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Simple Summary: As a result of urban development, 122 western grey kangaroos (Macropus fuliginosus)
were relocated from the outskirts of Perth, Western Australia, to a nearby forest. Tracking collars
were fitted to 67 of the kangaroos to monitor survival rates and movement patterns over 12 months.
Spotlighting and camera traps were used as a secondary monitoring technique particularly for those
kangaroos without collars. The survival rate of kangaroos was poor, with an estimated 80% dying
within the first month following relocation and only six collared kangaroos surviving for up to
12 months. This result implicates stress associated with the capture, handling, and transport of animals
as the likely cause. The unexpected rapid rate of mortality emphasises the importance of minimising
stress when undertaking animal relocations.

Abstract: The expansion of urban areas and associated clearing of habitat can have severe consequences
for native wildlife. One option for managing wildlife in these situations is to relocate them. While
there is a general perception that relocation is humane, transparency of outcomes is lacking. Here, we
document the outcome of 122 western grey kangaroos (Macropus fuliginosus) relocated from an urban
development site on the edge of Perth, Western Australia. Global Positioning System (GPS) or Very
High Frequency (VHF) collars were fitted to 67 kangaroos, and their survival and movement were
monitored over 12 months using telemetry, camera traps and spotlighting. Only six collared animals
survived for the duration of the study with most dying within a week of the relocation, indicating
stress associated with capture as the likely cause. By the completion of the study, 111 kangaroos
were predicted to have died based on the proportion of individuals known to have died. Movement
patterns of surviving GPS collared kangaroos changed over time from largely exploratory forays, to
more repeated movements between focus areas within home ranges. The poor outcome here raises
concerns around the viability of relocating a relatively large number of kangaroos as a management
option. It also highlights the need for careful planning to limit the stress associated with capture and
transport if relocations are to be used for managing kangaroos in urban areas.

Keywords: kangaroo management; relocation; human-wildlife conflict; GPS telemetry; urbanisation

1. Introduction

The relocation of native fauna out of the path of development projects, sometimes termed
mitigation translocation, has dramatically increased in recent years, most likely in response to the rapid
pace of urban development [1]. As a wildlife management tool, relocation for mitigation purposes
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differs in motive from conservation-driven translocations as these relocations are more concerned
about the removal of individuals out of harm’s way rather than establishing populations to improve
conservation status [2,3]. Despite the rise in number of relocations, there has been a lack of transparency
in terms of the outcomes of these relocations [1,4], though those that have been documented generally
indicate poor success [1,5,6]. A further complication common to relocations for mitigation purposes is
that animals are often moved to an area where conspecifics occur without an understanding of the
impacts on either the relocated or resident population [4].

In Australia, the continued development of native bushland and semi-rural areas on the fringes of
metropolitan areas and major regional centres has highlighted the need for the considered management
of wildlife in these areas [7–12]. As land is cleared or re-zoned for development, animals often become
stranded and concentrated in the last remaining fragments [12,13]. Where development projects involve
the clearing of wildlife habitat, conditions may be placed on planning approval to ensure that fauna are
appropriately managed so that their welfare is not compromised. Management of wildlife associated
with urban developments in Australian cities has typically involved mammals, with examples ranging
from common brushtail and western ringtail possums [7–9], southern brown bandicoots [10], flying
foxes (Pteropus spp.) [11] and eastern grey kangaroos [12]. Public concerns regarding lethal methods,
such as culling, often influence the choice of management option [4].

The large size of kangaroos relative to most other mammals in urban/peri-urban environments,
and the risk they pose due to vehicle collision, has led to public pressure to manage these populations
appropriately [12–16]. Human–wildlife conflict is potentially greater for those larger urban mammals, and
any management action is unlikely to go unnoticed [17]. Analogous to this situation is the management
of deer populations, another large herbivore, in metropolitan areas of North America, where similar
human-wildlife conflict issues apply [13]. Community consultation in relation to kangaroos has indicated
that relocation rather than lethal removal is preferred [15,17], yet the long-term success and humaneness
of relocating large numbers of kangaroos is not well understood [12,16]. A single study that monitored
the outcomes of an eastern grey kangaroo (Macropus giganteus) relocation of just 10 individuals recorded
an 80% survival rate after four months and 60% after one year [12].

A recent relocation of western grey kangaroos (Macropus fuliginosus) from an area subject to ongoing
residential development on the periphery of Perth in Western Australia provided an opportunity to
assess the survivorship and movement of these kangaroos post-release. The objective was to determine
the outcome of relocating a relatively large number of individuals to inform future decisions regarding
kangaroo management practices in urban areas. Specifically, we document survivorship, movement
and activity patterns of the kangaroos over 12 months following relocation.

2. Materials and Methods

2.1. Relocation

Western grey kangaroos were relocated from an urban development site (Paramount Estate) at the
Perth outer suburb of Baldivis on the Swan Coastal Plain of Western Australia (32.3536◦ S, 115.8213◦ E).
The development site (approximately 90 ha) was situated within an urban landscape with housing
well established on the northern and western boundaries, and clearing for development had already
taken place on the southern and eastern boundaries. Previous land use was for farming with the
area having a grassy understorey and scattered tuart trees (Eucalyptus gomphocephala). A population
of kangaroos remained isolated in the area. The relocation process (i.e., capture and transport to the
release site) was undertaken by a contractor originally engaged by the property developer. A summary
is provided below.

Prior to relocation, 154 kangaroos (52 with one pouch young) were herded into a large holding
enclosure (approximately 4.2 ha) constructed of temporary fencing, by personnel on foot and all-terrain
vehicles. They were then left undisturbed for two days to settle before relocation commenced. Some
kangaroos escaped the enclosure and required re-herding at various times during the relocation. Before
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each relocation session (nine mornings in total), a sub-set of kangaroos were herded by personnel
on-foot into a smaller fenced enclosure (approximately 0.05 ha) within the larger enclosure, where they
were darted and sedated. Darting involved the use of a tranquilising gun (CO2 powered dart gun) and
darts containing Zoletil® 100, a mixture of tiletamine and zolazepam, at a dose rate of 5–10 mg/kg.
Sedated kangaroos were measured, weighed, ear-tagged, a sub-set collared, placed in transport bags,
and injected with diazepam when considered necessary by the on-site veterinarian. Any kangaroo that
had suffered significant physical trauma as a result of hitting fences or other objects during herding
and darting were euthanised either by, or under instruction from, the on-site veterinarian.

Kangaroos were transported to the relocation site in a covered trailer, laid out on a foam mattress
on the trailer floor. At the relocation site, kangaroos were placed into a 0.06 ha soft release enclosure
constructed of 1.8 m high panels of temporary fencing, internally lined with dark green shade cloth, to
allow for recovery. Kangaroos that did not survive the journey (13) had their collars (if fitted) and
ear-tags removed. Water was available ad libitum within the enclosure. After 24 h, kangaroos that
were mobile were released. Those exhibiting severe signs of capture myopathy were euthanised.

A site in the Jarrahdale State Forest, 50 km to the east of Baldivis in the Darling Range (32.3723◦ S,
116.3565◦ E; Figure 1) was found to meet all the criteria for selection as a suitable relocation site.
Calculations using known movements of kangaroos were made in relation to the proximity of private
and agricultural areas, as well as distances to main roads to limit the likelihood of collisions with vehicles.
There also needed to be continuity of habitat to allow the kangaroos to freely disperse. The release
site was within an area of more than 1900 km2 of continuous forest with undulating topographic relief
ranging from valley floors of 240 m above sea level to occasional hills as high as 550 m. There was a single
lane highway 8 km to the south, agricultural land 12.5 km to the east and a mining operation 16 km to the
south. Public access to the site required a permit as it was a quarantined plant disease risk area. There
was also a reasonable network of minor tracks from which monitoring activities could be undertaken.
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Figure 1. Relocation area showing point of release, camera trap array and driven spotlighting route.

