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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has swamped the
global environment greatly in the current pandemic. Wastewater-based epidemiology (WBE) effec-
tively forecasts the surge of COVID-19 cases in humans in a particular region. To understand the
genomic characteristics/footprints and diversity of SARS-CoV-2 in the environment, we analyzed 807
SARS-CoV-2 sequences from 20 countries deposited in GISAID till 22 May 2021. The highest number
of sequences (n = 638) were reported in Austria, followed by the Netherlands, China, and Bangladesh.
Wastewater samples were highest (40.0%) to successfully yield the virus genome followed by a 24 h
composite wastewater sample (32.6%) and sewage (18.5%). Phylogenetic analysis revealed that
SARS-CoV-2 environmental strains are a close congener with the strains mostly circulating in the
human population from the same region. Clade GRY (32.7%), G (29.2%), GR (25.3%), O (7.2%), GH
(3.4%), GV (1.4%), S (0.5%), and L (0.4%) were found in environmental samples. Various lineages
were identified in environmental samples; nevertheless, the highest percentages (49.4%) of the alpha
variant (B.1.1.7) were detected in Austria, Liechtenstein, Slovenia, Czech Republic, Switzerland,
Germany, and Italy. Other prevalent lineages were B.1 (18.2%), B.1.1 (9.2%), and B.1.160 (3.9%).
Furthermore, a significant number of amino acid substitutions were found in environmental strains
where the D614G was found in 83.8% of the sequences. However, the key mutations—N501Y (44.6%),
S982A (44.4%), A570D (43.3%), T716I (40.4%), and P681H (40.1%) were also recorded in spike pro-
tein. The identification of the environmental belvedere of SARS-CoV-2 and its genetic signature is
crucial to detect outbreaks, forecast pandemic harshness, and prepare with the appropriate tools to
control any impending pandemic. We recommend genomic environmental surveillance to trace the
emerging variants and diversity of SARS-CoV-2 viruses circulating in the community. Additionally,
proper disposal and treatment of wastewater, sewage, and medical wastes are important to prevent
environmental contamination.

Keywords: COVID-19; sewage; phylogenetic analysis; mutation; alpha variant

1. Introduction

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
put human civilization at risk for its devastating spread. The world is facing an enor-
mous economic loss through death, treatment cost, lockdown, travel restrictions, trade
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embargoes, and many other factors, but the threat might be aggravated if there is a chance
of environmental contamination by the virus [1,2]. SARS-CoV-2 is mainly a respiratory
virus, but it may persist and replicate in the gastrointestinal tract and shed through fe-
ces during and after the active infectious stage in humans [3–6]. Infected persons are
shedding viruses through feces [6,7] and this fact was established by the presence of viral
RNA in sewage, reported in the Global Initiative on Sharing All Influenza Data (GISAID)
(https://www.epicov.org/, accessed on 27 July 2021) since 9 February 2020. During the
SARS outbreak in 2003, about 16–73% of SARS patients exhibited diarrhea [8], and transmis-
sion occurred via water droplets from feces to the air and the environment [9]. For instance,
the World Health Organization (WHO) reported an occurrence of 342 cases with 42 deaths
in Hong Kong due to SARS where the virus was transmitted through a water plumbing
system. However, the airborne spread of “virus-laden droplets” occurred through bath-
room ventilation into the room [10]. Similarly, the SARS-CoV-2 droplet might be released
through the wastewater sanitation arrangement of the building’s different floors which
might cause cross-contamination [11].

