairy
cow behaviour. Biosyst. Eng. 2019, 178, 156–167. [CrossRef]

80. Killick, R.; Eckley, I. Changepoint: An R package for changepoint analysis. J. Stat. Softw. 2014, 58, 1–19.
[CrossRef]

81. Benaissa, S.; Tuyttens, F.A.; Plets, D.; de Pessemier, T.; Trogh, J.; Tanghe, E.; Martens, L.; Vandaele, L.;
van Nuffel, A.; Joseph, W. On the use of on-cow accelerometers for the classification of behaviours in dairy
barns. Res. Vet. Sci. 2019, 125, 425–433. [CrossRef]

82. Guzhva, O.; Ardö, H.; Nilsson, M.; Herlin, A.; Tufvesson, L. Now You See Me: Convolutional Neural
Network Based Tracker for Dairy Cows. Front. Robot. AI 2018, 5, 107. [CrossRef]

83. Boyland, N.K.; Mlynski, D.T.; James, R.; Brent, L.J.; Croft, D.P. The social network structure of a dynamic
group of dairy cows: From individual to group level patterns. Appl. Anim. Behav. Sci. 2016, 174, 1–10.
[CrossRef]

84. Foris, B.; Zebunke, M.; Langbein, J.; Melzer, N. Comprehensive analysis of affiliative and agonistic social
networks in lactating dairy cattle groups. Appl. Anim. Behav. Sci. 2019, 210, 60–67. [CrossRef]

85. Foris, B.; Zebunke, M.; Langbein, J.; Melzer, N. Evaluating the temporal and situational consistency of
personality traits in adult dairy cattle. PLoS ONE 2018, 13, e0204619. [CrossRef]

86. Shen, W.; Hu, H.; Dai, B.; Wei, X.; Sun, J.; Jiang, L.; Sun, Y. Individual identification of dairy cows based on
convolutional neural networks. Multimed. Tools Appl. 2020, 79, 14711–14724. [CrossRef]

87. Jiang, B.; Wu, Q.; Yin, X.; Wu, D.; Song, H.; He, D. FLYOLOv3 deep learning for key parts of dairy cow body
detection. Comput. Electron. Agric. 2019, 166, 104982. [CrossRef]

88. Salau, J.; Lamp, O.; Krieter, J. Dairy cows’ contact networks derived from videos of eight cameras. Biosyst. Eng.
2019, 188, 106–113. [CrossRef]

89. Guo, Y.; He, D.; Chai, L. A Machine Vision-Based Method for Monitoring Scene-Interactive Behaviors of
Dairy Calf. Animals 2020, 10, 190. [CrossRef]

90. González, L.A.; Tolkamp, B.J.; Coffey, M.P.; Ferret, A.; Kyriazakis, I. Changes in Feeding Behavior as Possible
Indicators for the Automatic Monitoring of Health Disorders in Dairy Cows. J. Dairy Sci. 2008, 91, 1017–1028.
[CrossRef] [PubMed]

91. Delaby, L.; Faverdin, P.; Michel, G.; Disenhaus, C.; Peyraud, J.-L. Effect of different feeding strategies on
lactation performance of Holstein and Normande dairy cows. Animal 2009, 3, 891–905. [CrossRef]

92. Dorea, J.R.R.; Rosa, G.J.M.; Weld, K.A.; Armentano, L.E. Mining data from milk infrared spectroscopy to
improve feed intake predictions in lactating dairy cows. J. Dairy Sci. 2018, 101, 5878–5889. [CrossRef]

93. Purcell, P.J.; Law, R.A.; Gordon, A.W.; McGettrick, S.A.; Ferris, C.P. Effect of concentrate feeding method on
the performance of dairy cows in early to mid lactation. J. Dairy Sci. 2016, 99, 2811–2824. [CrossRef]

94. Little, M.W.; O’Connell, N.E.; Ferris, C.P. A comparison of individual cow versus group concentrate allocation
strategies on dry matter intake, milk production, tissue changes, and fertility of Holstein-Friesian cows
offered a grass silage diet. J. Dairy Sci. 2016, 99, 4360–4373. [CrossRef]

95. Bonora, F.; Benni, S.; Barbaresi, A.; Tassinari, P.; Torreggiani, D. A cluster-graph model for herd characterisation
in dairy farms equipped with an automatic milking system. Biosyst. Eng. 2018, 167, 1–7. [CrossRef]

96. Glatz-Hoppe, J.; Mohr, E.; Losand, B. Use of milk recording data for characterization of dairy cow supply
situation Second part: Evaluation scheme for the assessment of milk ingredients at farm level. Zuechtungskunde
2019, 91, 449–473.