Vegetation at the relocation site consisted primarily of jarrah (Eucalyptus marginata) and wandoo
(E. wandoo) open forest and had a mixture of fire ages ranging from recently burnt to areas that had
been unburnt for more than six years. Prescribed burning was also not planned for the area. Although
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conditions were dry at the time of release (between 17 and 28 May 2019), there were at least two small
dams holding water within a 5 km radius of the release site. There was also a water trough less than
1 km away, and water was made available at the relocation site. Annual rainfall for Jarrahdale in 2019
was 877 mm which was below the average of 1170 mm. The total rainfall for May was 36 mm which was
well below the average of 153 mm, though the total in June was 274 mm which was above the average
of 224 mm. Total monthly rainfall and mean maximum monthly temperature from January 2019 to
May 2020 are provided in Appendix A Figure A1. The main difference between the development and
relocation sites was that the former was primarily grassland with scattered trees, whereas the latter
consisted of woodland.

Pre-release assessment showed the area to already support western grey kangaroos and a smaller
macropod, the brush wallaby (Notamacropus irma), although neither in large numbers. Spotlight
surveys (see below) prior to the relocation recorded 0.17 western grey kangaroos per kilometre along a
30-km transect. No other faunal species likely to interact directly with the relocated kangaroos was
known to occur in the study area.

2.2. GPS and VHF Telemetry

A range of Global Positioning System (GPS) telemetry devices from several manufacturers were
investigated for bulk, weight, battery life, robustness, automated collar release mechanisms, remote
programming, delivery time, cost and available collar sizing. Only one manufacturer was able to meet
all the requirements and supply collars within the short lead time of six weeks.

Two types of telemetry devices were selected to assess survivorship and monitor movement
patterns of the kangaroos: (1) GPS collars (Sirtrack Pinnacle Pro Medium collars with satellite upload,
solar assist and VHF beacon); and (2) Very High Frequency (VHF) collars (Sirtrack V6C 164C). GPS
collars weighed between 440 and 460 g (<2.5% body weight of an adult western grey kangaroo) and
had an internal collar circumference of 220–290 mm. They were also further modified by lining the
inside of the collars with neoprene (5 mm thick self-adhesive) to improve the fit. Manufacturer fitted
timed-release devices (TRD) were set to activate 365 days from when collars had been fitted.

As the priority for this study was to understand survivorship of a sub-set of relocated kangaroos
over a 12-month period, it was important to balance frequency of positional fixes with frequency
and packet size of data uploads to satellite to ensure endurance of the transmitters. Collars were
programmed to take a fix every half hour for the first month while the kangaroos established themselves
in their new environment, and every hour thereafter. The upload of data via satellite was after every
eight positional fixes. All GPS collars were fitted with a small solar panel to extend battery life.

VHF collars, which are lighter and have considerably less bulk than GPS collars, were used on
smaller animals, including sub-adults, to assess survivorship rather than detailed movement patterns.
These had an internal circumference of 160–300 mm and weighed 40–47 g (<0.3% body weight of a
sub-adult western grey kangaroo). A weak link, designed to break over time, of 5 cm long, 1 cm wide
and 1.5 mm thick rubber band (n = 5) or doubled over elastic of the same dimensions but 0.5 mm thick
(n = 5) was inserted into each collar. This allowed for some expansion to accommodate the growth of
sub-adults and removed the necessity of recapturing animals to remove collars as the rubber would
perish over time. The rubber was attached at each end using two staples and contact adhesive, covered
by heat shrink.

Mortality sensors were integrated in all collars and set to trigger after 12 h without motion.
For VHF collars, the frequency of emitted pulse increased when in mortality mode, while for GPS
collars, an email and text message was sent via satellite to a pre-determined address, as well as the
VHF beacon pulse increasing in frequency. The VHF signal in the GPS collars was set to operate from
0800 to 1600 each day and was used to physically locate animals when necessary. Animals were located
within 24 h of receiving a mortality signal which allowed for an assessment of the cause of death when
retrieving the collar.
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A sample of 30 kangaroos (approximately 20% of the original estimated total population to be
relocated), to be fitted with GPS collars, was considered sufficient to indicate survivorship and to
provide detail on movement patterns of relocated adult kangaroos. The inclusion of a further ten
animals with VHF collars would also improve the quality of statistical inference about survivorship
while also sampling an age class that was too small for GPS collars.

All collars were fitted to the kangaroos while they were sedated prior to transport to the relocation
site. Sex, age class (adult, sub-adult, juvenile), reproductive status, neck circumference and weight,
along with date and time of sedation for each kangaroo were recorded. The size of each animal was
assessed, and a GPS or VHF collar was fitted to a sub-set to be relocated on each day. All kangaroos
were also given a unique numbered ear-tag (Allflex two-piece minitag) while under sedation. Tags
were coloured differently for each day of the relocation operation. Ear tags were positioned on the
right ear for males and left ear for females, and reflective tape was also applied to both sides of the tag
to facilitate identification of relocated animals.

Each VHF-collared kangaroo was searched for daily over the first 14 days, then once a week
for the next two months, then monthly for the remainder of the study. This was undertaken from a
combination of vehicle and on foot using either a Sirtrack Ultra or Communication Specialist R1000
VHF receiver and Yagi three element antenna. The vehicle was also fitted with a VHF 3 dB mopole
antenna tuned to 150.7 MHz—the centre of the frequency range of the VHF collars. On two occasions
(15 August 2019 and 31 January 2020), an aircraft fitted with two Yagi antennae to the wing struts was
used to locate some VHF-collared animals due to the difficulty in locating them on the ground.

2.3. Relocated Kangaroos

Between 17 May and 28 May 2019, a total of 122 kangaroos (86 females and 36 males) was relocated
to the Jarrahdale State Forest relocation site; 49% of the females were carrying small, unfurred pouch
young. All kangaroos were captured in the early morning with temperatures not exceeding 25 ◦C.
The number of individuals, sex and collar type fitted on each day are presented in Table 1.

Table 1. Number of individual western grey kangaroos, sex and collar type (GPS: Global Positioning
System or VHF: Very High Frequency) fitted on each day of relocation.

Date
Number Captured GPS VHF

Total Collared
Male Female Total Male Female Male Female

17 May 2019 2 14 16 2 7 0 1 10
20 May 2019 7 11 18 2 7 1 3 13
21 May 2019 12 8 20 1 3 4 0 8
22 May 2019 5 17 22 1 5 2 1 9
23 May 2019 4 9 13 0 3 2 1 6
25 May 2019 4 10 14 2 2 0 2 6
26 May 2019 2 5 7 1 3 0 1 5
27 May 2019 0 11 11 0 9 0 0 9
28 May 2019 0 1 1 0 1 0 0 1

TOTAL 36 86 122 9 40 9 9 67

GPS or VHF collars were fitted to a total of 67 animals; although there were only 40 collars
(30 × GPS and 10 × VHF), several were re-used from deceased animals. The original intent was to
distribute collars evenly between males and females as well as different size classes and across each of
the relocation days. However, the high rate of mortality post-relocation (see below) meant that collars
were fitted to almost every animal that fulfilled the size criteria (i.e., neck circumference ≥ 19 cm for
GPS collars and ≥17 cm for VHF collars). As a result, 40 females and nine males were fitted with GPS
collars, and nine females and nine males were fitted with VHF collars (i.e., 55% of relocated kangaroos).
Size characteristics of GPS and VHF collared animals are given in Table 2.
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Table 2. Number and size characteristics of GPS and VHF collared western grey kangaroos (S.D. =

standard deviation).

Collar Type Neck Circumference Weight Number

Range (cm) Mean (cm) S.D. Range (kg) Mean (kg) S.D.

GPS collar
Male 21–28 24.7 2.5 23.2–66.9 44.1 15.7 9

Female 19–24 21.3 1.1 18.7–31.4 25.2 3.5 40
VHF collar

Male 17–22 19.7 1.7 15.5–25.5 20.1 3.1 9
Female 18–20 19.0 0.7 16.3–23.5 19.1 2.1 9

2.4. Movement and Activity Patterns

Positional data were used to estimate overall dispersal and subsequent spatial and temporal
activity patterns. These patterns were compared immediately after release, and during subsequent
periods as the kangaroos adjusted to their new environment. Average and total daily movement data
for all collared animals were calculated, although spatial patterns of VHF collared animals were not
examined in any detail, as the primary aim for these individuals was to assess survival. Animals
that died within 24 h of relocation were not included in the assessment of movement pattern. Where
there were sufficient data, GPS fixes where animals remained largely resident (i.e., excluding linear
movements of short duration) were used to estimate home range size based on both 95% minimum
convex polygons and kernel density estimates. We applied these two estimators for comparative
purposes as there is no universal standard and it also allows for comparison with other studies which
have used either or both measures. Patterns of diel activity were also examined in relation to variation
in distances moved throughout the day and across seasons.