The sluffing of SARS-CoV-2 in feces, urogenital, and oral washing increases the
credibility of using the wastewater-based epidemiology (WBE) approach for SARS-CoV-2
surveillance and monitoring. A reverse transcriptase real-time polymerase chain reaction
(rt-PCR) is used to detect N1, N2, and N3 genes of the nucleocapsid protein and the E gene
of the envelope protein of the virus from wastewater [12]. As an early warning tool, the
environmental surveillance of SARS-CoV-2 is crucial to detect the virus’s circulation in the
human population [13,14]. WBE can be used to monitor around 2.1 billion people globally
from 105,600 sewage treatment plants [15]. Earlier, environmental surveillance was found
to be useful for Hepatitis A virus [16], poliovirus [14], Aichi virus [17], and norovirus [18].
Even before the identification of COVID-19 positive patients in the community, the sewage
data flag out the presence of the virus. Therefore, WBE suffices to determine the circulation
of coronavirus in the community [19] and the sewage network samples might be sufficient
for the identification of SARS-CoV-2 RNA which act as a “mirror of the population”.

Earlier studies used WBE for the identification of SARS-CoV-2 RNA from the effluents
worldwide, such as in Australia, Italy [20,21], the Netherlands [13], and Massachusetts,
USA [22]. In addition, a study from Paris, France reported that SARS-CoV-2 RNA detection
correlates with the number of symptomatic or asymptomatic carriers [23]. Fecal shedding
of the virus dominates on oropharyngeal shedding, which is evident in China, where
SARS-CoV-2 was identified in a fecal sample of a patient, rather than oropharyngeal swabs,
for an unusually long period of time [24]. Another reason might be paucisymptomatic pa-
tients’ unconsciousness about their hand cleaning and mask-wearing, which subsequently
promotes virus circulation to their family and ultimately affects wastewater.

Overall, the COVID-19 pandemic has a detrimental effect on public health caused by
environmental risk factors [25–27]. So, the safe management of domestic and household
waste could be critical during the ongoing pandemic. In the current situation, medical
waste, both from households and hospitals, such as contaminated masks, gloves, used or
expired medications, and other items, can easily be mixed with miscellaneous domestic
and hospital waste [28]. Additionally, there is a data gap to understand the other possible
environmental routes of transmission, such as air fomites and surface-level contamination,
which steadily increases the infection rates. Since SARS-CoV-2 has been considered highly
infectious among other viruses within the coronavirus family, it is important to unveil the
pattern and possible pathways of environmental transmission.

Moreover, the genomic configuration of SARS-CoV-2 is attributable to inter-species
transmission and adaptation into an unusual host and hence is imperious to explicate
the evolutionary dynamics of the viral genome and its proclivity for differential host
selection [29]. Therefore, an in-depth study of SARS-CoV-2 sequences using a robust
number of sequences analyzed for phylogeny, structural, and mutational constituents
might be effective to obtain a more holistic view of the genomic topographies of this virus.

https://www.epicov.org/
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Here, we conducted the study for molecular characterization of SARS-CoV-2 from
environmental samples to track their relatedness and diversity with strains from commu-
nity people from different geographical regions. We also attempted to illustrate the ways
SARS-CoV-2 spreads from a diseased person to the sewer and vice versa.

2. Methodology
2.1. Epidemiology and Phylogeny of Environmental Strains of SARS-CoV-2

We searched the GISAID (https://www.gisaid.org/, accessed on 22 May 2021) reposi-
tory for all sequences of the SARS-CoV-2 virus from different environmental sites around
the world (Supplementary Table S1). We retrieved the sequences and collated them in
Microsoft Excel. It should be noted that many other countries reported detection of SARS-
CoV-2 without sequencing the virus. We did not include those reports in our study. We
modified the time frame from 20 December 2019 to 22 May 2021. A total of 807 envi-
ronmental samples have been sequenced and deposited in GISAID. We calculated the
percentage of different environmental samples by country using STATA 13.0 and presented
them graphically. We showed the distribution of SARS-CoV-2-positive environmental
samples graphically using ArcGIS. Then, we used sequences > 29,000 nucleotides long for
phylogenetic analysis using MEGA 7.0 software (MEGA, Auckland, New Zealand) [30]. We
used the full-length nucleotide sequence of the Wuhan SARS-CoV-2 virus as the reference
sequence (accession number NC_045512.2) [31]. We also calculated the percentages of
lineages and clades of SARS-CoV-2 strains from environmental samples.