97. Gazzarin, C.; Frey, H.-J.; Petermann, R.; Hoeltschi, M. Pasture feeding or cowshed feeding-which is more
economical? Agrar. Schweiz 2011, 2, 418–423.

98. Shalloo, L.; O’Donnell, S.; Horan, B. Profitable dairying in an increased EU milk quota scenario. In Proceedings
of the National Dairy Conferences, Kilkenny, Ireland, 21–22 November 2007.

99. Rombach, M.; Südekum, K.H.; Münger, A.; Schori, F. Herbage dry matter intake estimation of grazing dairy
cows based on animal, behavioral, environmental, and feed variables. J. Dairy Sci. 2019, 102, 1–15. [CrossRef]
[PubMed]

http://dx.doi.org/10.3168/jds.2015-10254
http://www.ncbi.nlm.nih.gov/pubmed/26805984
http://dx.doi.org/10.1016/j.biosystemseng.2018.11.011
http://dx.doi.org/10.18637/jss.v058.i03
http://dx.doi.org/10.1016/j.rvsc.2017.10.005
http://dx.doi.org/10.3389/frobt.2018.00107
http://dx.doi.org/10.1016/j.applanim.2015.11.016
http://dx.doi.org/10.1016/j.applanim.2018.10.016
http://dx.doi.org/10.1371/journal.pone.0204619
http://dx.doi.org/10.1007/s11042-019-7344-7
http://dx.doi.org/10.1016/j.compag.2019.104982
http://dx.doi.org/10.1016/j.biosystemseng.2019.10.018
http://dx.doi.org/10.3390/ani10020190
http://dx.doi.org/10.3168/jds.2007-0530
http://www.ncbi.nlm.nih.gov/pubmed/18292258
http://dx.doi.org/10.1017/S1751731109004212
http://dx.doi.org/10.3168/jds.2017-13997
http://dx.doi.org/10.3168/jds.2015-9988
http://dx.doi.org/10.3168/jds.2015-10441
http://dx.doi.org/10.1016/j.biosystemseng.2017.12.007
http://dx.doi.org/10.3168/jds.2018-14834
http://www.ncbi.nlm.nih.gov/pubmed/30712935


Animals 2020, 10, 1690 22 of 22

100. Hills, J.; Wales, B.; Dunshea, F.; Garcia, S.; Roche, J. Invited review: An evaluation of the likely effects of
individualized feeding of concentrate supplements to pasture-based dairy cows. J. Dairy Sci. 2015, 98,
1363–1401. [CrossRef] [PubMed]

101. Shafiullah, A.Z.; Werner, J.; Kennedy, E.; Leso, L.; O’Brien, B.; Umstätter, C. Machine Learning Based
Prediction of Insufficient Herbage Allowance with Automated Feeding Behaviour and Activity Data. Sensors
2019, 19, 4479. [CrossRef] [PubMed]

102. Lokhorst, C.; de Mol, R.M.; Kamphuis, C. Invited review: Big Data in precision dairy farming. Animal 2019,
13, 1519–1528. [CrossRef]

103. Sykuta, M.E. Big data in agriculture: Property rights, privacy and competition in ag data services.
Int. Food Agribus. Manag. Rev. 2016, 19, 5–74.

104. Liu, Q.; Li, P.; Zhao, W.; Cai, W.; Yu, S.; Leung, V.C.M. A Survey on Security Threats and Defensive Techniques
of Machine Learning: A Data Driven View. IEEE Access 2018, 6, 12103–12117. [CrossRef]

105. Weigel, K.A.; VanRaden, P.M.; Norman, H.D.; Grosu, H. A 100-Year Review: Methods and impact of genetic
selection in dairy cattle—From daughter–dam comparisons to deep learning algorithms. J. Dairy Sci. 2017,
100, 10234–10250. [CrossRef]

106. Bornmann, L. Scientific peer review. Annu. Rev. Inf. Sci. Technol. 2011, 45, 197–245. [CrossRef]
107. Flach, P. Performance Evaluation in Machine Learning: The Good, the Bad, the Ugly, and the Way Forward.

In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February
2019.

108. Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Model Selection and Overfitting. Nat. Methods
2016. [CrossRef]
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