2.5. Camera Traps and Spotlighting

To add to the information from collared kangaroos, the use of remote sensor camera traps and
driven spotlight surveys to determine survivorship and movement of the relocated kangaroos without
collars was examined. These techniques were also used to gain a better understanding of the distribution
and relative abundance of resident western grey kangaroos at the relocation site. Recent studies have
indicated that camera traps provide value in terms of documenting activity patterns and behaviour of
eastern grey kangaroos—e.g., [18,19].

An array of 75 non-lured Reconyx HP2X Hyperfire camera traps was established across the
relocation area using a constrained randomised design one month prior to the animals being relocated.
Distance between cameras was at least 750 m and offset from tracks by at least 50 m. Camera separation
distances of 750 m gave good coverage over the release area while ensuring a high probability of
independence of detections between cameras over short timeframes. Offsetting cameras from roads
was primarily for security reasons. Kangaroo detection reliability of the selected camera model was
assessed by positioning two cameras side by side at 10% of the camera locations. This showed that there
was minimal variability in detection rates of kangaroos between the two replicates, and collectively,
the data were almost identical. The mean detection rate was 24.2 for both replicates (SD = 14.9 and
14.7, respectively). Cameras were operational for the duration of the study and checked every three
months to change batteries and data cards.

Spotlighting using two handheld spotlights (100-W Lightforce LFEF170CC) was undertaken from
a vehicle along approximately 30 km of tracks around the periphery of the relocation site, over three
consecutive days once a month for two months pre-release and repeated for the first two months
post-release. Spotlighting was discontinued after this time due to a lack of sightings and low number
of surviving relocated kangaroos. A transect was travelled in one direction on dusk and then the
other direction in full darkness. The number of individuals sighted, the time they were sighted and
geographic coordinates when sighted were recorded.
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2.6. Data Analysis

Data analysis was undertaken using the R statistical programming environment [20] with
“adehabitatHR” [21], “rgdal” [22], “rgeos” [23], “maptools” [24], “sp” [25] and “psych” [26] packages.
Camera trap imagery was catalogued and managed using the open source database, Colorado Parks
and Wildlife (CPW) Photo Warehouse [27]. The open source geographic information system Quantum
GIS (QGIS) was used for spatial graphics [28].

Determining the accuracy of GPS positional fixes and filtering inaccurate data is essential for
the analysis of animal movement [29]. This is often accomplished by using set cut off points for the
dilution of precision values (DOP). However, the relationship between location error and DOP can be
extremely weak [30], resulting in either rejection of accurate data or inclusion of inaccurate data. Novel
approaches to filtering data by comparing altitude values derived from a digital elevation model (DEM)
to those from the GPS device for the same location have been proposed [31]. This approach was used
with ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Version 3 Digital
Elevation Model (DEM) data, excluding GPS point data that varied by more than 100 m from the DEM
in elevation. This resulted in the rejection of 3655 data points from all GPS collars, or 8.9% of fixes.

2.7. Ethics Statement

Collaring and monitoring of kangaroos were approved under the Department of Biodiversity,
Conservation and Attractions Animal Ethics Committee Approval Licence to Use Animals for Scientific
Purposes No. 2019-06A and Regulation 17 Licence No. SC001489. The capture and transport of relocated
kangaroos, as well as oversight of recovery from sedation, were operational activities undertaken
by contractors.

3. Results

3.1. Survivorship

Of the 67 collared animals, 12 did not survive the first day of the relocation. On assessment by a
veterinarian or experienced and qualified field zoologists, a further nine collared and five non-collared
animals were euthanised between one and three days post-relocation due to severe stress. These
individuals were either unable to stand or showed behaviours such as a wide stance to stay upright,
were hunched over with their heads down and were continually drooling at the time of release from
the enclosure and were not going to recover.

Of the 49 animals with GPS collars, only three survived for the full 12-month period: two females
and one male. Of the 18 VHF collared animals, just three survived longer than 85 days, and they were
known to have been alive for 85, 205 and 266 days, after which the collars had broken away and they
were no longer tracked.

For collared kangaroos that died, survival time was relatively short with only seven animals
surviving longer than 50 days (4 VHF and 3 GPS). Excluding the animals that died within the first
day after relocation and the three GPS animals that were alive at the end of the project, the average
duration of survival was 9.5 days (n = 46, SD = 14.6).

The proportion of collared animals known to have died throughout the project (i.e., 88%) applied
to the entire relocated population of 122 predicted that 107 kangaroos did not survive. The mortality
rate of the relocated kangaroos in respect to days post-relocation is shown in Figure 2. The steepest part
of the curve was over the first three days, with 47 animals (32 collared and 15 uncollared) not surviving,
and a further 12 predicted to have died based on the proportion of known deaths, representing 48% of
relocated animals. Mortality continued at a rapid rate through to day eight post-relocation, with 46 of
the collared and 18 non-collared animals deceased and about 21 others predicted to have died (70% of
relocated animals). By day 18, over 80% of the animals relocated were predicted not to have survived.
From this point onwards, attrition was at a much slower rate, with a further five deaths of collared
animals occurring, and three others predicted to have died up until the last recorded death on day 77.
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The deaths of four individuals were classified as misadventure with one confirmed to have been
hit by a vehicle and another thought to have suffered the same fate. Two others were thought to have
been killed by illegal hunting. Three of these were collared, and an ear tag was recovered for the fourth.
These four were not used in mortality calculation rates but when added to the known and predicted
mortality, the number believed to have died totalled 111 or 91% of the relocated animals.

Samples of thigh muscle, heart muscle, kidney and liver were collected from the last six GPS
collared animals that died. These samples came from four females and two males that had survived
from 15 to 77 days post-relocation. These were submitted to a veterinary pathologist at the Western
Australian Department of Primary Industries and Regional Development to diagnose the cause of
death. From field examination, these individuals appeared to have died quite suddenly, with no
apparent prolonged immobility or struggle and all had full stomachs from feeding. Of the six animals
assessed, the majority (80%) had severe congestion of glomeruli and interstitial vessels in the cortex
and medulla of the kidney, 40% showed evidence of necrosis of skeletal muscle and one individual
had liver necrosis, but no conclusive cause of death was possible.

3.2. Movement Patterns

The maximum linear distance that any animal travelled from their point of release was 27.8 km
with a mean of 5.4 km (Figure 3). For VHF collared animals, the maximum linear distance moved
was 26 km with a mean of 5.2 km. Average and total daily movement data are shown in Appendix A
Table A1 for all GPS collared animals. The number of animals and distribution of distances moved
from the relocation site is shown in Appendix A Figure A2.
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Figure 3. Maximum distance moved by relocated western grey kangaroos from the release site. Triangles
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GPS-collared animals that survived for less than 5 days (n = 18) remained near to the release site,
and only half of them made movements of 100 m or more between half-hourly fixes. Animals that
survived beyond five days but died during the study period (n = 13) tended to make movements
in the one general direction and rarely returned to a prior location (Appendix A Figure A3). Their
movement pattern exhibited some differences to that of animals that survived the study period. They
spent an average of 76% (SD = 9.2) of their time moving less than 40 m between half-hourly fixes
(classified here as resting or feeding), 12% (SD = 3.7) of their time making short movements of 40–100 m
between half-hourly fixes and 12% (SD = 7.5) of their time making larger movements of over 100 m
between half-hourly fixes. The three animals that survived the duration of the study initially spent 86%
(SD = 3.2) of their time resting or feeding, 9% (SD = 2.0) in short movements and just 5% (SD = 2.5) in
larger movements.