2.2. Mutational Analysis of SARS-CoV-2 Retrieved from the Environment

For mutation analysis, we selected 807 environmental SARS-CoV-2 sequences with
more than 29,000 base pairs as described by Kiyotani, et al. [32]. We used NC_045512.2
as a reference strain across the entire set of studied genomes. We aligned the nucleotide
sequences concerning the reference sequence of SARS-CoV-2 using MEGA 7.0 software and
virus pathogen repositories (https://www.viprbrc.org/, accessed on 22 May 2021) [30].
We translated the individual protein of the virus into amino acid and compared it with the
reference sequence using the process described by Toyoshima, et al. [33]) to identify the
mutation sites of the virus. We used GISAID for the examination of the individual virus
protein mutation. We graphically represented all the mutation sites in percentages.

3. Results
3.1. Frequency and Spatial Distribution of SARS-CoV-2 Sequences of Environmental Strains

We found that 20 countries reported 807 SARS-CoV-2 sequences from different envi-
ronmental samples across the globe. The SARS-CoV-2 RNA has been detected in diverse
samples, namely, air, currency, environmental swab, surface swab, wastewater, sewage,
and the outer packaging of cold chain products. Wastewater samples were highest (40.0%)
to successfully yield the virus genome sequence followed by a 24 h composite wastewater
sample (32.6%), and sewage (18.5%). The highest number of samples (n = 638) were se-
quenced in Austria, followed by the Netherlands, China, and Bangladesh (Figures 1 and 2).

https://www.gisaid.org/
https://www.viprbrc.org/
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3.2. Phylogenetic Analysis of SARS-CoV-2 from the Environment

The SARS-CoV-2 strains detected from environmental samples are close congeners
with the strains mostly circulating in the human population. SARS-CoV-2 strains from
the Netherlands are varying in nature, forming three separate clusters. One group has
a genetic resemblance with strains from Qatar and China, another with strains from the
USA and Switzerland, and the rest with a human strain from Russia. On the other hand,
environmental strains from the USA and Liechtenstein have the same ancestral origin.
Interestingly, the human strain from India and the environmental strain from Brazil are
grouped in the phylogeny. Another distinguished cluster was formed by strains from
Belgium, Italy, Uruguay, and Morocco (Figure 3).
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fuchsia pink color refers to the reference sequence from Wuhan, China.
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The alpha (α) variant denoted by lineage B.1.1.7 was detected in environmental
samples from Austria, Switzerland, Liechtenstein, the Netherlands, Slovenia, Germany,
Italy, Lithuania, and the Czech Republic. The phylogenetic tree constructed solely of the
α variants from environmental strains showed that they all belong to the same lineage,
though there are variations among them. Even the environmental strains from Austria have
variations within themselves as they formed several small clusters rather than forming a
single cluster.

The emerging α variant from environmental samples from Austria was genetically
similar to human samples from Belgium, Germany, Switzerland, and Wales. Moreover, α
variants from environmental strains from Austria and Germany have relations to sequences
from human strains from Austria and France. Another exclusive cluster was formed by
human strains from South Korea and Sweden and environmental strains from Austria
and Switzerland.

Interestingly, human strains from one region were found to have genetic relatedness
with environmental strains from another region. For example, the α variant of human
SARS-CoV-2 from the Philippines and environmental SARS-CoV-2 from the Netherlands,
human SARS-CoV-2 from England and Germany with environmental SARS-CoV-2 from
Slovenia, human SARS-CoV-2 from Romania and Russia with environmental SARS-CoV-2
from Austria were found to share the same ancestral origin (Figure 4).