Quantitative spatial analysis was only possible for three GPS collared animals (13M, 3F, 186F), as
the movement patterns of most individuals, along with a generally short survival time, prevented the
calculation of stable home ranges. During the first month post-release, these three animals regularly
revisited apparent points of focus (Figure 4). As GPS fixes were reduced to one-hourly after one month,
their hourly movements were re-examined for the first month post-release. During this time, 78.7%
(SD = 5.2) of movements were less than 40 m, 12.7% (SD = 4.0) were 40–100 m and 8.6% (SD = 3.7) were
greater than 100 m. Disturbance due to unforeseen mining exploration in the general area appeared to
influence the movement patterns of one kangaroo with increased daily movements observed. By 12
months, all three kangaroos had developed more discrete home ranges. Most movements occurred
between regular points of focus (Figure 4), and a greater proportion of time was spent undertaking
movements of 40 to 100 m (20%, SD = 1.7) and movements of over 100 m (11%, SD = 4.1). There were
occasions when they made lengthy movements, travelling far from the release site and outside the
project area (Appendix A Figure A4), but always returned to the same general area.
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Figure 4. Movement of the three surviving individuals (a) 3F, (b) 186F and (c) 13M during the first
month post-release using half-hour intervals (left) and during the 12th month post-release using
one-hour intervals (right).

The geometric centre of area occupied for the three GPS collared kangaroos above in relation to
months post-release is shown in Figure 5. Both 3F and 13M immediately departed the release site
taking between ~30 and 45 days, respectively, to establish a relatively stable area of occupancy, where
they remained for the next 12 months. The second female, 186F, remained close to the release site for
the first six months post-release, moving no further than 1.5 km. Over the following three months,
she progressively moved around 15 km to the west and occupied the same small area for the last
three months of monitoring. Using monthly GPS data where they were resident and still remained at
the end of 12 months, excluding linear movements of short duration outside these areas, the mean
95% minimum convex polygon was 8 (SD = 2), 33 (SD = 6) and 25 ha (SD = 5) for 186F, 3F and 13M,
respectively. Using the same data for 95% kernel density estimates, mean values were 10 (SD = 3), 50
(SD = 9) and 35 ha (SD = 6), respectively. Home range polygons and movement data for the 12-month
study period are shown in Appendix A Figure A4. Movement patterns for all other GPS collared
animals are given in Appendix A Figure A5.
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Patterns of average diel activity for the three long term surviving GPS collared animals showed
variation in distances moved throughout the day and across seasons (Figure 6). Peak daily activity,
as determined by maximum mean distances moved, occurred during the morning with a second
but smaller peak occurring in the late afternoon or early evening. Activity in the summer months
began earlier than it did in the cooler months starting at around 0600 but was closer to 0900 in the
winter. The afternoon period of activity in summer was also about an hour later than it was for other
seasons with a peak at around 1900. While mean maximum distance moved ranged from a low of
70 m (SD = 123) in winter to a high of 92 m (SD = 285) in summer, there was variability in these data
with maximum movements in peak hours of up to 1.8 km in winter and 3.1 km in summer.

3.3. Camera Monitoring

Just 31 collared animals remained within the area of the camera grid or spotlighting transects;
28 of these survived for less than a month (X̄ = 6.1 days, SD = 6.6), two survived for 36 and 50 days,
respectively, and only one survived for the duration of the project.

While the primary objective of the camera trap array was to monitor the distribution and detection
rates of relocated kangaroos, the rapid demise of most relocated kangaroos meant that there were too
few animals to contribute data for that purpose. Only three relocated kangaroos were detected, and
these were all within 14 days post-relocation. The low number of detections of marked kangaroos also
supports the mortality predictions above for those uncollared animals.

The diel activity of the GPS collared kangaroos indicated patterns of daily and seasonal variability.
We examined camera detection data to assess whether there was a level of concordance in broad patterns
of activity for GPS collared kangaroos and resident kangaroos. Data from cameras were available for
346 consecutive days beginning on the 24 April 2019. Independent detections were defined as a single
detection of a western grey kangaroo during any hour for any camera. This resulted in a total of 3119
independent detections of western grey kangaroos and a mean daily detection rate of 9.0 (SD = 4.7).

For the resident kangaroos, the diel assessment of winter months indicated that peak activity
was later in the morning (8% at 0900) and earlier in the afternoon/evening (8.5% at 1700) than it was
during summer months (12% at 0500 and 8% at 1800). Data for spring and autumn indicate peak
activity earlier in the morning than for winter but later than for summer (6.7% at 0600 and 7.2% at
0800, respectively). Peak activity in the afternoon was later than for winter but earlier than summer.
Peaks were slightly higher in the afternoons/evenings for winter, spring and autumn but much higher
in the morning during summer. These same general trends were broadly reflected in the data from
GPS collared animals (Figure 6).
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(b) spring, (c) summer and (d) autumn. 

Figure 6. Average total distance moved per hour for the kangaroos surviving for the duration of the
project (line plot with standard error bars and left axis) and number of single detections of resident
kangaroos for each camera within each hour from the camera array (bars and right axis) for (a) winter,
(b) spring, (c) summer and (d) autumn.
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All 75 camera trap sites were occupied by resident kangaroos at some stage throughout the
duration of the project with mean detection rates per camera of 39.2 (SD = 35.3, range 5 to 222). Fifteen
percent of sites had detections for every month of the project, 50% of sites had detections for at least
ten or more months and 90% of sites had detections for at least six or more months.

3.4. Spotlight Monitoring

No relocated kangaroos were observed during spotlighting surveys, though the first post-release
survey was 30 days after the relocation was completed, by which time 80% of the kangaroos were
thought to have died. An average of 0.2, 0.3 and 0.4 resident western grey kangaroos per km of transect
was detected across the three nights sampled in April/May, July and September, respectively. Most
sightings were of solitary animals; however, occasionally, groups of up to five individuals were sighted.

4. Discussion

Management of kangaroos at the urban interface can be challenging with limited management
options available [12,32,33]. In terms of managing population size, lethal control is by far the most
widespread management practice, but non-lethal options such as reproductive control, relocation
and employing the use of deterrents are commonly suggested as alternatives, particularly in urban
areas [12,33,34].

Impending housing development of the site on which a population of western grey kangaroos
had already been isolated by urban expansion was the reason behind the relocation of these kangaroos.
While there is a perception by the community that relocation is a more humane option for minimising
anthropogenic impacts on imperilled wildlife, as the outcomes of these fauna relocations are often
poorly documented, evidence to support this belief is largely lacking [1,4].

4.1. Post-Release Survival

While this study is the first detailed assessment of a large scale western grey kangaroo relocation
in Western Australia, the high mortality rate reported here differs markedly from other studies that
necessitated the capture of kangaroos. For example, Coulson et al. [13] sedated, captured and marked
360 eastern grey kangaroos on a golf course and did not record any deaths, although habituation to
human presence may have helped here. A large-scale sterilisation program in western Sydney of 5825
eastern grey and red kangaroo captures over a 13-year period, resulted in 523 deaths (9%), 19 of which
were attributed to capture myopathy [35]. On the smaller-scale, Munn et al. [36] reported no losses of
11 western grey kangaroos taken from the wild and relocated to an enclosure. Chachelle et al. [37]
likewise documented no deaths resulting from the sedation and capture of 20 western grey kangaroos.
Higginbottom and Page [12] documented the relocation of 10 eastern grey kangaroos and reported
80% surviving after four months and 60% surviving for a year. Note that not all these studies involved
transportation of the kangaroos.

That most kangaroos succumbed so soon after relocation suggests that these deaths were primarily
related to stress associated with capture [38]. Capture myopathy, a condition associated with animal
capture, restraint (chemical or physical) and transport, is reportedly common in macropods [39–42] and
is the likely cause of death for many of the kangaroos. The impact of repeated exposure to stressors,
such as herding, capture, handling and transportation is also known to be additive [38]. A recent
review by Breed et al. [43] indicates that capture myopathy, globally, accounts for a significant number
of deaths associated with translocation, with the condition also prevalent in a wide range of African,
North American and European ungulates.

Excessive stress in animals often results in overexertion causing metabolic imbalance leading to,
among other issues, skeletal or cardiac muscle damage and necrosis [43,44]. Once this damage occurs,
the prognosis for recovery is extremely poor. The syndrome presents with a variety of clinical signs
including anxiety, unsteady or stiff gait, muscle tremors, shivering, muscle stiffness, muscular weakness,
bent neck, partial paralysis, increased respiratory rate or lethargy [39,40,43,44]. This condition can
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be acute, resulting in death within hours to days, but may also manifest sometime later, with death
occurring several weeks or even over a month after the initial trauma [39,43]. Kangaroos that died
rapidly post-relocation or were euthanised in this study generally presented with clinical signs indicative
of capture myopathy. While there was no definitive cause of death for kangaroos that died weeks after
the relocation, it is possible that they also suffered a protracted manifestation of capture myopathy.
Their behaviour and movement patterns were somewhat unlike those kangaroos that survived for the
duration of the study (see [38]).

The best approach to managing risks of capture myopathy is to minimise stress to the animals
as much as possible. Breed et al. [43] suggest that the rate of capture myopathy can be indicative
of how well animal welfare was considered. Vogelnest and Portas [42] advise capture and restraint
techniques must be carefully planned and executed by experienced and skilled operators who are
familiar with macropod behaviour and restraint techniques. Every aspect of a relocation process from
initial capture through restraint, transportation and recovery should be conducted with the critical
objective of minimising stress [38,43].

4.2. Release Location and Timing

While capture myopathy is likely to be the primary factor for the failure of this relocation, there
are other potential contributing factors that should be considered. Here, the forest location where the
kangaroos were released differed from the relatively open grassy area from which they came, and
potentially competing conspecifics were resident in the relocation area. It was intended that a camera
array would provide some insights into distribution and integration of marked relocated animals with
resident kangaroos (i.e., detection ratios of marked and unmarked animals); however, with so few
relocated animals surviving, this was not possible.

Natal experience is important to habitat-selection by dispersing animals [45] and animals released
to novel environments may not respond appropriately to unfamiliar cues regarding resources, even if
a sufficient amount is present [46]. This may be further exacerbated by stress-induced impairment of
learning and memory [38]. However, alternatives to forested areas for large relocations of kangaroos
within the general vicinity of a metropolitan landscape are likely to be few [12]. Open grassed areas
are usually associated with agricultural land use, and without sympathetic landholders, are not an
alternative. Even then, substitutes that could support large numbers of relocated animals and enable
unrestricted movement would be extremely limited. In this relocation, the presence of resident western
grey kangaroos in the release location demonstrated that the area was suitable for this species.

While public access was prohibited without a permit in the release location, there were encounters
with illegal hunters, firewood collectors and off-road motorbike riders, and at least two kangaroos
were likely to have succumbed to unlawful hunting. The long-distance movements of some kangaroos
post-release (> 10 km) resulted in a further two deaths from vehicle impacts on a section of highway eight
kilometres away. This distance moved was greater than that generally reported for wild populations
of western grey kangaroos [47,48] although Priddel [49] reported movements of greater than 30 km
for three individuals (however, median distance moved was 3 km). The extent to which human
activity may disturb and add additional stress to relocated animals is difficult to gauge [38], although
behavioural observations during the study suggested that they were sensitive. For example, disturbance
associated with mining exploration in the vicinity of one of the long-term surviving animals coincided
with increased daily movements of this kangaroo over several weeks. A similar study documenting
post-release survival of white-tailed deer (Odocoileus virginianus) relocated from a metropolitan area to a
rural setting in Illinois, North America, reported that capture-related stress, accidents with vehicles and
losses to hunters were the major factors that led to lower survival of the deer [50].

In many cases, timing of relocation is not always solely determined with the welfare of animals
in mind but driven more by economics, logistics and even convenience [1]. For macropods, ethical
issues around relocations are increased when there is the potential for young to be ejected from the
pouch or for dependent young to be separated from their mother [51]. Fortunately, at the time of this
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relocation, most mature females had pouch young in early development, and there were no young at
heel considered to be dependent.

Although conditions were generally dry for some weeks following relocation, water was available
from at least three sources (dams and an artificial watering point). Full stomachs of the autopsied
kangaroos also indicate that they were finding sufficient food resources. So, it is unlikely that lack of
food and water resources contributed to the relocation failure. Likewise, daily temperatures during
the relocation did not exceed that recommended by Breed et al. [43].

4.3. Movement Patterns

Exploratory behaviour is vital to the successful establishment of animals in a novel environment [52–55].
Out of all the GPS-collared animals, just the three kangaroos that survived for the duration of the
study exhibited organised exploratory behaviour i.e., movements away from their initial release
location that would allow them to gain knowledge of their novel environment and build experience
in locations of high value. Such behaviour is the mechanism by which animals learn of resources,
potential dangers and social opportunities so that they might optimally exploit their environment [53].
Over time, the movement patterns of these three animals became more regular and contained focal
points that were repeatedly revisited—behavioural patterns indicating that they were adapting well to
their new environment [53]. The home range size estimates for these three kangaroos was generally
smaller than reported in other studies of the same species (e.g., [37,47]).

Most other kangaroos remained near the release location and subsequently died there, or moved
away in a series of unidirectional movements, without establishing any particular points that were
revisited or formed centroids of exploratory behaviour. These erratic movements of the kangaroos that
died relatively early in the study are suggestive of highly stressed individuals. A level of release-site
fidelity is important to establishing new populations as it minimises deleterious dispersal [56–60]. One
of the reasons implicated in the failure of relocations is extensive movements away from the unfamiliar
release location [4–6], reducing the fitness of relocated animals in the early post-release stage [53].

Diel activity showed surviving kangaroos to be bimodal, moving greater distances between fixes
in the morning periods than the afternoon or evening. This timing is similar to those found for eastern
grey kangaroos by Henderson et al. [14]. Seasonal shifts in these patterns were evident with activity
occurring earlier in summer than for other seasons and extending further into daylight hours during
winter. Activity patterns of these relocated animals were broadly synchronised with camera detection
rates of resident kangaroos in the same area, also suggesting behavioural stability.

4.4. Post-Release Monitoring Approach

Due to the low survival rate of collared kangaroos, the value of GPS telemetry for monitoring
movement patterns, and hence assessing adaptation to a new environment, was not fully realised during
this study. Other studies using this technology have reported on the benefits it provides, particularly
for tracking long-distance movements [14,61]. If the primary aim is to determine survival rates only,
VHF collars are likely to be a more cost-effective option. In this study, the fate of all VHF-collared
kangaroos was able to be determined. Even with aircraft tracking flights on two occasions, the cost
per VHF-collared individual was only a fraction of the GPS collars (AUD$517 per collar compared to
AUD$3115).

Although the GPS collars were large and bulky, there did not appear to be any significant long-term
welfare issues. Several animals that had GPS collars attached initially showed signs of distress when
recovering from sedation, but it was unclear if it was related to the collar, a reaction to the drugs or a
combination of both, as macropods can have prolonged and violent recoveries after being sedated with
Zoletil® [35]. However, the reaction appeared to dissipate quickly once the animals had recovered from
sedation. No animals were displaying adverse reactions to collars when released from the enclosure.
Photographic evidence of the three surviving GPS collared animals showed them to be wearing
the collars well with no sign of rubbing or irritation during the wearing of the collar, or after the
collar’s release.
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The GPS collars functioned well and the battery life lasted the required 12 months when collars
remained on animals. There were some minor issues in that mortality mode did not always engage
for the VHF signal even though a message that the animal was deceased had been received. Issues
with the timed-release device (TRD) were more significant with one failing to release and a two-week
delay in the release of another. Failure to release and delays in activation of a TRD have implications
for animal welfare and collar recovery, particularly if working in remote and difficult to access areas,
and potentially needing to recapture a wary animal. This constitutes a 33% failure rate—significantly
greater than the already high 19% failure rate reported by Matthews et al. [61]. Signal transmission
and battery life of the VHF collars also worked well, but there were some issues with mortality signals.
Two failed to enter mortality mode when the animal had died, and one switched from mortality mode
to live mode without movement of the collar. The retrofitted weak links built into these collars worked
as planned with all releasing.