3.3. Clade and Lineage Diversity of SARS-CoV-2 Circulating in the Environment

Among the studied 807 genome sequences from different environmental samples,
scientists found clade GRY (32.7%), G (29.2%), GR (25.3%), O (7.2%), GH (3.4%), GV (1.4%),
S (0.5%), and L (0.4%). Austria reported the most diverse clades, among which clade GRY
was highest (32.3%), followed by G (30.9%), GR (24.6%), O (7.2%), GH (2.9%), GV (1.7%),
and L (0.3%) in environmental samples. The Netherlands detected six clades whereas
China and Liechtenstein each detected four clades. The clade S has only been reported
from the Netherlands. The overall identified clade was nonspecifically denoted as Others
(O) clade (Figure 5).
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Figure 5. Clade diversity of SARS-CoV-2 isolated from environmental sampling.

Various lineages were identified in environmental samples, but the highest percentage
(49.4%) was under lineage B.1.1.7. Other prevalent lineages were B.1 (18.2%), B.1.1 (9.2%),
and B.1.160 (3.9%). Furthermore, environmental strains belonged to other non-specific
lineages. The most diverse (13) lineages have been reported from Austria where emerging
α variant B.1.1.7 was highest at 48.9%. The USA and the Netherlands also reported diverse
lineages where B.1.1.7 was 53.9% and 17.1%, respectively in each country (Figure 6).
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3.4. Mutational Diversity in SARS-CoV-2 from Environmental Samples

We observed a total of 43 mutations at different proteins of the viral genome. The
most common amino acid substitutions were D614G (83.4%) followed by N501Y (44.6%),
S982A (44.4%), A570D (43.3%), T716I (40.4%), and P681H (40.1%) in Spike (S) protein.
N501Y and P681H are key mutations in the α variant. Another important key mutation
is E484K for the South African variant which was found as 0.5% in studied genomes of
the S protein. In the N protein, the highest mutation was R203K (61.3%). On the other
hand, the NS3 and NS8 protein of environmental strains showed frequent mutations at
Q57H and Q27stop, respectively. No mutation was recorded in NSP3 but other segments-
NSP5, NSP6, NSP12, and NSP13 showed regular mutations at different points. In the ORF8
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protein, mutations were found at Q27stop (49.7%) and Y73C (50.2%) (Figures 7 and 8, and
Supplementary File S1).
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Figure 7. Genomic mutation analysis of environmental-originated SARS-CoV-2. >> and marking
indicating the mutational changes among 12 SARS-CoV-2 (EPI_ISL_408514 is not included due to
Nil mutation) strain studied in this study in comparison with the reference strain NC_045512.2,
hCoV19/Wuhan/WIV04/2019. Here, M—mutation; M(n)—Novel mutation; A—genomic structure;
B—accession number; protein: G—glycine, L—Leucine, I—isoleucine, P—Proline, Y—Tyrosine, W—
Tryptophan, S—Serine, T—Threonine, C—Cysteine, M—Methionine, N—Asparagine, Q—Glutamine,
D—Aspartate, K—Lysine, R—Arginine, H—Histidine as of 21 May 2021.
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Wastewater-based epidemiology and/or environmental surveillance for pathogens
have been used previously for poliovirus [14] and currently for antimicrobial resistance
(https://www.who.int/glass/en/, accessed on 25 May 2021) to help policy planning [34].
It could be useful tool for COVID-19 surveillance [35] as SARS-CoV-2 can be shed from
the upper gastrointestinal and respiratory tract through feces to wastewater. The infected
person can shed SARS-CoV-2 RNA in feces persistently [36]. Sewage and wastewater
samples are easy to collect without any invasive sampling methods [37]. So, WBE can
be a cheap alternative to screening large populations for COVID-19. WBE can detect one
symptomatic/asymptomatic infected case per 100 to 2,000,000 non-infected people [15].
This approach can effectively reduce the pressure on continuous human surveillance
in resource-limited settings [38]. Another important tool to monitor SARS-CoV-2 is the
analysis of airborne particles [35]. These two combinedly can act as an early warning
system for potential outbreaks and help to take specific preventive measures [34].