While the cameras were not effective for the intended purpose of this study, they did show that
there was a relatively widespread and stable population of resident western grey kangaroos across the
relocation area. Spotlighting also proved ineffective but further trials could test if detecting marked
individuals by this technique can be achieved, and therefore, provide useful information.

5. Conclusions

Effective management of kangaroos at the urban interface is challenging. Here, the survival rate
of western grey kangaroos was poor, with an estimated 80% of the 122 kangaroos perishing within the
first month of relocation and only six collared kangaroos surviving for up to 12 months. This poor
outcome raises concerns around the viability of relocating a relatively large number of kangaroos
humanely. Based on the results of their study, Higginbottom and Page [12] considered that relocations
should not be a wide-spread solution to the impact of development on kangaroos, as there are unlikely
to be many sites that meet relocation criteria, and the stress associated with the capture and relocation
often results in the death of animals. Stress associated with the relocation process was implicated as
the cause of the early deaths of the kangaroos. This was supported by the short duration of survival
of the majority of kangaroos, that a considerable proportion died in transit or required euthanising,
those that survived for less than 5 days remained in close proximity to the release site and macropods
in general are known to be highly susceptible to capture myopathy. As such, where relocation is the
preferred course of action, it is essential to carefully consider the welfare of the animals, particularly in
the capture and transport phase, and also follow up with appropriate methods to monitor and report
on the success of the relocation [5,43,62,63].
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Appendix A

Table A1. Average daily maximum linear distance and average total daily distance moved by each
GPS collared relocated western grey kangaroo (#: total number of days monitored).

Individual # days Maximum Linear Distance Total Distance

Mean
(km)

Maximum
(km) S.D. Mean

(km)
Maximum

(km) S.D.

3F 370 0.68 10.17 1.03 1.43 11.52 1.28
4F 2 0.05 0.10 0.06 0.24 0.47 0.32
5F 2 0.16 0.31 0.21 0.45 0.88 0.61

13M 383 0.30 5.04 0.47 0.71 5.34 0.52
27M 4 1.41 2.33 1.11 2.29 4.16 1.93
28F 9 0.74 1.89 0.63 1.33 2.52 0.82
29F 5 0.18 0.39 0.17 0.54 0.86 0.38
30F 2 0.21 0.41 0.29 0.47 0.94 0.67
31F 8 0.27 0.45 0.19 1.41 2.53 0.85
41M 36 0.60 3.97 0.80 1.23 4.67 0.94
42F 2 0.77 1.54 1.09 1.41 2.81 1.98
43F 2 0.05 0.09 0.06 0.33 0.66 0.47
63F 2 0.10 0.19 0.13 0.25 0.49 0.34
78F 3 0.18 0.28 0.15 0.85 1.54 0.78
79F 2 0.06 0.10 0.06 0.30 0.87 0.49
84F 12 1.28 2.64 1.03 1.77 3.26 1.06
94F 3 0.04 0.07 0.03 0.42 0.67 0.36
102F 6 0.13 0.19 0.06 0.61 1.20 0.38
107F 4 0.54 1.49 0.67 1.63 3.37 1.53
109F 35 0.31 3.09 0.56 0.92 3.65 0.59
130F 15 0.83 2.69 0.82 1.39 2.95 0.86
133M 6 1.09 3.94 1.42 1.69 4.33 1.52
152M 7 1.20 4.21 1.35 2.43 5.82 2.15
155F 4 1.06 1.92 0.68 1.38 2.29 0.87
156F 2 0.06 0.10 0.05 0.38 0.73 0.50
176F 18 1.44 9.94 2.80 2.76 20.76 5.02
178F 14 0.80 3.53 1.05 1.43 4.22 1.16
179F 13 1.65 5.02 1.59 3.02 9.22 2.81
180F 6 1.70 5.06 1.68 2.99 7.41 2.56
181F 2 0.13 0.17 0.06 0.46 0.84 0.53
183F 3 1.33 3.47 1.87 3.71 8.89 4.56
184F 11 1.85 4.07 1.37 3.68 8.00 2.69
185F 77 0.32 2.04 0.41 0.82 2.41 0.48
186F 363 0.28 4.90 0.49 0.74 7.09 0.69
201F 14 1.47 4.25 1.44 3.36 8.45 2.79
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hourly intervals) but died during study. 

Figure A2. Maximum distances western grey kangaroos moved from the release site following relocation.



Animals 2020, 10, 1914 19 of 23

Animals 2020, 10, x 18 of 23 

 

Figure A2. Maximum distances western grey kangaroos moved from the release site following 
relocation. 

 

Figure A3. Post-release movements of three western grey kangaroos that survived >5 days (half-
hourly intervals) but died during study. 

Figure A3. Post-release movements of three western grey kangaroos that survived >5 days (half-hourly
intervals) but died during study.

Animals 2020, 10, x 19 of 23 

 
Figure A4. Movement of surviving GPS collared western grey kangaroos (triangles) and the primary 
areas they occupied (polygons) following relocation. 

 
Figure A5. Movement of GPS collared western grey kangaroos (coloured circles) that died following 

relocation. 

  

Figure A4. Movement of surviving GPS collared western grey kangaroos (triangles) and the primary
areas they occupied (polygons) following relocation.



Animals 2020, 10, 1914 20 of 23

Animals 2020, 10, x 19 of 23 

 
Figure A4. Movement of surviving GPS collared western grey kangaroos (triangles) and the primary 
areas they occupied (polygons) following relocation. 

 
Figure A5. Movement of GPS collared western grey kangaroos (coloured circles) that died following 

relocation. 

  

Figure A5. Movement of GPS collared western grey kangaroos (coloured circles) that died following relocation.

References

1. Germano, J.M.; Field, K.J.; Griffiths, R.A.; Clulow, S.; Foster, J.; Harding, G.; Swaisgood, R.R. Mitigation-driven
translocations: Are we moving wildlife in the right direction? Front. Ecol. Environ. 2015, 13, 100–105. [CrossRef]

2. IUCN. Guidelines for Reintroductions and Other Conservation Translocations, version 1.0; IUCN Species Survival
Commission: Gland, Switzerland, 2013.

3. Sullivan, B.K.; Nowak, E.M.; Kwiatkowski, M.A. Problems with mitigation translocation of herpetofauna.
Conserv. Biol. 2015, 29, 12–18. [CrossRef] [PubMed]

4. Massei, G.; Quy, R.J.; Gurney, J.; Cowan, D.P. Can translocations be used to mitigate human-wildlife conflicts?
Wildl. Res. 2010, 37, 428–439. [CrossRef]

5. Fischer, J.; Lindenmayer, D. An assessment of the published results of animal relocations. Biol. Conserv. 2000,
96, 1–11. [CrossRef]

6. Stuparyk, B.; Horn, C.J.; Karabatsos, S.; Arteaga–Torres, J. A meta–analysis of animal survival following
translocations: Comparisons between conflicts and conservation efforts. Can. Wildl. Biol. Manag. 2018, 7,
3–17.

7. Pietsch, R.S. The fate of urban common brushtail possums translocated to sclerophyll forest. In Reintroduction
Biology of Australian and New Zealand Fauna; Serena, M., Ed.; Surrey Beatty and Sons: Chipping Norton,
New South Wales, Australia, 1994; pp. 239–246.

8. De Tores, P.J.; Hayward, M.W.; Rosier, S.M. The western ringtail possum, (Pseudocheirus occidentalis), and the
quokka, (Setonix brachyurus), case studies: Western Shield review—February 2003. Conserv. Sci. West. Aust.
2004, 5, 235–257.

9. Hill, N.J.; Carbery, K.A.; Deane, E.M. Human–Possum Conflict in Urban Sydney, Australia: Public Perceptions
and Implications for Species Management. Hum. Dimens. Wildl. 2007, 12, 101–113. [CrossRef]

10. Fleming, P.A.; Crawford, H.M. Invasive predators in urban bushland–corridors and cover for conservation.
In A Jewel in The Crown of a Global Biodiversity Hotspot; Lambers, H., Ed.; Kwongan Foundation and the
Western Australian Naturalists’ Club Inc.: Perth, Australia, 2019; pp. 1–8.