The present study focused on the environmental genomic diversity of SARS-CoV-2
reported in various countries. We found that various environmental samples such as air,
currency, environmental swabs, surface swabs, sewage and wastewater, packaging of cold
products, and wastewater composite samples have been contaminated with SARS-CoV-2.
The number of environmental sequences of SARS-CoV-2 was reported higher in Austria
than in any other country (www.gisaid.org, accessed on 22 May 2021). The number of
sequencings reported varies across countries, which may be due to less interest in sequenc-
ing from environmental samples. We observed 14 countries reported the sequencing of
the virus from wastewater whereas seven countries sequenced the virus from sewage
samples. However, the untreated wastewater or sludge contains SARS-CoV-2 RNA in
different regions, such as Italy, Spain, Australia, the Netherlands, the USA, France, and
Pakistan [22,23,25,39,40]. India reported detection of SARS-CoV-2 RNA for the first time in
a wastewater treatment plant in May 2020 and the genetic material increased in the samples
along with increasing the number of patients in that city [41]. Similarly, Australia reported
21 positive samples out of sixty-three 24 h composite wastewater samples. They detected
viral RNA in wastewater 3 weeks before the first clinical case [34]. The RNA concentration
in wastewater can indicate the detection of COVID-19-confirmed cases which will be found
after 4 to 7 days [25,39,40].

It is still not confirmed if the virus can be transmitted via contaminated drinking
water or not. If that is the case, developing countries where wastewater treatment facilities
are very scarce can face health issues from environmental contamination [41]. Moreover,
contamination of the drinking and wastewater chain can expose humans to coronavirus
through water [42]. Other sources of infection to humans may be in contact with the
contaminated surface of inanimate objects. Another route of environmental contamination
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is through medical and household-generated COVID-19 wastes, such as hand sanitizer
bottles, gloves, face masks, and personal protective equipment [43].

In Bangladesh, SARS-CoV-2 RNA was identified in wastewater near a COVID-19 iso-
lation center [38] and on the banknotes [39]. A considerable number of hospitals in Dhaka,
Bangladesh lacks wastewater containment and treatment facilities and directly discharge
effluents to environments and ambient water bodies [38]. Moreover, occupational safety
and hospital wastes are not managed properly; and healthcare workers have inadequate
knowledge of hospital waste management. Hospital wastes are being disposed of in a
way that is environmentally unsustainable [40]. This contributes to growing health risks
to the environment as well as neighboring communities [38]. Monitoring of major drains
regularly is recommended to prevent large-scale environmental contamination.

We showed the variations of the environmental strains found around the world. The
environmental strains of SARS-CoV-2 were found to be genetically similar to human strains
that evolved at the same period, but the country of origin was not always the same. For
example, it was seen that environmental strains from the Netherlands grouped with human
strains from Singapore. It indicates the movement of humans from one region to another
which helps the spread of SARS-CoV-2 in the environment. This fact was evident from the
similarities between the genes from the Indian wastewater treatment plant with those of
Australia, China, and Turkey [41].

Austria reported the highest number of SARS-CoV-2 sequences from environmental
samples. Several different cities of Austria, such as Burgenland, Carinthia, Lower and
Upper Austria, Salzburg, Styria, Tyrol, Vienna, and Vorarlberg, contained the virus in
their environment. They detected the virus mostly in 24 h composite wastewater samples
and then in wastewater and sewage. Other European countries, such as Belgium, Czech
Republic, Germany, Italy, Liechtenstein, Netherlands, Slovenia, Switzerland, and the UK
also detected and sequenced the virus from sewage and wastewater. The presence of the
virus in wastewater and sewage will consequently contaminate the environment and the
aquatic environment. This can be a future health threat to aquatic and other mammals and
sometimes to wildlife due to the possibility of adaptation of the virus into new hosts. So, it
is recommended to treat wastewater and sewage properly to reduce the health threat to
species other than humans.

Environmental strains of SARS-CoV-2 around the world were most of the α variant,
belonging to the GRY clade and lineage B.1.1.7. The α variant increases its transmissibility
and lethality over time [44]. The environmental contamination with B.1.17 is mostly
reported in Austria. This variant has been circulating in the human population of Austria
since March 2021 (www.gisaid.org, accessed on 22 May 2021). Several other European
countries such as Slovakia, Sweden, Switzerland, and Germany had a huge number of
humans infected with this variant [45,46]. So, it is not surprising at all to detect this variant
from environmental samples. The only exception was found in Liechtenstein where only
one human was found to be infected with this emerging variant that has been found in
several environmental samples. Outside Europe, this variant of concern has also been
detected in wastewater and from humans in New York, USA [47,48]. However, detection of
the variant of concern, B.1.1.7, in environmental samples from various European countries
implies the need for strict quarantine of human, appropriate disinfection strategies for
wastewater. Without proper treatment and proper waste disposal, the virus can be retained
in the wastewater [49].

The most common amino acid substitutions were D614G in the S glycoprotein of envi-
ronmental strains that are commonly circulating among the clinical human samples [50,51].
This mutation increases the transmissibility and mortality rates [52]. Other important
mutations, N501Y and P681H, specific for the emerging α variant of concern were found
at a high percentage among the environmental strains. We found several other muta-
tions in different protein segments in the environmental strains, but their effect on the
pathogenicity and transmissibility of the virus has not been studied yet. The environmental
sampling revealed those viruses have a likeness in contrast to mutation, lineage, and clade
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diversity with the human CoVs which ultimately indicates that wastewater sequencing
might be used as a strong tool for the evidence of the virus in the community before local
sequencing [53].

Earlier evidence suggests that environmental RNA degrades fast and there is no
concrete indication of the persistence of the virus in marine water [54]. Contrarily, another
study reported a higher concentration of the virus in the surface water and marine water
where the untreated sewer drains out, with evidence of the virus in mollusks and marine
sediment [55]. Further, a recent study suspected that contaminated wastewater can be
a source of SARS-CoV-2 in two feral minks in their natural habitat [56]. Therefore, we
could not neglect the probability of the future spillover of the virus, and we should take
precautionary measures through the treatment of the raw sewer before draining into the
water stream. In addition, the findings elucidated here can be logically extended to the other
inanimate surfaces which might be contaminated with the virus. An inanimate surface
is a common source for nosocomial infection and can act as the source of transmission of
SARS-CoV-2 [56]. Hence, we need to carry out the proper personal hygiene so that the
virus cannot be spilled back from the inanimate surface to humans.

5. Conclusions and Recommendations

SARS-CoV-2 can be spread to the environment through biomedical wastage, sewage,
wastewater, inanimate surfaces, and air fomites. This has increased the risk of further
spreading of the virus from the environment to other susceptible animal species. Studies
detected SARS-CoV-2 RNA mostly from wastewater and sewage. The virus strains have
genetic similarities with human strains. The most prevalent clades and lineages were GRY
and B.1.1.7 (α-variant), respectively, in environmental samples. The strains also showed
a favorable number of mutations in the spike proteins. So, screening and sequencing
of SARS-CoV-2 from environmental samples is very feasible, rather than screening a
large number of human samples in low-resource settings. Additionally, the screening
of airborne particles could be an efficient tool and a primary warning to forecast the
trend of SARS-CoV-2 infection in the community. WBE is needed to be integrated with
the molecular characterization of the virus for a better understanding of the circulating
strains in a community. Moreover, the extensive environmental genome sequencing of
SARS CoV-2 can measure variations in viral diversity, which can designate the advent of
epidemiologically or clinically related mutations. The knowledge, attitude, and practices
of health care workers should be altered towards occupational safety and medical waste
management. Authorities should invest in infrastructure for hospital waste and wastewater
containment and treatment facilities. Wastewater and sewage water should be treated
properly before discharging effluents directly to environments and ambient water bodies
so that the virus will not be in its infectious form and there will be no risk of environmental
contamination, and thus no virus transmission to aquatic and other mammals.
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