11. Roberts, B.J.; Eby, P.; Catterall, C.P.; Kanowski, J.; Bennett, G. The outcomes and costs of relocating flying-fox
camps: Insights from the case of Maclean, Australia. In The Biology and Conservation of Australasian Bats;
Law, B., Eby, P., Lunney, D., Lumsden, L., Eds.; Royal Zoological Society of New South Wales: Mosman,
NSW, Australia, 2011; pp. 277–287.

12. Higginbottom, K.; Page, S. Monitoring the fate of translocated eastern grey kangaroos at the Gold Coast.
In Macropods: The Biology of Kangaroos, Wallabies and Rat-Kangaroos; Coulson, G., Eldridge, M., Eds.; CSIRO:
Melbourne, Australia, 2010; pp. 341–348.

http://dx.doi.org/10.1890/140137
http://dx.doi.org/10.1111/cobi.12336
http://www.ncbi.nlm.nih.gov/pubmed/25040040
http://dx.doi.org/10.1071/WR08179
http://dx.doi.org/10.1016/S0006-3207(00)00048-3
http://dx.doi.org/10.1080/10871200701195928


Animals 2020, 10, 1914 21 of 23

13. Coulson, G.; Cripps, J.K.; Wilson, M.E. Hopping Down the Main Street: Eastern Grey Kangaroos at Home in
an Urban Matrix. Animals 2014, 4, 272–291. [CrossRef]

14. Henderson, T.; Vernes, K.; Körtner, G.; Rajaratnam, R. Using GPS Technology to Understand Spatial and
Temporal Activity of Kangaroos in a Peri-Urban Environment. Animals 2018, 8, 97. [CrossRef]

15. Ballard, G. Peri-urban kangaroos. Wanted? Dead or alive. In Too Close for Comfort: Contentious Issues in
Human-Wildlife Encounters; Lunney, D., Munn, A., Meikle, W., Eds.; Royal Zoological Society of New South
Wales: Mosman, Australia, 2008; pp. 49–51.

16. Kerle, A. The Eastern Grey Kangaroo: A Modern Conservation Dilemma. Aust. Zool. 2019, 40, 102–117.
[CrossRef]

17. Henderson, T. Home is Where the Grass is: Kangaroos in Peri-Urban Communities on the Coffs Harbour
Northern Beaches. B.Sc. Honors Thesis, University of New England, Armidale, Australia, November 2016.

18. Green-Barber, J.M.; Old, J.M. Is camera trap videography suitable for assessing activity patterns in eastern
grey kangaroos? Pac. Conserv. Biol. 2018, 24, 134–141. [CrossRef]

19. Morgan, H.R.; Ballard, G.; Fleming, P.J.S.; Reid, N.; Van Der Ven, R.; Vernes, K. Estimating macropod grazing
density and defining activity patterns using camera-trap image analysis. Wildl. Res. 2018, 45, 706. [CrossRef]

20. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2020.

21. Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by
animals. Ecol. Model. 2006, 197, 516–519. [CrossRef]

22. Bivand, R.S.; Pebesma, E.J.; Gómez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New
York, NY, USA, 2013.

23. Bivand, R.; Rundel, C. rgeos: Interface to Geometry Engine—Open Source (‘GEOS’). R package version 0.5–3.
2020. Available online: https://CRAN.R-project.org/package=rgeos (accessed on 1 July 2020).

24. Bivand, R.; Lewin-Koh, N. Maptools: Tools for Handling Spatial Objects. R package version 1.0–1. 2020.
Available online: https://CRAN.R-project.org/package=maptools (accessed on 1 July 2020).

25. Pebesma, E.J.; Bivand, R.S. Classes and Methods for Spatial Data in R. R News 5 (2). 2005. Available online:
https://cran.r-project.org/doc/Rnews/ (accessed on 1 July 2020).

26. Revelle, W.R. Psych: Procedures for Personality and Psychological Research. Version 1.9.12. 2019. Available
online: https://CRAN.R-project.org/package=psych (accessed on 1 July 2020).

27. Newkirk, E.S.; CPW Photo Database. Colorado Parks and Wildlife. 2016. Available online: http://cpw.state.
co.us/learn/Pages/ResearchMammalsSoftware.aspx (accessed on 5 May 2019).

28. QGIS.org QGIS Geographic Information System. Open Source Geospatial Foundation Project. Version
3.14.15.. 2020. Available online: http://qgis.org (accessed on 1 June 2019).

29. Ganskopp, D.; Johnson, D.D. GPS error in studies addressing animal movements and activities. Rangel. Ecol.
Manag. 2007, 60, 350–358. [CrossRef]

30. Ironside, K.E.; Mattson, D.J.; Arundel, T.R.; Hansen, J.R. Is GPS telemetry location error screening beneficial?
Wildl. Biol. 2017, 17. [CrossRef]

31. Laver, P.N.; Powell, R.A.; Alexander, K.A. Screening GPS telemetry data for locations having unacceptable
error. Ecol. Inform. 2015, 27, 11–20. [CrossRef]

32. Hampton, J.O.; Hyndman, T.H.; Barnes, A.; Collins, T. Is Wildlife Fertility Control Always Humane? Animals
2015, 5, 1047–1071. [CrossRef] [PubMed]

33. Descovich, K.; Tribe, A.; McDonald, I.J.; Phillips, C.J.C. The eastern grey kangaroo: Current management
and future directions. Wildl. Res. 2016, 43, 576–589. [CrossRef]

34. Descovich, K.; McDonald, I.; Phillips, C.; Tribe, A. A welfare assessment of methods used for harvesting,
hunting and population control of kangaroos and wallabies. Anim. Welf. 2015, 24, 255–265. [CrossRef]

35. Colgan, S.; Perkins, N.R.; Green, L.A. The large-scale capture of eastern grey kangaroos (Macropus giganteus)
and red kangaroos (Osphranter rufus) and its application to a population management project. Aust. Vet. J.
2019, 97, 515–523. [CrossRef]

36. Munn, A.J.; Skeers, P.; Kalkman, L.; McLeod, S.R.; Dawson, T.J. Water use and feeding patterns of the marsupial
western grey kangaroo (Macropus fuliginosus melanops) grazing at the edge of its range in arid Australia, as
compared with the dominant local livestock, the Merino sheep (Ovis aries). Mamm. Biol. 2014, 79, 1–8. [CrossRef]

37. Chachelle, P.D.; Chambers, B.K.; Bencini, R.; Maloney, S.K. Western grey kangaroos (Macropus fuliginosus)
include fauna underpasses in their home range. Wildl. Res. 2016, 43, 13. [CrossRef]

http://dx.doi.org/10.3390/ani4020272
http://dx.doi.org/10.3390/ani8060097
http://dx.doi.org/10.7882/AZ.2018.023
http://dx.doi.org/10.1071/PC17051
http://dx.doi.org/10.1071/WR17162
http://dx.doi.org/10.1016/j.ecolmodel.2006.03.017
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=maptools
https://cran.r-project.org/doc/Rnews/
https://CRAN.R-project.org/package=psych
http://cpw.state.co.us/learn/Pages/ResearchMammalsSoftware.aspx
http://cpw.state.co.us/learn/Pages/ResearchMammalsSoftware.aspx
http://qgis.org
http://dx.doi.org/10.2111/1551-5028(2007)60[350:GEISAA]2.0.CO;2
http://dx.doi.org/10.2981/wlb.00229
http://dx.doi.org/10.1016/j.ecoinf.2015.02.001
http://dx.doi.org/10.3390/ani5040398
http://www.ncbi.nlm.nih.gov/pubmed/26506395
http://dx.doi.org/10.1071/WR16027
http://dx.doi.org/10.7120/09627286.24.3.255
http://dx.doi.org/10.1111/avj.12886
http://dx.doi.org/10.1016/j.mambio.2013.03.003
http://dx.doi.org/10.1071/WR15124


Animals 2020, 10, 1914 22 of 23

38. Teixeira, C.P.; De Azevedo, C.S.; Mendl, M.; Cipreste, C.F.; Young, R.J. Revisiting translocation and
reintroduction programmes: The importance of considering stress. Anim. Behav. 2007, 73, 1–13. [CrossRef]

39. Shepherd, N.; Hopwood, P.; Dostine, P. Capture Myopathy—2 Techniques for Estimating Its Prevalence and
Severity in Red Kangaroos, Macropus-Rufus. Wildl. Res. 1988, 15, 83–90. [CrossRef]

40. Rose, K. Common Diseases of Urban Wildlife: General Diseases—Myopathy and Trauma; The Australian Registry
of Wildlife Health: Sydney, Australia, 2005; pp. 2–12.

41. Green-Barber, J.M.; Stannard, H.J.; Old, J.M. A suspected case of myopathy in a free-ranging eastern grey
kangaroo (Macropus giganteus). Aust. Mammal. 2018, 40, 122–126. [CrossRef]

42. Vogelnest, L.; Portas, T. Macropods. In Medicine of Australian Mammals; Vogelnest, L., Woods, R., Eds.; CSIRO
Publishing: Collingwood, Australia, 2008; pp. 133–225.

43. Breed, D.; Meyer, L.C.R.; Steyl, J.C.A.; Goddard, A.; Burroughs, R.; Kohn, T.A. Conserving wildlife in a
changing world: Understanding capture myopathy-a malignant outcome of stress during capture and
translocation. Conserv. Physiol. 2019, 7, 1–21. [CrossRef]

44. Vogelnest, L. Chemical Restraint of Australian Native Fauna. In Wildlife in Australia: Healthcare and Management;
Proceedings 327; Post Graduate Foundation in Veterinary Science, University of Sydney: Sydney, Australia,
1999; pp. 149–187.

45. Davis, J.M.; Stamps, J.A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 2004, 19,
411–416. [CrossRef]

46. Stamps, J.A.; Swaisgood, R.R. Someplace like home: Experience, habitat selection and conservation biology.
Appl. Anim. Behav. Sci. 2007, 102, 392–409. [CrossRef]

47. Priddel, D.; Shepherd, N.; Wellard, G. Home ranges of sympatric red kangaroos Macropus-Rufus, and western
grey kangaroos Macropus-Fuliginosus, in western New-South-Wales. Wildl. Res. 1988, 15, 405–411. [CrossRef]

48. Arnold, G.W.; Grassia, A.; Steven, D.E.; Weeldenburg, J.R. Population ecology of western grey kangaroos in
a remnant of wandoo woodland at Baker’s Hill, southern Western Australia. Wildl. Res. 1991, 18, 561–575.
[CrossRef]

49. Priddel, D. The mobility and habitat utilisation of kangaroos. In Kangaroos: Their Ecology and Management in
the Sheep Rangelands of Australia; Caughley, G., Shepherd, N., Short, J., Eds.; Cambridge University Press:
Cambridge, UK, 1987; pp. 100–118.

50. Jones, M.; Witham, J. Post-translocation survival and movements of metropolitan white-tailed deer. Wildl. Soc.
Bull. 1990, 18, 434–441.

51. Garlick, S.; Austen, R. Kangaroo translocation: Program efficiency and welfare goals. In Proceedings of
the National Wildlife Rehabilitation Conference, Adelaide, Australia, 22–24 June 2010; pp. 1–17. Available
online: https://www.awrc.org.au/adelaide-2010.html (accessed on 5 August 2020).

52. Berger-Tal, O.; Avgar, T. The glass is half-full: Overestimating the quality of a novel environment is
advantageous. PLoS ONE 2012, 7, e34578. [CrossRef] [PubMed]

53. Berger-Tal, O.; Saltz, D. Using the movement patterns of reintroduced animals to improve reintroduction
success. Curr. Zoool. 2014, 60, 515–526. [CrossRef]

54. Burns, C.E. Behavioral ecology of disturbed landscapes: The response of territorial animals to relocation.
Behav. Ecol. 2005, 16, 898–905. [CrossRef]

55. Russell, J.C.; McMorland, A.J.C.; Mackay, J.W.B. Exploratory behaviour of colonizing rats in novel
environments. Anim. Behav. 2010, 79, 159–164. [CrossRef]

56. Bleisch, A.D.; Keller, B.J.; Bonnot, T.W.; Hansen, L.P.; Millspaugh, J.J. Initial Movements of Re- introduced
Elk in the Missouri Ozarks. Am. Midl. Nat. 2017, 178, 1–16. [CrossRef]

57. Le Gouar, P.; Robert, A.; Choisy, J.-P.; Henriquet, S.; Lecuyer, P.; Tessier, C.; Sarrazin, F. Roles of Survival and
Dispersal in Reintroduction Success of Griffon Vulture (Gyps Fulvus). Ecol. Appl. 2008, 18, 859–872. [CrossRef]

58. Mihoub, J.-B.; Robert, A.; Le Gouar, P.; Sarrazin, F. Post-Release Dispersal in Animal Translocations: Social
Attraction and the “Vacuum Effect”. PLoS ONE 2011, 6, e27453. [CrossRef]

59. Mihoub, J.-B.; Princé, K.; Duriez, O.; Lecuyer, P.; Eliotout, B.; Sarrazin, F. Comparing the effects of release
methods on survival of the Eurasian black vulture Aegypius monachus reintroduced in France. Oryx 2013, 48,
106–115. [CrossRef]

60. Yott, A.; Rosatte, R.; Schaefer, J.A.; Hamr, J.; Fryxell, J. Movement and Spread of a Founding Population of
Reintroduced Elk (Cervus elaphus) in Ontario, Canada. Restor. Ecol. 2010, 19, 70–77. [CrossRef]

http://dx.doi.org/10.1016/j.anbehav.2006.06.002
http://dx.doi.org/10.1071/WR9880083
http://dx.doi.org/10.1071/AM16054
http://dx.doi.org/10.1093/conphys/coz027
http://dx.doi.org/10.1016/j.tree.2004.04.006
http://dx.doi.org/10.1016/j.applanim.2006.05.038
http://dx.doi.org/10.1071/WR9880405
http://dx.doi.org/10.1071/WR9910561
https://www.awrc.org.au/adelaide-2010.html
http://dx.doi.org/10.1371/journal.pone.0034578
http://www.ncbi.nlm.nih.gov/pubmed/22509326
http://dx.doi.org/10.1093/czoolo/60.4.515
http://dx.doi.org/10.1093/beheco/ari070
http://dx.doi.org/10.1016/j.anbehav.2009.10.020
http://dx.doi.org/10.1674/0003-0031-178.1.1
http://dx.doi.org/10.1890/07-0854.1
http://dx.doi.org/10.1371/journal.pone.0027453
http://dx.doi.org/10.1017/S0030605312000981
http://dx.doi.org/10.1111/j.1526-100X.2009.00639.x


Animals 2020, 10, 1914 23 of 23

61. Matthews, A.; Ruykys, L.; Ellis, B.; FitzGibbon, S.; Lunney, D.; Crowther, M.S.; Glen, A.S.; Purcell, B.;
Moseby, K.; Stott, J.; et al. The success of GPS collar deployments on mammals in Australia. Aust. Mammal.
2013, 35, 65–83. [CrossRef]

62. Portas, T. Veterinary aspects of native mammal conservation translocations. In Current Therapy in Medicine of
Australian Mammals; Vogelnest, L., Portas, T., Eds.; CSIRO Publishing: Melbourne, Australia, 2019; pp. 17–35.

63. Bureau of Meterology. Climate Data Online. 2020. Available online: www.bom.gov.au/climate/data (accessed
on 15 September 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1071/AM12021
www.bom.gov.au/climate/data
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Relocation 
	GPS and VHF Telemetry 
	Relocated Kangaroos 
	Movement and Activity Patterns 
	Camera Traps and Spotlighting 
	Data Analysis 
	Ethics Statement 

	Results 
	Survivorship 
	Movement Patterns 
	Camera Monitoring 
	Spotlight Monitoring 

	Discussion 
	Post-Release Survival 
	Release Location and Timing 
	Movement Patterns 
	Post-Release Monitoring Approach 

	Conclusions 
	
	References

